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Abstract

Drought is a natural hazard that affects crops by inducing water stress. Water stress,

induced by drought accounts for more loss in crop yield than all the other causes combined.

With the increasing frequency and intensity of droughts worldwide, it is essential to develop

drought-resistant crops to ensure food security. In this paper, we model multiple drought sig-

naling pathways in Arabidopsis using Bayesian networks to identify potential regulators of

drought-responsive reporter genes. Genetically intervening at these regulators can help

develop drought-resistant crops. We create the Bayesian network model from the biological

literature and determine its parameters from publicly available data. We conduct inference

on this model using a stochastic simulation technique known as likelihood weighting to

determine the best regulators of drought-responsive reporter genes. Our analysis reveals

that activating MYC2 or inhibiting ATAF1 are the best single node intervention strategies to

regulate the drought-responsive reporter genes. Additionally, we observe simultaneously

activating MYC2 and inhibiting ATAF1 is a better strategy. The Bayesian network model

indicated that MYC2 and ATAF1 are possible regulators of the drought response. Validation

experiments showed that ATAF1 negatively regulated the drought response. Thus interven-

ing at ATAF1 has the potential to create drought-resistant crops.

Introduction

Drought is a natural hazard characterized by prolonged periods of dry conditions which can

lead to economic, humanitarian, and ecological crises. In the context of agriculture, drought

occurs when the amount of water available is not enough to sustain crops; such deficiency of

water may arise from the lack of precipitation, soil water deficit, and reduced levels of ground

or reservoir water [1, 2]. It is important to study the effect of droughts on agriculture as it is

usually one of the first sectors to be impacted [3]. The United Nations Food and Agriculture

organization reported that between 2005–2015 the agricultural sector of the developing coun-

tries suffered a loss of $ 29 Billion due to droughts [4]. In the United States, the state of Califor-

nia alone incurred a loss of 3.8 billion dollars from 2014–2016 due to the droughts which
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occurred from 2012 to 2016 [5]. Although the long term global drought trends have been a

subject of debate, recent regional studies have shown an increasing trend of intensity and fre-

quency of droughts across the Mediterranean, Western Africa, Central China, and Southwest

and Central Plains of Western North America [6–10]. According to the special report pub-

lished by the Intergovernmental Panel on Climate Change (IPCC) in 2018, human activities

have contributed to global warming, and, at the current rate of warming, temperatures will

rise by 1.5˚C between 2030 and 2052 [11]. This warming of the climate is projected to increase

the frequency and intensity of droughts, especially in the southern African and Mediterranean

regions [12]. Droughts are not caused by global warming alone; recent studies have shown that

in the southwestern regions of the United States, droughts are expected to be more frequent

and hotter due to structural changes in forested ecosystems and mass mortality of trees [13].

Along with being expensive events, droughts also threaten food security by affecting the global

crop yield. With food security being a grand challenge due to a rising global population, fre-

quent and more intense droughts in the future only serve to exacerbate this problem [14].

Thus, it is of paramount importance to develop crops that are robust against drought.

While the risk of imminent droughts has motivated the scientific communities’ efforts in

developing drought resilient plants, it has also led plants to develop and evolve their internal

defense mechanisms to protect against droughts. Under drought conditions, plants can imple-

ment various strategies to conserve water to ensure their survival. For instance, plants can

develop longer roots to search for water, shed their leaves early, slow their growth, or develop

spines to conserve water in response to drought [15]. In addition to a plant’s internal defense

mechanism against drought, farmers have relied on traditional plant breeding methods such

as selection and hybridization to combat drought. These methods have been successful in

developing drought resistant plants in the past; however, progress has been slow due to the

limited understanding of genetic and molecular interactions in the signaling pathways

involved in the defense response of plants against drought [16]. Thus it is essential to develop a

strong understanding of these signaling pathways. In this paper, we use Bayesian networks

(BNs) to model the various drought signaling pathways of the model plant Arabidopsis. We

use BNs as they allow us to combine biological pathway information along with experimental

data, which is essential for developing a complete understanding of the interactions that take

place inside a plant under drought conditions. We then perform inference using likelihood

weighting in the BN model to identify targets in the pathways that regulate drought responsive

genes. Genetically intervening (activating/inhibiting) at these target sites using methods such

as CRISPR-Cas9 can help develop drought resistant plants [17].

Plant defense mechanisms

Most living organisms can escape harsh environments by seeking refuge in favorable locations

however, plants are immobile organisms and have to adapt to these conditions. If plants do

not adapt to stressful conditions then their growth, development, yield, and seed quality may

be hampered [18]. Plant stress can be categorized into two groups, biotic and abiotic. Biotic

stress includes attacks on the plant by herbivores, bacteria, fungi, and other pathogens,

whereas under abiotic stress the plant faces detrimental environmental conditions such as

extreme temperatures, droughts, and mineral toxicity. Plants defend against such stress by

activating complex networks of signaling pathways. These pathways are often activated with

the help of small molecules such as Ca2+, reactive oxygen species, nitrogen, or phytohormones

such as ethylene, jasmonic acid, abscisic acid, and salicylic acid, which serve as biological stress

sensors [19]. These pathway activators often initiate a protein phosphorylation cascade to

directly target defensive proteins or transcription factors to regulate the stress responsive
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genes [20]. Under stressed conditions, the natural metabolic homeostasis of plants is disrupted

and, by activating the stress signaling pathways, plants achieve a new state of homeostasis; this

process is commonly referred to as acclimation [21].

When a plant comes under drought conditions, it typically responds by implementing

drought escape, avoidance, and tolerance strategies [22]. Drought escape strategies involve

the plant developing high plasticity and completing its life cycle before the onset of drought,

whereas under drought avoidance, the plant learns to maintain high water content in its tissues

by increasing water uptake and reducing water loss [22–24]. Drought tolerant strategies are

characterized by the plant developing traits such as epicuticular wax formation, osmotic

adjustment, cellular elasticity, and protoplasmic resistance. These strategies allow the plant to

survive in drought conditions with low tissue water content [24]. Plants do not deploy these

defensive responses one at a time; instead, they implement a combination of these strategies to

cope against drought [23]. Such a diverse range of defensive responses is achieved through the

actions of Gene Regulatory Networks (GRNs) [24, 25]. GRNs are complex networks of genetic

regulators called Transcription factors and their target genes; GRNs are directly responsible

for altering the gene expression of plants when they receive environmental cues such as

drought [26]. Due to these reasons, in this paper, we are interested in modeling the various

GRNs, that are activated in plants in response to drought. Modeling these genetic interactions

will help us establish a deep understanding of how plants deploy phenotypical defensive behav-

ior through the actions of genes and transcription factors. Such a model will also help us iden-

tify the key regulators of drought response. The various GRNs involved in drought response in

Arabidopsis are described in the following section.

Drought signaling networks

In this paper, we build a BN model from several signaling pathways involved in the drought

response of Arabidopsis. Since the plant’s response to drought happens in a complex manner,

it is necessary to build a comprehensive network model that can capture the multivariate and

stochastic interactions taking place under drought conditions. Drought responses in plants are

largely regulated by Abscisic acid (ABA) dependent and independent pathways [27]. ABA acts

a sensor of drought in plants. Under drought conditions, the ABA levels increase rapidly in

plants which allows them subsequently respond by closing their stomata and inducing drought

responsive genes [28]. ABA regulates the expression of these genes through transcription fac-

tors in its drought signaling pathway. The basic-domain leucine zipper (bZIP) transcription

factor and its subfamily of ABA-responsive element-binding protein/factor (AREB/ABF) con-

stitute the primary transcription factors through which ABA regulates drought responsive

genes [29, 30]. Under drought conditions, ABA induces AREB1(ABF2), AREB2(ABF4), ABF1,

and ABF3 from this transcription factor family in the vegetative tissues of Arabidopsis [31].

ABA and another plant phytohormone Jasmonic Acid (JA) regulate the expression of the

drought responsive gene RD22 in Arabidopsis via the transcription factors MYB2 and MYC2
[32, 33]. MYB2 and MYC2 act as a point of crosstalk between the ABA and JA signaling path-

ways. On the other hand, Dehydration-responsive element binding protein 1 (DREB1)/CBF
(C-repeat binding factor) and DREB2 transcription factor families operate independently of

the ABA dependent pathway to regulate the drought responsive gene RD29A. This is achieved

by the actions of transcription factors DREB1A(CBF3), DREB1B(CBF1), DREB1C(CBF2), and

DREB2A [33, 34]. DREB1A, DREB1B, and DREB1C are negatively regulated by a transcription

factor MYB15 and positively regulated by another transcription factor, ICE1 [35–37]. While

ICE1 negatively regulates MYB15, it is suppressed by transcription factors HOS1 and upregu-

lated by transcription factor SIZ1 [38]. Among the various members of the DREB1 and DREB2
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family, DREB2A and DREB1D(CBF4) play an interesting role in regulating drought response.

Unlike the other DREB transcription factors discussed here, which function independently of

the ABA pathway, DREB2A and DREB1D can be induced by the ABA pathway through the

ABRE transcription factor family under drought conditions [33, 39, 40]. Therefore DREB2A
and DREB1D serve as another point of crosstalk for both ABA dependent and independent

pathways in regulating drought responsive genes. DREB2A was found to be further regulated

by DRIP1. Singh et al. (2015) found that transgenic Arabidopsis overexpressing DRIP1 delayed

the expression of drought responsive genes regulated by DREB2A [33]. Downstream of the

DREB and ABRE transcription factors is the drought responsive gene RD29A which is heavily

regulated by these transcription factors [29, 40–42].

A recent study by Li et al. (2017) identified a drought stress-activated mitogen-activated

protein (MAP) kinase cascade in cotton that regulates the expression of a drought responsive

transcription factor GhWRKY59. GhWRKY59 directly binds to the W-boxes of the transcrip-

tion factor GhDREB2 to regulate drought response in cotton [43]. We include this ABA inde-

pendent pathway in our study of the drought regulatory network in Arabidopsis, where the

MAP Kinase cascade is known to converge at the transcription factor DREB2A. In building

our network model, we also study the WRKY transcription factor family which is traditionally

associated with defense response against pathogens. However, many studies have now shown

that WRKY transcription factor is involved in the defense response against drought [44–46].

The WRKY transcription factors WRKY40, WRKY60, WRKY18 are induced by ABA to regu-

late the expression of RD29A [47]. WRKY18, WRKY60 are known to positively regulate the

expression of RD29A, whereas WRKY40 inhibits RD29A and WRKY60 [48]. Our previous

paper on modeling the WRKY transcription factor in Arabidopsis under drought further con-

firmed these regulatory behaviors of the WRKY transcription factor family [49]. It should be

noted that there is often crosstalk between ABA dependent and other independent pathways,

we noted two instances of this earlier. Another instance of the crosstalk between the JA and

ABA pathways was highlighted by Mintgen et al. (2014), where WRKY60 from the ABA path-

way suppresses the expression of MYB2 in the JA pathway to regulate the drought responsive

gene RD22 [50]. Other than RD22, MYB2 and MYC2 also regulate the expression of another

drought responsive gene ERD1 [33]. According to a study by Ollas et al. (2016), MYB2 and

MYC2 regulated the expression of ERD1 through a cluster of transcription factors (ANAC019,

ANAC055, and ATAF1) belonging to the NAC transcription factor family. ERD1 was found to

be further regulated by the transcription factor zinc finger homeodomain 1 (ZFHD1) and the

gene RD26 (ANAC072) in the ABA pathway [51]. In addition to the drought responsive genes

RD29A, ERD1, and RD22, we also consider the gene RD20 in our network model. RD20 was

found to be directly upregulated by the gene RD26(ANAC072) [51]. The biological interactions

discussed above are summarized in Fig 1. In the next section, we create a Bayesian network

model based on these signaling pathways to predict the best regulator(s) for the drought

responsive genes (marked in blue in Fig 1).

Materials and methods

Bayesian network model

We observed in the previous section that plants deploy a diverse range of defense mecha-

nisms to survive under drought conditions. These phenotypical defense responses are medi-

ated through complex networks of signaling pathways at the genomic level. Biological

signaling pathways have been successfully modeled using methods such as linear models,

Boolean networks, probabilistic Boolean networks, Bayesian networks, and small molecule

level models [52–57]. In order to develop a thorough understanding of these multivariate
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and stochastic interactions, we create a BN model of the drought signaling pathways. Unlike

some modeling techniques which are solely driven by data, a BN model allows us to integrate

pathway information in the form of prior knowledge along with experimental data [58]. BNs

are directed acyclic graphs that represent the causal probabilistic relationships among a set

of random variables and provide the conditional decomposition of the joint probability dis-

tribution of these random variables [59, 60]. Thus BNs serve as an ideal modeling paradigm

to study the drought signaling pathways [58]. In this paper, our objective is to create a BN

model of the drought signaling pathways outlined in Fig 1 and use this model to determine

which transcription factor, protein or gene is the best regulator of drought responsive

reporter genes (blue diamonds in Fig 1). The predictions made by the model can help us

identify potential targets for genetic intervention techniques like CRISPR-Cas9 to create

drought resistant crops.

Fig 2 represents the BN model of the signaling pathways shown in Fig 1. Every node (circle)

in the network represents a gene, protein, or transcription factor in the drought signaling path-

way. The black arrows or edges connecting the nodes represent the causal biological relation-

ships we discussed in the previous section. We assume each of the nodes are binary random

variables that can assume 1 for activation and 0 for inhibition. Since the nodes are random

variables, associated with each of them is a parameter θ which describes the local marginal or

conditional probability distribution for that node. For instance, the conditional probability

parameter associated with the node representing MKK4 is given by θMKK4|MAP3K15. This

parameter represents the activation or inhibition probability of the node representing MKK4
conditioned on the state of the node representing MAP3K15. Similarly, for the node represent-

ing the transcription factor ICE1, the local conditional probability distribution is given by

θICE1|HOS1,SIZ1. Henceforth, we will refer to local conditional or marginal probability distribu-

tion as just local probability distributions (LPD). We learn these LPDs from experimental

biological data; once these LPDs are learned, the BN model is complete and can be used for

Fig 1. Drought signaling pathways in Arabidopsis. The orange circular nodes represent elements directly regulated

by ABA whereas the purple nodes represent elements regulated by JA. The two nodes colored with a mix of orange and

purple represent elements regulated by both JA and ABA pathways (Crosstalk). The blue diamonds represent drought

responsive reporter genes. The plain circular nodes with no colors represent the transcription factors, genes and

proteins involved in the regulation of drought responsive reporter genes in an ABA independent manner. The green

and red arrows represent positive and negative regulation. The arrows going into and out of ATAF1 are marked black

to indicate that the nature of regulation is not known at this time.

https://doi.org/10.1371/journal.pone.0255486.g001
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carrying out inference simulations to determine the best modulator for the drought responsive

genes.

Parameter estimation in Bayesian networks

BNs consist of two major components: a directed acyclic graph (DAG) and a set of local proba-

bility distributions. The DAG can be learned from data or constructed from domain knowl-

edge. Learning BNs from data, also known as structure learning in the literature, is an

NP-Hard problem and requires us to choose a DAG from several candidate DAGs [61]. This is

not very practical as we observed in in the prior sections that pathway interactions are well

defined, and there can only be a single DAG representing them. Furthermore, in the context of

Arabidopsis under drought, we are limited by the sizes of publicly available datasets. These

datasets are not large enough to construct a reliable DAG, so we elected to create the BN

model in Fig 2 using pathway information from the existing biological literature. While a

DAG can be learned either using data or from domain knowledge, the local probability distri-

butions associated with the DAG have to be estimated from experimental data. There are sev-

eral ways to estimate the local probability distribution in a BN model. Typically, either a

frequentist approach such as a Maximum Likelihood Estimate (MLE) or a Bayesian approach

is employed. Though methods such as MLE are simple and provide a point estimate, they are

only driven by data and do not take any relevant prior information into account [62]. On the

other hand, a Bayesian approach provides us with the posterior distribution, which is driven

by both data in the form of likelihood and relevant information in the form of a prior distribu-

tion. However, the Bayesian approach has two significant drawbacks. The first one is comput-

ing the normalizing constant or the probability of data (evidence) [63]. The normalizing

constant very rarely has a closed form solution and hence can be computationally expensive to

determine. The second drawback pertains to the choice of a prior distribution. Since the choice

of the prior distribution is subjective and there exists no established method to select one, dif-

ferent choices of prior distribution will lead to different results [64]. Nonetheless, the Bayesian

approach is logically rigorous and unlike frequentist approaches, once the prior distribution is

established the Bayesian approach follows deductive logic. In this paper, we use a Bayesian

approach to estimate the local probability distributions for the BN model outlined in Fig 2. We

assumed that the nodes are binary random variables, which implies that for any node X in the

Fig 2. Bayesian network model of drought signaling pathway. Every circular node represents a biological element in

the drought signaling pathway. Every edge or black arrow represents the causal biological relationship between the

nodes. Associated with every node is a θ parameter that represents the local probability distribution of the node.

https://doi.org/10.1371/journal.pone.0255486.g002
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BN, X = 1 (success) when the node is activated and X = 0 (failure) when the node is inhibited.

Then for a single observation for any node X in the BN be modeled as a Bernoulli random

variable.

Let us suppose that we have a BN model with N nodes. Then the probability with which any

node X attains a state of 1 is given by θX. Thus if we make n (>0) independent and identically

distributed observations (i.i.d) observations for each node in the BN, and if for a given node

X, we observe k instances when the node attains a state of 1, then the likelihood for node X is

given by:

PðXjPaðXÞ; yXÞ � Binomialðn; yXÞ ð1Þ

Binomialðn; yXÞ ¼
n!

k!ðn � kÞ!
y
k
Xð1 � yXÞ

n� k
ð2Þ

Pa(X) in Eq (1) refers to the parents, if any, of node X. Since we are using a Bayesian

approach to estimate the LPD of Node X, we need to select a prior distribution on the node X.

Considering the computational complexity required in calculating the normalizing constant,

and since the likelihood function associated with our model follows a binomial distribution by

design, we assume the prior distribution on θX to follow a Beta distribution. Since the Beta and

Binomial distributions belong to conjugate families, we know that the posterior distribution of

θX will also follow a Beta distribution [65]. This is formulated as follows:

yX � BetaðaX; bXÞ ð3Þ

PðyXjXÞ � Betaða’X; b
’
XÞ ð4Þ

where a’X ¼ aX þ k and b
’
X ¼ bX þ ðn � kÞ.

In Eq (3), αX and βX represent the shape parameters of the Beta distribution, and in Eq (4)

these parameters get updated for the posterior distribution on θX. We assume αX = 1 and βX =

1 for our calculations as the Beta(1,1) distribution corresponds to the standard uniform distri-

bution over the interval [0, 1] [66]. Setting the prior distribution to the standard uniform dis-

tribution guarantees that we have no information regarding the prior distribution of θX. We

chose the Beta(1,1) distribution as our prior because we do not have any domain knowledge

information regarding the prior distribution of every node in the BN model. If we had such

information regarding the prior distribution, they could be incorporated into this model.

However, it is to be noted that choosing a different prior distribution may not allow us to

reach a closed form solution for the posterior distribution on θX. Since the result we get in Eq

(4) is a distribution and not a point estimate like what we would have obtained had we used a

frequentist approach, we approximate the values for θX with the expected value of the posterior

distribution. We do this approximation for the posterior distributions estimated at every node

in the BN. This approximation for the node X has been presented in Eq (5).

yX ’ E½yXjX� ¼
a’X

a’X þ b
’
X

ð5Þ

Once these parameters are learned the BN is complete as we have both the DAG and the set of

conditional probabilities. In the next section, we study the effect on drought responsive genes

for intervening (activating/ inhibiting) at various nodes, then summarize our findings in the

Results section.
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Sampling based inference in Bayesian networks

In this section, we are interested in using the BN model in determining which nodes are the

best regulators of the drought responsive reporter genes RD29A, RD20, RD22, and ERD1. Spe-

cifically, we want to study the effect on the reporter genes of intervening at the non-reporter

genes. In other words, we will fix the state of every non-reporter gene node one at a time to

either 0 or 1, and observe how this action (intervention) affects the LPDs for the nodes repre-

senting the drought responsive reporter genes. This kind of simulation in BNs is known as

inference. Inference techniques are categorized as either exact or approximate. Exact inference

techniques such as Enumeration, Variable Elimination, and Pearl’s Message Passing Algo-

rithm are particularly efficient in polytrees or singly connected networks. One such application

of exact inference was demonstrated by Vundavilli et al. to find significant nodes in the breast

cancer signaling pathway [67]. Ideally, we would like to use an exact inference technique to cal-

culate the LPDs in our BN model. However, exact inference techniques will be computation-

ally expensive to implement as our network is multiply connected, i.e., there are at least two

nodes in our BN model connected by more than one path. For instance, we can see that the

nodes DREB1A and ICE1 are directly connected and are also connected through MYB15,

hence making our BN model multiply connected. While exact inference algorithms work in

polynomial time in polytrees, it has been shown to be NP-Hard in more generalized BNs,

hence implementing them in multiply connected networks may not be practical [68]. There-

fore, the size and structure of the BN govern our choice of inference techniques. This is the rea-

son why, for determining the regulators of drought responsive reporter genes, we employ an

approximate inference technique known as likelihood weighting.

Likelihood Weighting (LW) is an approximate inference technique based on stochastic

simulations. Inference techniques based on stochastic simulations usually involve drawing

samples from a sampling distribution, calculating an approximate posterior probability

based on the samples, and then showing that the posterior probability converges to the actual

probability [69]. In the context of our model, the sampling distribution will be specified by

the BN in the form of LPDs. Unlike exact inference techniques, LW is generally insensitive

to the network topology, however, convergence in estimating the posterior probabilities can

be slow if they are close to 0 or 1 [70]. We will now describe the mathematical formulation

for LW.

Consider a BN consisting of N nodes such that the DAG follows a topological ordering of

{X1,X2,‥,XN}. Suppose we make an observation on the node XE in the BN, we will refer to XE

as the evidence node. Now suppose our objective is to find the effects of this observation on

another node XQ, known as the query node in the BN. Specifically, we want to estimate the

posterior probability Pr(XQ = xq|XE = xe), where ‘xq’ and ‘xe’ are some instantiation of nodes

XQ and XE. At this step we begin performing LW by drawing M samples from the BN for every

node except for the evidence node XE, in topological order. The generated dataset (ξ) will be a

matrix with M rows and N columns, where each row represents an N-dimensional sample

(datapoint) and columns represent nodes in the BN. Thus after the first iteration of the sample

generation process, the datapoint will be of the form ξ(1) = {x1
(i = 1),x2

(i = 1),. . ..,xe
(i = 1),‥,

xN
(i = 1)}. We will repeat this process M-1 more times to obtain M such samples, thus that data-

set will be of the form ξ = ξ{i = 1,2,‥,M} = {x(i)
1,x(i)

2,. . ..,xe,‥,x(i)
N}. It should be noted that xe, does

not change across the M samples. This is because XE is the evidence variable that has been

observed and fixed. The samples for the rest of the non-evidence nodes are generated accord-

ing to the LPDs associated with those nodes. For example we draw a sample x1 for root node

X1 according to Pr(X1). Similarly we draw a sample x2 for the node X2 according to Pr(X2 | X1

= x1) and so on. It should be noted that all the children of node XE have a fixed instantiation
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for XE, that is xe. We then approximate Pr(XQ = xq|XE = xe) as follows:

PrðXQ ¼ xqjXE ¼ xeÞ ’

lim
M!1

PM
i 1½xðiÞq ¼ xq�PrðXE ¼ xejðPaðXEÞÞ

ðiÞ
Þ

PM
i PrðXE ¼ xejðPaðXEÞÞ

ðiÞ
Þ

ð6Þ

The proof for Eq (6) is not trivial and is presented in a paper by Menon [71]. A psudo code

for estimating the conditional probabilities using LW is presented in algorithm 1. We will now

demonstrate LW on an example BN.

Algorithm 1: Psudo Code for likelihood weighting in Bayesian Networks
Input:
1: BN: The Bayesian Network
2: Q: The Query Variable, Let Q = q, that is node Q is instantiated

to some value of interest q.
3: E: The Evidence variable. Let E = e, that is node E is instanti-

ated to some observed value e.
4: M: Number of Samples.

Output: Probability: Estimate of P(Q = q|E = e)
5: Initialization: X1,X2,‥,XN Topological Ordering of BN
Sampled_Data = {} {}, M by N matrix to store sampled data
Weight = {1,. . .,1}, an array of size M, consisting of weights
with values initialized to 1.
Counts[k] = 0, where k 2 domain of Q

6: while iter = 1 to M do
7: for each node X in BN in topological order do
8: if X = Xi is in E then
9: Sampled_Data[iter][Xi] = x, where x is the value of Xi
10: Weight[iter] = Weight[iter] � P(Xi = x | Pa (Xi))
11: else
12: Sampled_Data[iter][Xi] = Generate random sample from P(Xi =

x|Pa(Xi))
13: end if
14: end for
15: iter = iter+1
16: end while
17: k = List of row indices in Sampled_Data where Q = q
18: Probability = Sum (Weights [k])/ Sum(Weights)
19: return Probability

Fig 3 describes an example BN consisting of four genes A,B,C, and D. We consider the

nodes representing the genes as binary random variables, which can take on the values of 1

for activation and 0 for inhibition. The LPDs for this example BN are already estimated and

are presented in Fig 3. For the purpose of this example, we assume that Gene A positively

regulates gene B, while it negatively regulates gene C. Gene D is upregulated by gene B,

while gene C downregulates it. These effects are reflected in the LPDs for each node. Now

suppose, we are interested in gene D being positively regulated, and we decide to intervene

at Gene B and set it to 1. Therefore, node B = 1 serves as the evidence variable, and let us

consider node D as the query variable. Then we are interested in finding the probability

P(D|B = 1) using LW.

In order to estimate this probability, we will need to query the BN and generate samples

first. We use the topological ordering of{A,B,C,D}, another valid ordering is {A,C,B,D}. The

sample generation process is described in the following steps:

1. Set the weight variable ‘Wi’ to 1. W(i) = 1
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2. The matrix Sampled_Data[iter][Xi] = is empty. This matrix will store the value of nodes A,

B,C,D.

3. We start topologically at node A. Since A is not an evidence node, we sample it according

to its LPD, specifically P(A). Assume this sample results in A = 1.

4. We now move on to node B. Since B is an evidence node, we do not sample it. We update,

W(i) = 1. P(B = 1|A = 1) = 1. (0.9) = 0.9.

5. We now go to node C. Since C is not an evidence node, we sample it according to its LPD,

specifically P(C|A = 1). Let us assume the result of this process is C = 0.

6. We now sample node D with its LPD of P(D|B = 1,C = 0). Assume that this results in D = 1.

7. The sample generated is (A = 1,B = 1,C = 0,D = 1) with W(i = 1) = 0.9. Thus Sampled_Data

[1][All Columns] = [1, 1, 0, 0]

8. We repeat steps 1–7, M-1 more times to obtain a total of M samples.

9. We can then calculate P(D|B = 1) as follows:

PðD ¼ 1jB ¼ 1Þ ¼

PM
i¼1

Wi1½DðiÞ ¼ 1�
PM

i¼1
Wi

PðD ¼ 0jB ¼ 1Þ ¼

PM
i¼1

Wi1½DðiÞ ¼ 0�
PM

i¼1
Wi

Fig 3. Example BN with LPDs. Gene A positively regulates Gene B and negatively regulates Gene C. Gene B positively

regulates Gene D and Gene C negatively regulates Gene D.

https://doi.org/10.1371/journal.pone.0255486.g003
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Therefore for M = 5, if we generated sample, it would result in a 5 by 4 matrix (Sampled_Data

[iter],[Xi]). Table 1 shows this matrix with an extra column for weights belonging to each

sample. From the samples and weights in Table 1, we can now estimate P(D = 1|B = 1) and

P(D = 0|B = 1) as follows:

PðD ¼ 1jB ¼ 1Þ ¼

P5

i¼1
Wi1½DðiÞ ¼ 1�
P5

i¼1
Wi

¼
W1 � 1þW2 � 0þW3 � 1þW4 � 0þW5 � 1

W1 þW2 þW3 þW4 þW5

¼
0:9 � 1þ 0:3 � 0þ 0:9 � 1þ 0:9 � 0þ 0:3 � 1

0:9þ 0:3þ 0:9þ 0:9þ 0:3

¼
2:1

3:3

¼ 0:636364

PðD ¼ 0jB ¼ 1Þ ¼

P5

i¼1
Wi1½DðiÞ ¼ 0�
P5

i¼1
Wi

¼
W1 � 0þW2 � 1þW3 � 0þW4 � 1þW5 � 0

W1 þW2 þW3 þW4 þW5

¼
0:9 � 0þ 0:3 � 1þ 0:9 � 0þ 0:9 � 1þ 0:3 � 0

0:9þ 0:3þ 0:9þ 0:9þ 0:3

¼
1:2

3:3

¼ 0:363636

Dataset and simulation

To estimate the LPDs for the nodes in the BN model, we needed gene expression data (e.g.,

microarray, RNA-Seq, eQTL, etc.) for Arabidopsis under drought conditions. We searched the

NCBI GEO database and selected the dataset GSE42408 [72, 73]. We chose this dataset as it

had gene expression data for the genes of interest in our BN model from 104 recombinant

inbred lines of Arabidopsis under drought conditions. Furthermore, this dataset had the most

number of data points per gene compared to other datasets found during the search of the

NCBI GEO database, which also led to its selection for our analysis. This dataset contains 104

eQTL (expression quantitative trait loci) data points for Arabidopsis under drought condi-

tions. The data for each node is normalized using min-max feature scaling. We further com-

pute the normalized means for each node and use it as a threshold for binarizing the data.

Additional details on the normalization and binarization process can be found in the R scripts

Table 1. Sample data from example Bayesian network.

index A B C D Weight(Wi)

1 1 1 0 1 0.9

2 0 1 1 0 0.3

3 1 1 1 1 0.9

4 1 1 0 0 0.9

5 0 1 0 1 0.3

https://doi.org/10.1371/journal.pone.0255486.t001
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provided in the supporting information section. The processed data was then used to learn the

LPDs for each node and perform inference using LW. We chose a sample size (M) of 600,000

in the LW algorithm to ensure convergence in estimating the conditional probabilities. The

model building and all the associated data processing tasks were completed using the R pro-

gramming language [74]. The Bnlearn package was used to perform inference using LW [75].

All the code and data files are also made available publicly at the following GitHub repository:

https://github.com/adilahiri/Drought_Regulators.

Results

Fig 4 displays the dataset GSE42408 after it was normalized and binarized. Each bar in Fig 4

represents the inhibition and activation counts for each node in the BN. We use the Bayesian

approach as discussed in section 3.1, with Beta (1,1) as the prior distribution for each node to

estimate the LPDs. For the inference analysis, the query nodes were the drought responsive

reporter genes RD29A, RD20, RD22, and ERD1. We were interested in the activation of ERD1
and the inhibition of RD29A, RD20, and RD22. Though all these reporter genes have been

shown to confer drought resistant characteristics, they also impart undesirable traits such as

sterility, reduced seed yield, and dwarfing [51]. Thus activating all of them is not optimal,

hence for our analysis, we are interested in finding a single node which upon intervention

would increase the chances of the reporter gene ERD1 being activated and the reporter genes

RD29A,RD20, and RD22 being inhibited. Since the LW yields a probability for the status of

every drought reporter node based on performing an intervention at an evidence node, we

establish a composite scoring metric defined in Eq (7) below.

ScoreðEvidence ¼ f0; 1gÞ ¼

PrðRD29A ¼ 0jEvidence ¼ f0; 1gÞ

PrðRD22 ¼ 0jEvidence ¼ f0; 1gÞ

PrðRD20 ¼ 0jEvidence ¼ f0; 1gÞ

PrðERD1 ¼ 1jEvidence ¼ f0; 1gÞ:

ð7Þ

This metric multiplies the conditional probability for all the drought responsive reporter

genes into a single number which is easy to interpret. A high score represents a suitable

Fig 4. Activation vs inhibition plot. This figure represents the data after it has been normalized and then binarized.

There are a total of 104 data points per node. The blue part of each bar represents activation counts whereas the orange

part represents the inhibition counts.

https://doi.org/10.1371/journal.pone.0255486.g004
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candidate for intervention. Figs 5 and 6, we present the score for intervening at each of the

non-reporter nodes one at a time in the BN. The non-reporter nodes are activated in Fig 5,

whereas in Fig 6, they are inhibited. From Fig 5, it is clear that when MYC2 is activated, it

results in the highest score, whereas ANAC072 and ZFHD1 have the second and third highest

scores, respectively. On the other hand, in Fig 6, ATAF1 has the highest score for inhibition,

followed by ANAC019. Our analysis shows that activating MYC2 or inhibiting ATAF1 maxi-

mizes the scores under single node intervention. Thus these are the best strategies to activate

ERD1 and inhibit RD29A, RD20, and RD22. We observe that the score for MYC2 is the lowest

when it is inhibited (Fig 6) and the score for ATAF1 is lowest when it is activated (Fig 5), this

makes logical sense for the analysis.

The above results from the single node intervention analysis motivated us to study effects

on the drought reporter genes when we simultaneously intervened at MYC2 and ATAF1. In

Fig 7, we present the score of simultaneously activating MYC2 and inhibiting ATAF1. Upon

comparing this score to the individual scores of activating MYC2 and inhibiting ATAF1, we

notice that the score for the combined intervention is slightly higher, indicating the synergistic

Fig 5. Activation scores for non-reporter gene nodes. Associated with each node is a blue bar which represents the

score for activating that node.

https://doi.org/10.1371/journal.pone.0255486.g005

Fig 6. Inhibition scores for non-reporter gene nodes. Associated with each node is an orange bar which represents

the score for activating that node.

https://doi.org/10.1371/journal.pone.0255486.g006
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effect of intervening strategically at the two nodes. Furthermore, both MYC2 and ATAF1 are

established regulators of the drought response [76, 77]. MYC2 is known to be a positive regula-

tor of the drought responsive reporter genes RD20,RD22, and ERD1 [78–80]. A study found

MYC2 to have no significant regulatory effect on RD29A in Arabidopsis [81]. In contrast to

the positive drought regulatory nature of MYC2, ATAF1 is known to negatively regulate the

expression of RD29A and RD22 [82]. The regulatory effects of ATAF1 on RD20 and ERD1 are

not yet known. Due to MYC2 being a positive regulator for most of the drought responsive

reporter genes and ATAF1 being a negative regulator for two of the drought responsive

reporter genes, it is biologically consistent for them to be the best regulators under activation

and inhibition, respectively.

Experimental validation

To validate the conclusions from the Bayesian network model, we isolated Arabidopsis ataf1
(SALK_057618C) and myc2 (myc2-1, SALK_061267C; myc2-2, SALK_128938C) mutants

from the Arabidopsis Biological Resource Center (ABRC) [83]. The ataf1 mutant has a

T-DNA insertion in the third exon of the ATAF1 (AT1G01720) genomic DNA, both myc2
mutants have a T-DNA insertion in the exon of the MYC2 (AT1G32640) genomic DNA (Fig

8A). We germinated wild-type (WT) Col-0 and ataf1 mutant on the half-strength Murashige

and Skoog (MS) medium with or without 300 mM mannitol treatment (Fig 8B). The addition

of mannitol reduces water potential of growth media, which is often used to mimic drought

stress (Mu et al., 2019) [84]. Although the germination rate of the ataf1 mutant was lower than

WT in the medium without mannitol, the ataf1 mutant had more green cotyledon seedlings

(Fig 8B) and higher green cotyledon rate (Fig 8C) than WT seedlings under 300 mM mannitol

treatment. The difference became significant at nine days after germination. We also com-

pared the green cotyledon inhibition rate of WT and ataf1 mutant on MS medium with or

without mannitol. Consistently, the ataf1 mutant showed lower green cotyledon inhibition

rate than WT, and the tendency became more pronounced with the increase of growth time

(Fig 8D). We also germinated WT and myc2 mutants on the MS medium with or without 300

Fig 7. Comparing the scores of multi-node and single node intervention under optimal response case.

Simultaneous (multi-node) intervention on MYC2 and ATAF1 has a slightly higher score than single node

intervention.

https://doi.org/10.1371/journal.pone.0255486.g007
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mM mannitol treatment (Fig 8E). However, there is no significant difference in the green coty-

ledon rate between WT and myc2 mutants with or without mannitol treatment (Fig 8F). Simi-

larly, the green cotyledon inhibition rate between WT and myc2 mutants also did not show a

significant difference (Fig 8G). Thus, our data show that the ataf1 mutant was more tolerant to

the mannitol treatment, and suggests that ATAF1 plays a role in plant drought stress response.

Our test conditions, such as plant growth stage, treatment, or the combination, may not be

suitable to reveal the difference between WT and myc2 mutants.

Experimental setup

A. thaliana mutants ataf1 (SALK_057618C) and myc2 (SALK_061267C, SALK_128938C)

were obtained from the Arabidopsis Biological Resource Center (ABRC). The wild-type (Col-

0) and mutant plants were grown in a growth room at 23˚C, 45% humidity, and 75 μE m−2 s−1

light with a 12-hr light /12-hr dark photoperiod. To detect cotyledon greening rate, 30 seeds

per genotype were sterilized and germinated on half-strength Murashige and Skoog (MS)

medium with or without 300 mM Mannitol treatment in each replicate. Seedlings with green

cotyledon expansion were counted at 6–9 d post-germination, data are shown as means ± SD

from three independent repeats (n = 3, �, p<0.05, Student’s t-test). The photos were taken

four-weeks post-germination.

Fig 8. Results from validation experiments. A. The scheme of the ATAF1 and MYC2 genomic DNA and T-DNA

insertion. The panel is a schematic illustration of the ATAF1 and MYC2 genomic DNA with exons (solid box), intron

(lines) and 3’ untranslated region (open box). The position of T-DNA insertion of ataf1 (SALK_057618C), myc2
(SALK_061267C, SALK_128938C)was labeled. B. The ataf1 mutant is more resistant to mannitol treatment. Wild-type

(WT) Col-0 and ataf1 mutant seeds were germinated on 1/2 MS medium with or without 300 mM mannitol. 30 seeds

per genotype were used for each replicate. The photos were taken four-week post-germination. C. Quantification of

cotyledon greening on plates corresponding to B. Seedlings with green cotyledon expansion were counted at 6–9 days

post-germination. Data are shown as means ± SD (standard deviation) from three independent replicates (n = 3, �,

p<0.05, Student’s t-test). D. Quantification of cotyledon greening inhibition rate on plates corresponding to B.

Seedlings with green cotyledon expansion were counted at 6–9 days post-germination. Data are shown as means ± SD

from three independent replicates (n = 3, �, p<0.05, Student’s t-test). E. Growth of WT and myc2 mutants on MS

plates. WT and myc2 mutant seeds were germinated on 1/2 MS medium with or without 300 mM mannitol. 30 seeds

per genotype were used for each replicate. The photos were taken four-week post-germination. F. Quantification of

cotyledon greening on plates corresponding to E. Seedlings with green cotyledon expansion were counted at 6–9 days

post-germination. Data are shown as means ± SD from three independent replicates (n = 3, no statistical significance

with Student’s t-test). G. Quantification of cotyledon greening on plates corresponding to E. Seedlings with green

cotyledon expansion were counted at 6–9 days post-germination. Data are shown as means ± SD from three

independent replicates (n = 3, no statistical significance with Student’s t-test).

https://doi.org/10.1371/journal.pone.0255486.g008
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Discussion

As the severity and duration of droughts around the world are predicted to rise in the coming

years, developing drought resistant crops is increasingly becoming a priority for ensuring

global food security. Thus to develop drought resistant crops, it is necessary for scientists to

identify the potent regulators of the drought response in plants. In this paper, we have pre-

sented the drought signaling pathway in Arabidopsis and observed that drought response is

mediated by the ABA dependent or several ABA-independent pathways. We selected the

model plant Arabidopsis for our study because the genes and proteins in drought response

pathways are well defined and identified for Arabidopsis compared to major crops. We mod-

eled these pathways using BNs, as it provides a framework to integrate both biological prior

knowledge in the form of pathway information along with experimental data. This feature of

BNs was a key factor in our selection of this modeling technique. In the BN model, we assumed

each node to be a binary random variable with the states of activation or inhibition. We then

used the Bayesian approach along with publicly available experimental data to estimate the

LPDs associated with the nodes of the BN model. The prior distribution for each node was

assumed to follow a Beta(1,1) distribution as this corresponds to the non-informative Uniform

distribution on the interval [0, 1]. This choice of prior was logical as we did not know the prior

distribution for each of the nodes. Furthermore, choosing a Beta prior with Binomial likeli-

hood provides us with a closed form solution for the posterior distribution and reduces our

computational requirements. Once the LPDs were learned, we applied an approximate infer-

ence technique called likelihood weighting to perform simulations for intervening at the non-

reporter gene nodes.

After intervening at the nodes representing the non-reporter genes, one at a time, we

observed that the scores were maximized upon activating MYC2 or inhibiting ATAF1. The

maximization of scores implied that MYC2 and ATAF1 were potential drought regulators, and

activating MYC2 or inhibiting ATAF1 was the best strategy to regulate the drought-responsive

reporter genes. We also observed that the score for implementing both these interventions at

the same time provides a slightly improved score value, indicating the synergistic effect of the

strategic interventions. These simulation results indicated that ATAF1 and MYC2 were the

most potent regulators of drought response compared to the other drought regulatory genes

modeled in the BN.

From biological literature we note that both MYC2 and ATAF1 are known regulators of

drought response. However, from the validation experiments, we found that MYC2 did not

have any obvious drought regulatory response as neither the green cotyledon rate nor the

green cotyledon inhibition rate between WT and myc2 mutants with or without mannitol

treatment had significant differences. On the other hand, ataf1 mutants had more green coty-

ledon seedlings and higher green cotyledon rates than the WT seedlings under mannitol treat-

ment, suggesting that ATAF1 negatively regulated drought response. We were unable to show

that MYC2 was a drought regulator; this could be due to test conditions or limitations of the

Bayesian network model. Testing factors such as plant growth stage, treatment may have been

unfavorable for finding the difference between WT and myc2 mutants. Besides testing factors,

we must also consider some of the limitations of the BN model. While we have considered

numerous drought-responsive pathways in our BN model, there may be other pathways out-

side our model’s scope, which may interact with the pathways considered in our BN model.

These undiscovered interactions may have potentially influenced the drought regulators dur-

ing the validation experiments. In order to avoid neglecting such interactions, BNs are learned

from data using structure learning algorithms. However, this process typically requires large

volumes of data, which is currently unavailable. Furthermore, if any previously unaccounted
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interactions are discovered using structure learning algorithm, we cannot validate them using

existing biological literature, and we will need to conduct additional experiments to validate

them. Another reason that might have prevented us from proving MYC2 as a drought regula-

tor is the difference between the experimental setup of our validation experiments and the

publicly available dataset(GSE42408) used to learn the parameters of the BN model. The meth-

ods used to induce drought in the dataset GSE42408 are different from the methods used in

our validation experiments; this might have been unfavorable in establishing MYC2 as drought

regulator.

This paper’s results build upon our previous paper, where we modeled only the WRKY

transcription factor signaling pathway in Arabidopsis under drought and found the transcrip-

tion factor WRKY18 to be the best regulator of the drought-responsive gene RD29A [49]. In

our current model, we take into account multiple other pathways, including the WRKY signal-

ing pathway, and observe that the scores across the WRKY transcription factor family are

approximately the same and are not as high as the scores for MYC2 and ATAF1. The score for

WRKY18 may be low due to crosstalk happening across multiple pathways, which may nega-

tively impact the regulatory effects of WRKY18. Additionally, we tracked multiple drought-

responsive reporter genes in our current study, so the score of WRKY18 in this study reflects

its ability to regulate all the drought-responsive reporter genes, unlike in the previous paper,

where the score is for the regulation of RD29A only. In the future, we would like to extend our

research to include more informative priors instead of the non-informative Beta (1,1) distribu-

tion. We want to explore new methods to incorporate continuous data into the BN model,

rather than to binarize it and lose valuable information. We noticed that multi-node interven-

tion gave a slightly improved score than single node interventions; thus, exploring other node

combinations for intervention will be an interesting path for future research.

Conclusion

We modeled several drought-responsive pathways in Arabidopsis using Bayesian Networks

and real-world experimental data. Our computational analysis indicated that the transcription

factors MYC2 and ATAF1 are the most potent candidates for regulating drought-responsive

reporter genes. However, we were only able to validate the drought regulatory response of

ATAF1 experimentally. Since ATAF1 had the highest score for inhibition and validation exper-

iments showed all ataf1 mutants had a higher green cotyledon rate than WT, it implies that

ATAF1 negatively regulates drought response. Thus genetically inhibiting ATAF1 with tech-

niques such as CRISPR-Cas9 has the potential to develop drought-resistant crops.
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S1 File. Main R code file for executing the Bayesian network simulation.

(R)

S2 File. Supporting R code file for normalizing the data.

(R)

S3 File. Supporting R code file for binarizing the data.

(R)

S4 File. Supporting R code file for calculating shape parameters.

(R)

S5 File. Supporting R code file for renaming the dataset with appropriate gene names.

(R)
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S6 File. This file contains the subset of the dataset GSE42408, which supports the conclu-

sion of this article. This subset includes the data under drought conditions for pertinent genes

involved in the Bayesian network analysis. The complete dataset can be publicly accessed

online from the NCBI GEO database with the accession number of GSE42408.
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