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A B S T R A C T   

Dark tea refers to a kind of post-fermented product, and its quality and price vary owing to the distinct altitudes 
at which it grows. In this study, a novel method based on high performance liquid chromatography with a diode- 
array detector (HPLC-DAD) and an evaporative light scattering detector (HPLC-ELSD) was proposed for the 
classification of dark teas from distinct altitudes in China. Through implementing a strategy fusing feature-level 
data to construct a combined dataset, the classification performance of dark teas from distinct altitudes in China 
was evaluated after preprocessing. The results suggested that, through the feature fusion strategy, the identifi
cation accuracy rate increased from <70% of a single detector to 76.923%. After the implementation of pre
processing, the identification accuracy rate was further improved. Typically, the model identification accuracy 
rate after short-time Fourier Transform (STFT) treatment reached 92.85%, and the AUROC value was higher than 
0.84, exhibiting a favorable generalization ability. This study provides a new thinking for the identification 
technology of dark teas from different altitudes in China.   

1. Introduction 

Dark tea, one of the 6 substantial tea groups in China, is renowned for 
its distinctive post-fermentation process (Pan, Le, He, Yang, & Ling, 
2023). Unlike other tea kinds, the solid-state fermentation process plays 
a pivotal role in the production of dark tea since microorganisms and a 
warm and humid environment facilitate complex biochemical reactions 
in the harvested tea leaves, causing the development of unique flavors 
and beneficiary compounds (Zheng et al., 2019). These features grant 
dark tea varied health-beneficiary features, such as antioxidative char
acteristics (Ma et al., 2022), a natural enemy of obesity (Qu et al., 2023), 
and a decrease in high blood lipids (Mao et al., 2018). 

As the health-promoting functions of dark tea are researched further, 
the market demand increases, especially for dark tea cultivated in high- 
altitude plantations, which are favored for their abundant beneficial 
volatile compounds. The reports underline that the aroma profile and 
positive health effects of tea leaves are pertinent to the altitude at which 
they grow since high-altitude tea leaves contain more aromatic hydro
carbons, ketones, esters, and health-promoting volatile compounds 

(Jiang, Boorboori, Xu, & Lin, 2021; Kfoury et al., 2018; Wang et al., 
2022; Wang et al., 2022; Wang, Liang, Ko, & Lin, 2022). Additionally, 
high-altitude tea cultivation in low-production environments normally 
follows natural farming practices, decreasing the administration of 
chemical fertilizers and pesticides, which is another reason for its 
acclaimed status (Wang, Li, et al., 2022; Wang, Liang, et al., 2022; 
Wang, Nie, et al., 2022). Consequently, high-altitude dark tea can be 
marketed with a higher price tag owing to favorable characteristics. 
However, it is difficult for customers to distinguish the quality status of 
high-altitude dark tea from other types of dark teas. Some retailers 
might have falsely labeled lower-quality products as high-altitude (Jiang 
et al., 2022). Such actions undermine the trust of the customers, leading 
to losses for both customers and producers. Thus, the development of 
efficient approaches to authenticate the origin of dark tea has been a 
substantial issue. 

Currently, methods analyzing the trace of tea origins include 
component investigation methods such as gas chromatography–mass 
spectrometry (Yun et al., 2021), liquid chromatography-mass spec
trometry, HPLC (Gu et al., 2022), element analysis methodologies such 

* Corresponding author. 
E-mail address: jwllok@sina.com (L. Li).   

1 Zhenhong Wang and Yuanxi Han are Co-first Authors 

Contents lists available at ScienceDirect 

Food Chemistry: X 

journal homepage: www.sciencedirect.com/journal/food-chemistry-x 

https://doi.org/10.1016/j.fochx.2024.101447 
Received 2 January 2024; Received in revised form 21 April 2024; Accepted 5 May 2024   

mailto:jwllok@sina.com
www.sciencedirect.com/science/journal/25901575
https://www.sciencedirect.com/journal/food-chemistry-x
https://doi.org/10.1016/j.fochx.2024.101447
https://doi.org/10.1016/j.fochx.2024.101447
https://doi.org/10.1016/j.fochx.2024.101447
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Food Chemistry: X 22 (2024) 101447

2

as table isotope mass spectrometry (Jin et al., 2020), inductively 
coupled plasma mass spectrometry (Liu, Meng, Zhao, Ye, & Tong, 2021), 
spectral methodologies such as near-infrared spectroscopy (Zhang et al., 
2023), nuclear magnetic resonance (Cui et al., 2023), and sensory 
analysis techniques called electronic nose (Fu, Liu, Chen, & Xing, 2023), 
electronic tongue (Li, Lei, Yang, & Liu, 2014)). HPLC was found to 
present characteristics of good reproducibility, high precision, and 
minimal reagent utilization, thus, making it broadly implemented in tea 
authentication processes (Wang, Li, et al., 2022; Wang, Liang, et al., 
2022; Wang, Nie, et al., 2022). Nevertheless, to our knowledge, limited 
research focusing on distinguishing dark teas from distinct altitudes was 
conducted in the literature. Previous research showed that high- 
performance liquid chromatography combined with chemometrics was 
often employed by scholars, implementing limited non-volatile sub
stances in tea such as catechins (Fang et al., 2019), amino acids (Wu 
et al., 2021), and caffeine (Su, Wu, Wan, & Ning, 2019) as metrics to 
identify the origin. The process of quantifying and qualifying chemical 
components to some extent was determined to be complex and costly 
(Sun et al., 2024). Note that the chemical composition of fresh tea leaves 
became intricate after the solid-state fermentation process (Zhu et al., 
2020). Thus, employing limited chemical markers for distinguishing 
dark teas from varied altitudes in the market seemed challenging. 

The detection of a single limited substance is insufficient to reflect all 
chemical components in complex samples, thus limiting the compre
hensive exploration and examination of the chemical attributions of 
samples from distinct sources (Pinu, 2018). In recent years, scholars 
have increasingly implemented non-targeted HPLC algorithms to 
authenticate the food quality of coffee (Klikarova & Ceslova, 2022), chili 
pepper (Sun et al., 2023), honey (García-Seval, Martínez-Alfaro, Sau
rina, Núñez, & Sentellas, 2022), and other food products, presenting the 
potential of the algorithm to collect as much sample as possible. Addi
tionally, as data analysis algorithms improve, it is possible to efficiently 

integrate non-targeted data from several sensors through the utilization 
of rational data fusion algorithms to attain more comprehensive and rich 
data (Deng, Chen, Fu, & Yun, 2023). By unifying these 2 approaches, the 
advantages of non-targeted HPLC approaches could be better leveraged 
to give comprehensive data to model authentication, potentially 
appearing as a new tool to identify the authenticity and safety of food 
products. 

It is a fact that compounds in dark tea could exhibit distinct UV 
absorption characteristics. The research aimed to employ the combina
tion of the HPLC, DAD, and ELSD to establish HPLC-DAD and HPLC- 
ELSD fingerprint profiles of dark teas from distinct altitudes. Thus, 
more detailed chemical information can be captured from samples. 
Through a strategy fusing feature-level data, the data from the 2 
fingerprint profiles are integrated to attain a more refined and 
comprehensive dataset of dark teas from varied altitudes, bringing new 
perspectives and possibilities to authenticate dark tea from distinct 
origins. 

2. Experimentation 

2.1. Chemicals reagents and samples 

Methanol of HPLC grade is sourced from Merck Chemical Technol
ogy in Shanghai, while acetonitrile and acetic acid are procured from 
Tianjin Comeo Chemical Reagent Co. in Tianjin, China. Ultra-pure water 
is obtained from Guangzhou Watson’s Food & Beverage Co., Ltd., 
located in Guangzhou, China. 

Dark tea samples (n = 48) are gathered from commercial tea prod
ucts based on the distinct production plantations in China (Fig. 1). The 
dark tea from distinct regions is categorized into production areas low- 
altitude (n = 16), medium-altitude (n = 16), and at high-altitude (n =
16), respectively with the average altitudes ranging between 200 and 

Fig. 1. Origins of the dark tea.  
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1000 m, 1100 to 1500 m, and 2500 to 3000 m, respectively, based on the 
mean altitude at which tea is grown. Then, each sample is preserved in 
an aluminum foil package and kept at − 20 ◦C in a refrigerator. To 
analyze an accurate quantity of powdered sample (passed through a 40- 
mesh sieve) is weighed. The sample weighing 0.20 g is transferred into a 
volumetric flask (50 mL capacity) and diluted with a solvent consisting 
of 50% methanol to be used in the extraction process. The mixture is 
subjected to ultrasound-assisted extraction at a constant temperature of 
60 ◦C for 60 min by utilizing a water bath. The extraction solution is 
allowed to reach ambient temperature before 10 min of centrifuge at 
13000 rpm to detach the supernatant. This is then passed through a 0.22 
μm membrane filter. The resulting filtrate is reaped for subsequent 
chromatography testing. 

2.2. Chromatographic analysis 

The analysis is conducted by employing an HPLC with 2 distinct 
detectors. The first one used in the analysis is the Agilent 1260 Infinity 
HPLC system (Agilent Technologies, USA). It is composed of a G1311C 
quaternary gradient pump, a G1329B autosampler, a G1316A column 
oven, and a G4212B diode array detector (DAD). The employed chro
matographic column is the Agilent ZORBAX Plus-C18 (250 mm × 4.6 
mm, 5 μm), operated at 35 ◦C with a flow ratio of 0.3 mL/min. Detection 
is performed at a wavelength of 280 nm, utilizing an injection volume of 
20 μL. The mobile phase is composed of 5% acetic acid water (A) and 
acetonitrile (B). Before the sample is used, both mobile phases are 
filtered through a 0.2 μm membrane and degassed by employing an 
ultrasound. The sample is subjected to the following gradient elution: 
85% A (0.00 min to 8.00 min), 85% A to 75% A (8.00 min to 25.00 min), 
75% A to 60% A (25.00 min to 35.00 min), 60% A to 40% A (35.00 min 
to 45.00 min), 40% A to 20% A (45.00 min to 55.00 min), 90% A (55.00 
min to 60.00 min). After each run, an equilibration period of 15 min is 
performed under initial requirements (85% A and 15% B). The approach 
is called HPLC-DAD. 

The second detector is the Nexera LC20A HPLC system (Shimadzu 
Corporation, Japan). It consists of a CBM-20Alite system controller, a 
SIL-20A autosampler, a CTO-20A column oven, and an ELSD-LT II 
evaporative light scattering detector. The utilized chromatographic 
column is the Shim-pack GIS C18 (250 mm × 4.6 mm, 5 μm), operated in 
non-split mode with a drift tube temperature of 50 ◦C and an injection 
volume of 20 μL. The mobile phase consists of 5% acetic acid water (A) 
and acetonitrile (B). Like the previous system, both mobile phases are 
filtered through a 0.2 μm membrane and degassed utilizing ultrasound 
before the sample is used. The sample is subjected to the following 
gradient elution: 99% A (0.00 min to 5.00 min), 99% A to 90% A (5.00 
min to 23.00 min), 90% A to 82% A (23.00 min to 50.00 min), 82% A to 
10% A (50.00 min to 60.00 min), 10% A (60.00 min to 75.00 min). After 
each run, an equilibration period of 15 min is performed under initial 
conditions (85% A and 15% B). The approach is called HPLC-ELSD. 

2.3. The analysis of the data 

2.3.1. The demonstration of the experimentation 
Fig. 2 depicts the primary steps of data analysis in the research. First, 

the fingerprint profiles of dark teas from distinct altitudes are con
structed by implementing the raw chromatographic signals collected by 
the chemical investigation approaches from varied detectors, and 
representative characteristic signals are picked. The chosen signals from 
distinct detectors are then integrated through attribute fusion to 
construct a new dataset. To advance the data quality of this newly 
constructed dataset, 3 distinct preprocessing approaches are imple
mented before the classification approach is run. Lastly, the method 
conducting both classification and discrimination that yields the best 
traceability outcomes is assessed. 

2.3.2. Feature selection and data fusion 
Data fusion schemes enable the procurement of complementary in

formation from a range of analytical instruments (Borras et al., 2015), 
thus facilitating a more comprehensive and precise chemical depiction 
of the sample (Deng et al., 2023). Based on the fusion hierarchy, it is 
normally grouped into 3 types: fusion at the data level, the feature level, 
and the decision level, respectively. 

2.3.3. Data preprocessing 
In this scenario, 3 preprocessing methods are implemented to 

enhance the caliber of the integrated data collection. The STFT is an 
ideal analytical approach and provides high resolution for signal fre
quencies in digital signal processing, enabling a clear extraction of fre
quency components (spectra) within the spectral signal. The utilization 
of the STFT efficiently decreases random noise and interference within 
the chromatic data, thus improving the precision of classifications in 
subsequent approaches. 

Conversely, the Hilbert Transform (HT) as a methodology in
vestigates time-frequency domains, depending on signal-specific local 
traits. It proves especially effective to examine signals that are charac
terized as non-stationary and nonlinear. This approach decomposes 
complex non-stationary signals into the components of the multiple 
intrinsic mode function, thus, allowing for the description of local 
characteristics of signals on the time-frequency plane. When compared 
to other analysis approaches like the STFT, it exhibits better energy 
concentration and could reflect the local attributions of non-stationary 
signals more precisely, thus enabling more accurate attribute deriva
tion of such signals. 

The Infinite Impulse Response (IIR) transform is an extremely 
effective filter in terms of computational efficacy. It functions by 
changing the relative proportions of frequency components or by 
filtering out specific frequency components in the input signal, desig
nating advantageous higher precision and stability. 

Fig. 2. The basic flow chart of experimental processing.  
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2.3.4. Chemometrics 
Partial Least Squares Discriminant Analysis (PLS-DA), a linear clas

sification approach based on partial least squares regression, is broadly 
implemented to validate the authenticity of food products (Jiménez- 
Carvelo, Martín-Torres, Ortega-Gavilán, & Camacho, 2021). An associ
ation between the predictor variables, X, and the outcome matrix, Y, is 
represented by a partial least squares regression. The matrix Y, the 
dependent variables, accepts binary coding where ‘1’ and ‘0’ denote 
sample inclusion and non-inclusion in a particular class, respectively. 
The objective is to pinpoint dark tea at low, medium, and high altitudes, 
respectively. The matrix’s rows of dependent variables, Y, are repre
sented by (1,0,0), (0,1,0), and (0,0,1). 

2.3.5. Software 
Chromatographic data of dark tea samples are captured by 2 de

tectors and converted into CSV format. Liquid chromatography finger
print profiles of dark teas from varied altitudes are produced by 
employing Original 2021 (Origin Lab Corporation, Roundhouse Plaza., 
Northampton, MA, USA), while MATLAB R2018b (The MathWorks, Inc., 
Natick, MA, USA) software is utilized to extract features, preprocess of 
chromatographic data, and construct fusion models. 

3. Results and discussion 

3.1. Classification of single detector data based on PLS-DA 

PLS-DA, a prediction and discrimination approach, leverages high- 
dimensional data for classification predictions, strategically maxi
mizing intergroup variances based on predefined classes. Núñez, Mar
tínez, Saurina, and Núñez (2021) utilized high-performance liquid 
chromatography with fluorescence detection fingerprint profile spec
trum in conjunction with PLS-DA to run traceability research on coffee. 
The findings reveal that the constructed PLS-DA using statistically sig
nificant attributes exhibited high discriminative capability. This exper
imentation acted as a crucial reference to identify dark tea from varied 
altitudes. Consequently, it was suggested that the PLS-DA proved to 
perform the traceability on the fingerprint profile spectrum of dark tea. 
The fingerprint profiles spectra of randomly selected dark tea samples 
from different altitudes were shown in Fig. 3A and C, respectively. Dark 
teas from distinct altitudes exhibited varied fingerprint spectrum char
acteristics when both DAD and ELSD detectors were implemented. These 
outcomes formed 48*7201 and 48*2603 dimensional matrices, respec
tively, which were implemented to construct the PLS-DA. Table 1 de
picts the overall predictive precision of the PLS-DA for the dark tea 
fingerprint profile spectrum that is attained from DAD and ELSD 

Fig. 3. The feature selection results of the raw chromatographic data from the HPLC-DAD and HPLC-ELSD.  
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Table 1 
The results of the predictive classification model using the HPLC-DAD and HPLC-ELSD raw datasets.  

DAD Chromatographic sensor 
(Accuracy = 64.583%) 

ELSD Chromatographic sensor 
(Accuracy = 68.750%) 

Predicted classes True classes Predicted classes True classes 
Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

Class 1 6 1 2 Class 1 6 2 0 
Class 2 6 13 2 Class 2 5 11 0 
Class 3 4 2 12 Class 3 5 3 16 
Total 16 16 16 Total 16 16 16 

Class 1: Samples at low altitude, Class 2: Samples at medium altitude, Class 3: Samples at high altitude. 

Fig. 4. The comparison of the results of the classification model with two single sensors, data fusion, and preprocessed data fusion.  
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detectors, which amounted to variations of 64.583% and 68.750%, 
respectively. The investigation also reveals that the low predictive pre
cision is attributed to the excessive quantity of redundant attributes in 
the original data. As a result, irrelevant attributions diminish the quality 
ratio of “clustering and patterns” depicted in the data, thus leading to a 
subpar separation impact of the model (Dash, Ong, & Ieee., 2011). Thus, 
the research necessitates the exploration of a broader spectrum of al
gorithms to investigate the attributes from a singular detector, to further 
pinpoint the optimal traceability impact. 

3.2. Improvement and optimization of the approach tracing dark tea 
origin 

3.2.1. Exploration of attribute fusion 
Attribute fusion can disregard redundant information represented by 

correlations among distinct attribute sets to the greatest extent, ulti
mately assisting in the progression of classification precision for subse
quent classifier algorithms. Obisesan, Jimenez-Carvelo, Cuadros- 
Rodriguez, Ruisanchez, and Callao (2017) employed 3 data fusion 
schemes from the data gathered from 2 detectors, the ultraviolet de
tector linked with high-performance liquid chromatography and the 
electrospray ionization, displaying the synergistic potential of deriving 
information from 2 chromatograms. The strategy fusing feature-level 
data designated the highest precision in pinpointing palm oil from 
distinct sources when compared with the alternative methods. The 
experimentation intended to utilize the weight of attribute importance 
as the assessment metric to select attributions and perform chromato
graphic fusion on the dataset with a higher weight proportion, thus 
advancing the prediction accuracy of its classifier while the data 
dimension is also reduced. 

The Relief algorithm, an attribute weighting method that assigns 
distinct weights to attributions based on their correlation with cate
gories (Dash et al., 2011), pinpointed the optimal attribute subset by 
removing irrelevant attributes. It improved the recognition algorithms’s 
prediction precision while decreasing data dimensionality (Xu et al., 
2021). Attributes with importance weights of 0.1 (DAD) and 0.2 (ELSD), 
respectively, were picked. The outcomes of attribute selection corre
sponded to distinct chromatographic band areas (The gray areas in parts 
A and C in Fig. 3). In the HPLC-DAD fingerprint profile spectrum, band 
areas picked spanned 2.20–4.50 min, 19.85–23.30 min, and 
56.00–60.00 min (Fig. 3A), yielding a selection of 1730 variables for the 
HPLC-ELSD data. An analogous method was adopted to integrate HPLC- 
CAD data. The chosen band areas in the fingerprint profile spectrum 
were 2.09–4.74 min, 6.33–7.62 min, 16.72–20.97 min (Fig. 3C). Finally, 
556 attributes were picked for concatenation with HPLC-DAD data, 
leading to a 48*556 dimensional matrix. 

3.2.2. Selection and optimization of chromatographic fusion methods 
The research developed a PLS-DA approach to examine how the 

combined chromatographic data impacts the approach’s capability to 
classify accurately. Fig. 4 depicted that PLS-DA had a higher prediction 
precision for the fingerprint profile spectrum of dark tea after chro
matographic data fusion than the combination of the 2 single detectors, 
with an overall prediction precision of 76.923% (Fig. 4C). This sug
gested that integrated data could notably advance the discriminative 
performance of the classification approach for dark tea from varied al
titudes, despite there was a need for further advancements in classifi
cation precision. This occurred due to the characteristics and scale of 
data from varied disparate origins, and the constrained effectiveness of 
the approach built to implement the combined data directly. Thus, it was 
required to further preprocess the data to enhance data quality and help 
advance the recognition precision of subsequent approaches. 

The classification outcomes of data fusion after data preprocessing 
by STFT, HT, and IIR, respectively depicted that the recognition preci
sion of STFT (Fig. 4D), HT (Fig. 4E), and IIR (Fig. 4F) were 92.857%, 
86.615%, and 86.615% respectively. The STFT processing provided the 

best precision. In the performance assessment outcomes of the algorithm 
with the best preprocessing (Table 2), the sensitivity scores of the 
approach for distinct altitudes of dark tea changed from 79.200% to 
91.700%, and the specificity scores altered from 68.400% to 79.200%, 
respectively. Ultimately, the Receiver Operating Characteristic (ROC) 
curve, drawn by graphing Sensitivity against 1-Specificity at various 
cutoff points as depicted in Fig. 5A depicted that the Area Under the ROC 
Curve (AUROC) for the approach across varied altitudes of dark tea 
surpassed 0.800. This suggests that the approach designated robust 
generalization capability. 

3.3. Model validation 

To further validate the efficacy of the PLS-DA approach based on a 
Fast Fourier transform, a permutation test with external cross-validation 
was implemented. Permutation test, as a ‘random algorithm’ based on 
the probabilistic notion, aimed to assess the importance of the 
approach’s outcomes by randomly permuting the response matrix (Y) 
(de Andrade, de Gois, Xavier, & Luna, 2020) and then the approach was 
rebuilt to utilize the same modeling settings to compute the probability 
outcomes that occur by chance (Lopez, Etxebarria-Elezgarai, Amigo, & 
Seifert, 2023). It serves as a powerful tool to evaluate the validity of 
regression methodologies (Ballabio & Consonni, 2013), where the Q2 

score is used to gauge the predictive capability, while R2 is employed to 
measure the explanatory power. In the research, the permutation test 
was repeated 200 times (n = 200). Although a higher number of repe
titions leads to a more stable background distribution, excessive repe
titions can put a heavy burden on computational resources and reduce 
the learning efficacy of machine learning approaches. 

Fig. 5B depicts that all the R2 and Q2 scores to the left are less than 
those on the extreme right, implying a lack of overfitting in the altitude- 
specific dark tea classification approach (Bi et al., 2021). The R2X, R2Y, 
and Q2 scores recorded as 0.860, 1, and 0.915, respectively, suggest that 
the variation among dark teas from varied origins after the post- 
intermediate data fusion was significant, and the resulting approach 
designated strong predictive performance. Furthermore, an unsuper
vised PCA approach was implemented to cross-validate the potential 
natural clustering in the data fusion matrix by implementing STTF and 
detecting possible outliers. The first 2 principal components of the PCA 
accounted for 95.2% of the variability in the dataset (PC1 = 73.0%, PC2 
= 22.2%). In the score plot (Fig. 5C), dark tea samples from distinct 
altitudes could be clustered according to low, medium, and high altitude 
dark teas, respectively, and were discriminated without any outliers, 
thus depicting that the intergroup differences of dark tea from distinct 
origins after data fusion were significant. Based on all these performance 
metrics, it could be considered that the classification approach based on 
data fusion unified with STTF could be employed to identify dark tea 
from distinct altitudes. 

Table 2 
The results of the evaluation of the model performance based on STFT.  

Categories Number 
of 

samples 

AUROC Sensitivity Specificity Youden 
index 

Samples at 
high 

altitude 
16 0.850 0.881 0.708 0.589 

Samples at 
low 

altitude 
16 0.840 0.792 0.792 0.583 

Samples at 
medium 
altitude 

16 0.840 0.917 0.684 0.601  
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4. Conclusion 

The research implemented a strategy fusing feature-level data, uni
fying fingerprint profiles attained from HPLC-DAD and HPLC-ELSD an
alyses, to successfully suggest an efficient approach to detect dark teas 
originating from distinct altitudes. Dark teas presented distinct chro
matographic fingerprints when investigated with DAD and ELSD de
tectors. Note that the classification approach unifying ELSD and DAD 
sensors designated a higher recognition ratio, highlighting the impor
tance of integrating multi-sensor data in dark tea investigation. 
Following attribute derivation and the construction of the HPLC-DAD- 
ELSD fusion approach, the classification precision and model perfor
mance of dark teas from distinct altitudes were substantially enhanced. 
The research outcomes indicate that the fusion approach employing the 
STFT preprocessing algorithm achieved optimal performance with a 
classification precision of 92.85%. In conclusion, the combined utiliza
tion of the non-targeted HPLC-DAD-ELSD approach and the scheme that 
fuses feature-level data leads to an economically efficient method to 
pinpoint the geographical origin of dark teas based on altitude. 
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