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Abstract

RV144 correlates of risk analysis showed that IgG antibodies to gp70V1V2 scaffolds inversely correlated with risk
of HIV acquisition. We investigated IgG antibody responses in RV135 and RV132, two ALVAC-HIV prime-boost
vaccine trials conducted in Thailand prior to RV144. Both trials used ALVAC-HIV (vCP1521) at 0, 1, 3, and 6 months
and HIV-1 gp120MNgD and gp120A244gD in alum (RV135) or gp120SF2 and gp120CM235 in MF59 (RV132) at
3 and 6 months. We assessed ELISA binding antibodies to the envelope proteins (Env) 92TH023, A244gD and
MNgD, cyclicV2, and gp70V1V2 CaseA2 (subtype B) and 92TH023 (subtype CRF01_AE), and Env-specific IgG1
and IgG3. Antibody responses to gp120 A244gD, MNgD, and gp70V1V2 92TH023 scaffold were significantly
higher in RV135 than in RV132. Antibodies to gp70V1V2 CaseA2 were detected only in RV135 vaccine recipients
and IgG1 and IgG3 antibody responses to A244gD were significantly higher in RV135. IgG binding to gp70V1V2
CaseA2 and CRF01_AE scaffolds was higher with the AIDSVAX�B/E boost but both trials showed similar rates of
antibody decline post-vaccination. MF59 did not result in higher IgG antibody responses compared to alum with the
antigens tested. However, notable differences in the structure of the recombinant proteins and dosage used for
immunizations may have contributed to the magnitude and specificity of IgG induced by the two trials.

Introduction

The Thai ‘‘Phase III’’ trial, RV144, showed an esti-
mated vaccine efficacy of 31.2% at 42 months, and post

hoc analysis suggested that efficacy at 12 months was 60%
(95% CI 2–80%).1,2 The vaccine regimen consisted of a

nonreplicating recombinant canarypox vector, ALVAC-HIV
(vCP1521) prime and AIDSVAX� gp120 B/E boost. The
vaccine-induced plasma IgG binding antibody to scaffolded
gp70V1V2 envelope proteins from multiple HIV-1 subtypes
correlated inversely while high levels of Env plasma IgA
(monomeric) binding score correlated directly with HIV
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acquisition.3–5 Viral sieve analysis supported a role for the
second variable domain of Env (V2) in protection.6 Peptide
microarray analysis from six HIV-1 subtypes and group M
consensus showed that the vaccination regimen induced an-
tibody responses to the V2 loop of gp120 of multiple sub-
types. V2 responses by ELISA and surface plasmon
resonance were further evaluated using cyclic (CycV2) and
linear V2 loop peptides. Ninety-seven percent of volunteers
had antibody responses against CycV2 at 2 weeks post-last
immunization, declining to 19% 6 months later.7

Whether quantitative and qualitative antibody responses to
soluble HIV-1 envelope (Env) protein subunits can be modu-
lated by adjuvants remains a critical question for the selection
of Env immunogens in future efficacy trials.8,9 We investigated
HIV-specific binding antibody responses to whole gp120 pro-
teins, gp70V1V2 scaffolds, a CycV2 peptide, and IgG sub-
classes in two phase I/II prime-boost vaccine trials conducted in
Thailand prior to RV144 (RV13510 and RV13211). RV135 was
the phase I/II forerunner to RV144 with the identical vaccine
components and immunization regimen. Both trials used
ALVAC-HIV (vCP1521) as a prime and each used a different
bivalent HIV-1 gp120 protein boost formulated either in alum
(RV135) or in MF59 (RV132) adjuvant.

Materials and Methods

Vaccines and immunization regimens

ALVAC-HIV (vCP1521) (Sanofi Pasteur, Marcy-l’Etoile,
France) is a recombinant canarypox vector genetically en-
gineered to express Env gp120 of the HIV-1 CRF01_AE
92TH023 strain linked to the transmembrane anchoring
portion of subtype B gp41 (with a deletion in the im-
munodominant region devoid of the entire gp41 ectodomain),
and HIV-1 Gag and protease (both LAI strain). ALVAC-HIV
(vCP1521) was administered at a dose of 106.5 CCID50.
AIDSVAX� B/E vaccine (Global Solutions for Infectious
Diseases, GSID, South San Francisco, CA) used in both
RV144 and RV135 is composed of gp120 HIV-1 subtype B
MN and HIV-1 gp120 CRF01_AE A244, each containing a
27 amino acid (aa) sequence from the herpes simplex virus
gD protein fused to each protein at the N-terminus. MNgD
and A244gD gp120 proteins were expressed in CHO cells,
adsorbed onto aluminum hydroxide gel adjuvant, and com-
bined to produce the bivalent AIDSVAX� B/E vaccine ad-
ministered at 600 lg (300 lg of each rgp120).1,10,12 Bivalent
gp120 B/CRF01_AE vaccine used in RV132 was also pro-
duced in CHO cells (Novartis Vaccines and Diagnostics,
Cambridge, MA) and contained 100 lg of gp120 from the
CRF01_AE strain CM235 and 50 lg from the subtype B
strain SF2, formulated in MF59 adjuvant.11 Both trials used
the same immunization schedule used in RV144, with ad-
ministration of ALVAC-HIV at 0, 1, 3, and 6 months and
gp120 protein boosts at 3 and 6 months.

Specimens and study subjects

Plasma samples from 15 vaccine and 6 placebo recipients
(RV132) and 30 vaccine and 10 placebo recipients (RV135)
were randomly selected. Both studies had received approval
of appropriate Institutional Review Boards and written in-
formed consent was obtained from all volunteers. Samples
were tested at baseline, 2 weeks post-second ALVAC vac-

cination, 2 weeks post-third and fourth vaccinations (protein
boosts), and 6 months post-fourth vaccination. All partic-
ipants were HIV-1 uninfected at the time of blood draw.
All plasma and serum specimens were stored at -80�C.

Recombinant proteins and CycV2 peptide

Recombinant gp120 CRF01_AE (A244gD and 92TH023)
and subtype B (MNgD) were expressed in 293T cells and
purified on Galanthous nivalis lectin columns.7 Scaffold
gp70V1V2 proteins (subtype B CaseA2 and CRF01_AE
92TH023) were expressed and purified as described previ-
ously.5,13 The CycV2 peptide was synthesized by JPT Pep-
tide Technologies (Acton, MA). V2 peptides were cyclized
by disulfide bond formation with a purity >90% measured by
high-pressure liquid chromatography and mass spectrometry.
Amino acid sequences of the CycV2 peptide were based on
Env glycoprotein 92TH023. Strain 92TH023, CM235, and
A244 V2 loops vary by two amino acids at positions 188 and
189 (HXB2 numbering) but the antibody binding mid-region
is identical7 (Fig. 1A and B). Therefore, CycV2 peptides
from A244 and CM235 were not included in the study. The
CycV2 peptide contained 42 aa extending from aa 158 to 199
(corresponding to HIV-1 HXB2 aa 157–196). Percent iden-
tity of Env gp120 used in the vaccines is shown in Fig. 1C.

ELISA for recombinant gp120 proteins, gp70V1V2
scaffolds, and CycV2 peptide

As described previously,7 ELISA for rgp120, gp70 V1V2
scaffolds, and the CycV2 peptide was performed using U-
bottom 2HB plates coated with either 1 lg/ml of a cyclic
peptide or with 3 lg/ml of the recombinant gp120/gp70 in D-
PBS (Sigma-Aldrich, St. Louis, MO) at 4�C overnight. Wells
were washed three times with wash buffer (PBS, 0.1% Tween
20, and 0.01% Thimerosal, pH 7.4, Sigma-Aldrich, St. Louis,
MO) using Microplate Washer ELX405 (Bio Tek, Winooski,
VT), and blocked with blocking buffer (D-PBS, 5% skim
milk, Applichem, St. Louis, MO) for 2 h at room temperature.
Plasma was initially diluted in blocking buffer and serial 2-
fold dilutions were performed and added to wells for 2 h at
room temperature. Wells were washed with wash buffer and
HRP-conjugated goat antihuman IgG at 1:25,000 dilution
was added and incubated for 1 h at room temperature. Plates
were washed, ABTS ELISA HRP substrate (KPL, Gaithers-
burg, MD) was added, and color was allowed to develop at
room temperature for 1 h in the dark. Plates were read at A405

nm using an ELISA reader Spectramax 340 PC (Molecular
Devices, Sunnyvale, CA). For IgG subclasses (IgG1 and
IgG3) binding, plates were coated with antigen as in regular
ELISA and plasma was initially diluted 1:25 in blocking
buffer and serial 2-fold dilutions were performed and added
to wells for 1-h incubation at room temperature. Wells were
washed and mouse antihuman IgG1 or IgG3 (Invitrogen,
Grand Island, NY) was added for an hour at room tempera-
ture. Plates were washed and HRP-conjugated goat anti-
mouse IgG (Southern Biotech, Birmingham, AL) was added
and incubated for 1 h at room temperature. Plates were wa-
shed; substrate was added and then read as described above.

Statistical methods

ELISA antibody titers were calculated using serial 2-fold
dilutions of plasma from 1:100 to 1:12,800 and expressed as
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the reciprocal of the highest dilution that yielded an absor-
bance value above 2.5 times the background value. An
overall false-positive response was calculated for each pro-
tein and peptide, stratified by clinical trial based on the 95th
percentile from all baseline absorbance data of vaccine re-
cipients. Antibody responses to an individual protein or
peptide were expressed as percentage of subjects with a
positive response, defined as A405 nM absorbance value >0.25
(positive response rate).

Nonparametric inferential statistical methods were used
throughout to analyze antibody titers that were non-normally
distributed (data not shown). Geometric mean titers (GMT)
were calculated with associated 95% confidence intervals
(95% CI). Mean fold-change (visit 7/visit 5 titers) was cal-
culated between receipt of the first and second subunit vac-
cine doses and its associated p-value using the Wilcoxon
matched pairs method. Comparisons between groups (RV132
and RV135) were performed using the Mann–Whitney test
using the Benjamini–Hochberg method to control the false
discovery rate.14 Statistical analyses were performed with
Graphpad Prism 6.0 (GraphPad Software, San Diego, CA),
Stata SE 11 (StataCorp. 2009. Stata Statistical Software:
Release 11. College Station, TX), and R (R Core Team 2013;
R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria,
www.R-project.org/).

Results

ELISA IgG antibody responses to rgp120 proteins

HIV-specific IgG responses were not detected at baseline,
in placebo, and post-second ALVAC-HIV administration in
both regimens (data not shown). Table 1 and Figs. 2A–C and
3A–C show the results of the analysis of IgG binding anti-
body responses. A majority of subjects demonstrated re-
sponses 2 weeks post-first (V5) and post-second (V7) gp120
protein boosts (Fig. 2A–C). gp120-specific binding antibody
was still present 6 months after protein administration (V10)
in both RV135 and RV132 vaccine recipients. However,

these responses were significantly lower than those at peak
immunogenicity (visit 7). Antibody GMT to gp120 A244gD,
the homologous antigen for RV135, was significantly higher
in RV135 than in RV132 post-first (4422 vs. 606, p = 0.0137)
and post-second (9050 vs. 2425, p = 0.0002) boosts and 6
months post-second boost (1240 vs. 159, p = 0.0002), re-
spectively (Fig. 2A). GMT to the heterologous gp120
92TH023 did not differ significantly between RV135 and
RV132 post-first boost (229 vs. 418, p = 0.2439), post-second
boost (4422 vs. 3676, p = 0.4662), and 6 months post-second
boost (209 vs. 191, p = 0.8179) (Fig. 2B). Antibody responses
to homologous vaccine antigen gp120 MNgD were also sig-
nificantly higher in RV135 than in RV132 at all time points:
post first boost (4422 vs. 174, p = 0.0002), post second boost
(19,855 vs. 1269, p = 0.0002), and 6 months post-second
boost (1924 vs. 114, p = 0.0002), respectively (Fig. 2C). For
both regimens, GMT decreased sharply 6 months post-
second boost.

ELISA IgG antibody responses to CycV2 peptide
and gp70V1V2 scaffolds

GMT to CycV2 92TH023 peptide did not differ signifi-
cantly post-first protein boost (129 vs. 209, p = 0.4662) and
post-second boost (310 vs. 332, p = 0.9712) between RV135
and RV132, respectively (Table 1 and Fig. 3A). Antibody
binding to CycV2 MN and SF2 peptides was not tested. V2
antibodies were not detected in placebo recipients (data not
shown).

Antibody GMT to gp70V1V2 CaseA2 scaffold (used in the
RV144 correlates analysis and found to inversely corre-
late with HIV-1 acquisition risk) was significantly higher
in RV135 than in RV132 (191, 77% vs. 52, 0%, respec-
tively) (Table 1 and Fig. 3B). Antibody GMT to gp70V1V2
92TH023 scaffold was significantly higher post-second boost
in RV135 than in RV132 (1131 vs. 481, p = 0.0190) (Table 1
and Fig. 3C). Six months post-boost, for both vaccine regi-
mens, there was a sharp fall in frequency and titers to both
scaffolds.

FIG. 1. Alignment and percent identity of V2 loops and percent identity of HIV-1 gp120 envelopes. (A) Shaded sequences
match HxB2 and boxed residues differ from the HxB2 reference strain. Amino acid sequences of the V2 loop are numbered
based on the HxB2 reference strain. (B) Percent identity of the V2 loops. (C) Percent identity of gp120 Envs. RV132: HIV-
1 gp120 92TH023 (CRF01_AE in ALVAC-HIV), CM235 (CRF01_AE), and SF2 (subtype B). RV135: HIV-1 gp120
92TH023 (CRF01_AE in ALVAC-HIV), A244 (CRF01_AE), and MN (subtype B).
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Table 1. Magnitude and Frequency of Binding Antibodies to HIV-1 rgp120 Envelope Proteins,

a Cyclic V2 Peptide, and gp70V1V2 Scaffold Proteins in RV132 (ALVAC-HIV Prime

with CRF01_AE CM235 and Subtype B SF2 Protein Boost) and RV135 (ALVAC-HIV

Prime with AIDSVAX
�

B/E Protein Boost) Vaccine Recipients

GMT (95% CI)

Visit 5 Visit 7 Visit 10

Antigen Protocol
2 weeks post-first

protein boost
2 weeks post-second

protein boost
6 months post-second

protein boost

gp120A244gD RV132 (n = 15) 606 (258–1427) 2425 (1617–3637) 159 (106–237)
No (% POS) 13 (87) 15 (100) 13 (87)
RV135 (n = 30) 4422 (1930–10131) 9050 (6853–11953) 1240 (823–1871)
No (% POS) 29 (97) 30 (100) 30 (100)
p-valuea 0.0073 0.0001 0.0001
pc

b 0.0137 0.0002 0.0002

gp120 92TH023 RV132 418 (181–970) 3676 (2640–5117) 191 (122–298)
No (% POS) 11 (73) 15 (100) 13 (87)
RV135 229 (147–359) 4422 (3321–5888) 209 (167–262)
No (% POS) 23 (77) 30 (100) 29 (97)
p-value 0.1626 0.3730 0.7634
pc 0.2439 0.4662 0.8179

gp120MNgD RV132 174 (107–283) 1269 (828–1947) 114 (83–160)
No (% POS) 12 (80) 15 (100) 11 (73)
RV135 4222 (1875–9508) 19855 (14943–26381) 1924 (1296–2860)
No (% POS) 28 (93) 30 (100) 30 (100)
p-value 0.0001 0.0001 0.0001
pc 0.0002 0.0002 0.0002

CycV2 92TH023 RV132 209 (93–473) 332 (230–481) NP
No (% POS) 9 (60) 15 (100)
RV135 129 (90–185) 310 (206–468) NP
No (% POS) 17 (57) 26 (87)
p-value 0.3602 0.9712
pc 0.4662 0.9712

gp70V1V2 CaseA2 RV132 NP 52 (47–58) NP
No (% POS) 1 (7) 0 (0)
RV135 NP 191 (133–274) 55 (50–60)
No (% POS) 23 (77) 4 (13)
p-value 0.0001 0.4701
pc 0.0002 0.5786

gp70V1V2 92TH023 RV132 NP 481 (283–819) 91 (66–126)
No (% POS) 14 (93) 9 (60)
RV135 NP 1131 (758–1689) 89 (67–119)
No (% POS) 30 (97) 13 (43)
p-value 0.0107 0.6105
pc 0.0190 0.6977

IgG1 gp120A244gD RV132 NP 209 (134–327) NP
No (% POS) 15 (100)
RV135 NP 746 (558–999) NP
No (% POS) 30 (100)
p-value 0.0001
pc 0.0006

IgG1 gp70V1V2 CaseA2 RV132 NP 12.5 (12.5–12.5) NP
No (% POS) 0 (0)
RV135 NP 12.8 (12.2–13.4) NP
No (% POS) 1 (3)
p-value 0.8567
pc 0.8567

IgG1 gp70V1V2 92TH023 RV132 NP 52 (33–84) NP
14 (93)

RV135 NP 102 (66–158) NP
No (% POS) 28 (93)
p-value 0.0511
pc 0.1022

(continued)
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HIV antigen specificity of IgG subclasses

Two weeks post-second protein boost, IgG1 and IgG3
antibody responses to gp120 A244gD were significantly
higher in RV135 where subjects were immunized with the

homologous antigen than in RV132 (IgG1: 746 vs. 209,
p = 0.0006; IgG3: 325 vs. 87, p = 0.0078, respectively)
(Fig. 4). IgG1 antibodies to the heterologous gp70V1V2
92TH023 did not differ significantly between RV135 and
RV132 (102 vs. 52, p = 0.1022). IgG3 antibody responses

Table 1. (Continued)

GMT (95% CI)

Visit 5 Visit 7 Visit 10

Antigen Protocol
2 weeks post-first

protein boost
2 weeks post-second

protein boost
6 months post-second

protein boost

IgG3 gp120A244gD RV132 NP 87 (43–175) NP
14 (93)

RV135 NP 325 (221–478) NP
No (% POS) 30 (100)
p-value 0.0026
pc 0.0078

IgG3 gp70V1V2 Case A2 RV132 NP 12.5 (12.5–12.5) NP
No (% POS) 0 (0)
RV135 NP 12.8 (12.2–13.4) NP
No (% POS) 1 (3)
p-value 0.4795
pc 0.5754

IgG3 gp70V1V2 92TH023 RV132 NP 22 (12–40) NP
No (% POS) 4 (27)
RV135 NP 29 (21–40) NP
No (% POS) 19 (63)
p-value 0.0930
pc 0.1395

ap-value calculated based on Mann–Whitney U test.
bpc, corrected p-value based on Mann–Whitney test adjusted for multiple corrections using the Benjamini–Hochberg method to control

the false discovery rate.
GMT, geometric mean titer; CI, confidence interval; NP, not performed.

FIG. 2. Binding antibody
geometric mean titers (GMT)
to HIV-1 CRF01_AE rgp120
A244gD (A), to 92TH023
(B), and to HIV-1 subtype
B MNgD (C) in RV135
(ALVAC-HIV prime with
AIDSVAXB/E boost) and
RV132 (ALVAC-HIV prime
with CRF01_AE CM235 and
subtype B SF2 boost) vac-
cine recipients. Pre-Vac: pre-
vaccination; V5: 2 weeks
post-first protein boost; V7: 2
weeks post-second protein
boost; V10: 6 months post-
second protein boost. Cor-
rected p-value based on the
Mann–Whitney test adjusted
for multiple corrections us-
ing the Benjamini–Hochberg
method.
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were low and did not differ significantly (29 vs. 22,
p = 0.1395) between the two trials. Low IgG1 and IgG3
binding antibody titers to gp70V1V2 CaseA2 were observed
only in RV135 (Table 1).

Discussion

While RV135 and RV132 used the same ALVAC-HIV
(vCP1521) prime, the bivalent gp120 B/E boost proteins,
dose, and adjuvants differed. Bivalent gp120 AIDSVAX� B/
E, tested in both VAX00312 and RV144,1 is composed of
CRF01_AE A244gD and subtype B MNgD (300 lg of each
rgp120), while in RV132, it is composed of CRF01_AE
CM235 (100 lg) and subtype B SF2 (50 lg). Despite the
differences in rgp120 B/E antigens, using a CRF01_AE
(92TH023) heterologous to both vaccine strain gp120s al-
lowed a comparison of gp120-specific titers. Both regimens
elicited comparable levels of gp120-specific binding anti-
body to 92TH023 gp120. Antibody responses to MNgD and
A244gD were higher in RV135.

Factors that may have contributed to antibody differences
observed between the two trials include protein sequences,
glycosylation patterns, dose of antigen (4-fold less in
RV132), protein modifications, addition of a gD peptide, and
a deletion of 11 amino acids (D11) at the N-terminus of
gp120s in RV135, and adjuvants. Analysis using recombi-
nant gp120 proteins showed that D11 modification without
gD was sufficient to enhance responses to conformational
epitopes on V1V2, V2, and other regions of the gp120.
CM235 and SF2 share 94% and 83% amino acid identity with
A244gD and MNgD, respectively.

Antibody responses to rgp120 CM235 and SF2 proteins
were not evaluated due to sample/reagent constraints. In both
RV132 and RV135, the binding antibody titers decreased
significantly 6 months after the last protein boost indicating
that both alum and MF59 did not sustain Env antibody re-
sponses 6 months post-second protein boost. The immuno-
logical mechanisms controlling antibody durability are not
well understood but testing new immunogen/adjuvant

FIG. 3. Binding antibody
geometric mean titers (GMT)
to HIV-1 cyclic V2 peptide
(A), to HIV-1 gp70 V1V2
CaseA2 (B), and to CRF01_
AE 92TH023 (C) in RV135
(ALVAC-HIV prime with
AIDSVAXB/E boost) and
RV132 (ALVAC-HIV prime
with CRF01_AE CM235 and
subtype B SF2 boost) vac-
cine recipients. V5: 2 weeks
post-first protein boost; V7: 2
weeks post-second protein
boost; V10: 6 months post-
second protein boost. Cor-
rected p-value based on the
Mann–Whitney test adjusted
for multiple corrections us-
ing the Benjamini–Hochberg
method.

FIG. 4. IgG1 and IgG3 binding antibody geometric mean
titers (GMT) to gp120 A244gD and scaffolded gp70 V1V2
proteins in RV135 (ALVAC-HIV prime with AIDSVAXB/
E boost) and RV132 (ALVAC-HIV prime with CRF01_AE
CM235 and subtype B SF2 boost) vaccine recipients. A244:
HIV-1 CRF01_AE gp120 in AIDSVAX BE (RV135);
gp70B: scaffolded gp70 V1V2 CaseA2 (subtype B); gp70E:
scaffolded gp70 V1V2 92TH023 (CRF01_AE). V7: 2 weeks
post-second protein boost. Corrected p-value based on the
Mann–Whitney test adjusted for multiple corrections using
the Benjamini–Hochberg method to control the false dis-
covery rate.
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formulations that elicit broad and durable protection is nee-
ded for a successful vaccine.

Although we did not detect significant differences in an-
tibody responses to 92TH023 (CRF01_AE) rgp120 protein
and cyclic V2 peptide between the two vaccine trials, we
observed differences in total IgG binding to the scaffold
gp70V1V2 92TH023. Differences in antibody binding were
also observed when the gp70V1V2 CaseA2 (heterologous to
both vaccines) scaffold (subtype B) was used. The difference
in binding could be attributed to the amino acid sequence in
the recombinant proteins used in the vaccines.

Antibody responses to scaffold gp70V1V2 CaseA2 were
detected only in RV135, which may suggest that qualitative
differences in induced immune responses might be related to
differences in either gp120 antigens, protein modifications,
and/or adjuvants and dose of antigens. IgG responses from
RV144 vaccinees to gp70V1V2 CaseA23,15 and other HIV-1
subtypes A, C, and CRF01_AE gp70V1V2 (92TH023) scaffold
proteins were inversely correlated with risk, suggesting that this
vaccine regimen might prevent acquisition of various HIV-1
clades.5 However, antibody responses to other V1V2 scaffolds
correlated with risk could not be tested in this comparative study.
A recent study showed that RV144 linear IgG V2 responses were
also associated with a lower risk of HIV-1 infection.15

We showed that IgG1 and IgG3 antibodies to A244gD
were higher in RV135 than RV132 vaccinees. Previous
studies with ALVAC-HIV prime (vCP1452) and alum-
adjuvanted gp120 MNgD boost showed that antibody re-
sponse were predominantly IgG1 with few weak IgG2 and
IgG3 responses.16 No significant differences were observed
between the two regimens in IgG1 and IgG3 antibodies to
gp70V1V2 92TH023 scaffold, although there was a trend for
higher titers in RV135 that was significant when total IgG
binding was measured. IgG1 and IgG3 antibody responses
to gp70V1V2 CaseA2 scaffold were very weak and due to
sample limitations we did not use lower sample dilutions to
get a signal. It is unclear whether a higher concentration of
recombinant proteins in the boost could have increased the
magnitude of the antibody responses to gp70 CaseA2 scaf-
fold in RV132. Chung et al. demonstrated that the RV144
regimen (identical to RV135) elicited nonneutralizing anti-
bodies with highly coordinated Fc-mediated effector re-
sponses through the selective induction of highly functional
IgG3 antibodies.17 Analogous antibody responses might have
been present in RV132 but were not assessed.

Alum is the most widely used vaccine adjuvant, but its
mechanism of action remains largely unknown. MF59 is a
safe and effective vaccine adjuvant that has been used in
a licensed seasonal influenza vaccine for 15 years and is a
stronger activator of cell recruitment than alum.18 However,
our study showed that in RV132 MF59 did not increase the
magnitude, frequency, and durability of HIV-specific anti-
bodies to the proteins and scaffolds tested. Whether higher
concentrations of antigen and/or other recombinant proteins
might have increased the magnitude, persistence, and quality
of antibody responses in HIV-1 vaccine formulations that
used MF59 remains unclear.

The lower protein doses chosen in RV132 vaccine repre-
sent an important variable to the current comparison, but dose
sparing would likely be a key rationale for using MF59 in
HIV vaccines as it has been in influenza vaccines.19,20 A
recent analysis of HIV-specific antibody responses in pedi-

atric HIV vaccine trials PACTG 23021,22 and PACTG 23623

using recombinant clade B gp120 proteins (SF2, MN) in
MF59 or ALVAC-HIV-1 (vCP1452) plus AIDSVAX� B¢/B
(MN/GNE8) in alum, respectively, indicated that in the
MF59 gp120 trial, IgG responses to gp120 and gp70V1V2
CaseA2 were higher in magnitude and durability compared to
the alum trial.24

The comparison between RV132, RV135, and the pedi-
atric vaccine trials is difficult to evaluate because of funda-
mental differences in trial design: infants born to HIV-1-
infected mothers, different immunization schedules and
protein doses, and different ALVAC-HIV and AIDSVAX
vaccines. In an NHP challenge study, immunizations with
ALVAC-SIV and SIV gp120 in alum or MF59, only the alum
group showed a significant reduction in SIVmac251 acquisi-
tion, while the MF59 did not despite its ability to elicit higher
antibody responses. The frequency of plasmablasts expres-
sing a4b7 and CXCR4 (hematopoietic homing marker) was
higher in the alum group, while there was a trend for a higher
frequency of plasmablasts expressing CXCR3 (inflammatory
site homing marker) in the MF59 group.25 In other studies
priming with alphavirus replicon particles encoding
gp140DV2 and boosting with trimeric Env protein in MF59
adjuvant provided protection to macaques challenged in-
trarectally with SHIVSF162P4.26

The relatively rapid decay of antibody responses observed
in both trials has previously been reported in envelope protein
alone and in prime-boost trials, whatever the envelope pro-
teins and adjuvants used so far1,10,11,27–30 with, however, a
few exceptions.24,31,32 Long-lived B cell memory represents
the archive of antibody specificities that have occurred over
much of the host lifespan.33 In contrast, circulating antibodies
usually decline after antigen clearance. The study of B cell
memory and clonal exhaustion in future vaccine trials testing
adjuvanted proteins might shed light on the mechanisms of
sustainability of circulating antigen-specific antibodies.

Taken together, our results suggest that gp120 A244gD is
qualitatively different from other gp120 proteins in inducing
V2 antibody responses that bind to multiple subtypes.34,35

Antibody titers to gp70V1V2 CaseA2 and to CRF01_AE
gp70V1V2 were higher with the AIDSVAX� B/E boost,
though both trials showed similar rates of antibody decline
postvaccination suggesting that the formulations of these
gp120 proteins at the doses tested with MF59 or alum did not
translate with antibody persistence. Improved HIV-1 enve-
lope antigens34 formulated with more potent adjuvants9 and/
or more effective vaccine regimens are critically needed to
induce stronger and more durable neutralizing and non-
neutralizing functional antibodies.
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