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A B S T R A C T   

Post-menopausal osteoporosis is characterized by a negative imbalance between bone formation and bone 
resorption resulting in a net bone loss, increasing the risk of fracture. One of the earliest interventions to protect 
against this was hormonal replacement therapy (HRT). 

Bone strength depends on both the amount and quality of bone, the latter including compositional / material 
and structural properties. Bone compositional / material properties are greatly dependent on both patient-, and 
tissue-age. 

Raman spectroscopy is an analytical tool ideally suited for the determination of bone compositional / material 
properties as a function of tissue age as it is capable of analyzing areas ~1 × 1 μm2 in tetracycline labeled bone 
forming areas. Using such analysis of humeri from an ovariectomized primate animal model, we reported that 
loss of estrogen results in alteration in the mineralization regulation mechanisms by osteoid organic matrix 
attributes at actively forming bone surfaces. In the present work, we used Raman microspectroscopic techniques 
to compare osteoid and youngest mineralized tissue composition, as well as relationships between osteoid 
organic matrix quality and quality attributes of the earliest mineralized tissue in paired iliac crest biopsies ob-
tained from early postmenopausal women before and after two years of HRT therapy. Significant correlations 
between osteoid proteoglycans, sulfated proteoglycans, pyridinoline, and earliest mineralized tissue mineral 
content were observed, suggesting that in addition to changes in bone turnover rates, HRT affects the osteoid 
composition, mineralization regulation mechanisms, and potentially fibrillogenesis.   

1. Introduction 

Estrogen is one of the most important hormones, pivotal to bone 
homeostasis (Khosla and Pacifici, 2021). Postmenopausal osteoporosis 
(PMOP) is characterized by a negative imbalance between bone for-
mation and resorption, resulting in a net bone mineral density loss, 
which in turn increases the risk that these patients may sustain one or 
more fragility fractures. Estrogen depletion due to menopause has been 
shown to increase osteoclast pre-cursor cells (Manolagas, 1999), 
decrease osteoclast differentiation by modulating RANKL/OPG on 
mononuclear osteoclast precursors (Shevde et al., 2000), and delaying 
osteoclast apoptosis (Parfitt et al., 1996; Hughes et al., 1996). 

Based on either volumetric BMD (vBMD) values or rates of change in 
vBMD by QCT, three stages in PMOP were discernible: (1) an early phase 
of trabecular bone loss in late premenopause, (2) a transient phase 

commencing with menopause characterized by rapid cortical bone loss 
and acceleration of preexisting trabecular bone loss, and (3) a subse-
quent, slower phase of loss involving similar. 

amounts of cortical and trabecular bone lasting indefinitely (Khosla 
and Pacifici, 2021). 

Hormone replacement therapy (HRT) prevents the effects on bone of 
estrogen depletion due to menopause, by reducing the resorptive ac-
tivity at the BMU level (Eriksen et al., 1999; Stepan et al., 2019), and 
averting both increased osteoclast recruitment and delayed apoptosis. 
The HRT preparation used in this study (Trisekvens®) had demonstrated 
positive effects on BMD and fractures in previous studies (Christiansen, 
1986; Mosekilde et al., 2000). Using Fourier transform infrared micro-
scopic imaging (FTIRI) to determine the effects of 2 years HRT admin-
istration in postmenopausal osteoporotic patients’ bone quality (defined 
for the purposes of that study as mineral/matrix ratio, mineral 
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crystallinity/maturity, and relative ratio of enzymatic collagen cross- 
links [pyridinoline/divalent]) at the ultrastructural level, we reported 
that the mean values of all parameters were increased after treatment, 
consistent with suppressed osteoclastic activity, thus increased tissue 
age (Paschalis et al., 2003). In this published study, precise definition of 
tissue age as rather large (400 × 400 μm2) areas were analyzed with a 
spatial resolution of ~6.3 μm, yet bone material / compositional prop-
erties are very sensitive to patient age as well as tissue age within the 
same patient (Paschalis et al., 2016a). 

In a primate animal model, we showed that estrogen deficiency due 
to ovariectomy affects bone quality differently on different skeletal en-
velopes, significantly altering the rate of mineral accumulation and the 
kinetics of organic matrix modifications (Paschalis et al., 2017a). 
Moreover, to the best of our knowledge, for the first time we were able to 
show that it also altered the regulation mechanisms of mineralization, 
by focusing on events in the osteoid and the freshly deposited mineral-
ized tissue we showed that (Paschalis et al., 2019). Although nonhuman 
primates (monkeys) are genetically close to humans, have menstrual 
cycles and a menopause, and their immune system is similar to humans, 
menopause occurs much later chronologically compared to humans 
(Bonucci and Ballanti, 2014). Moreover, it should be kept in mind that 
while ovariectomy results in bone loss and weaker bones in all animal 
models, none of these models suffer from fragility fractures, a hallmark 
of osteoporosis. Additionally, subtle yet definite differences between 
oophorectomy and menopause have been reported in humans (Pansini 
et al., 1995; Ohta et al., 1992). 

In the present work we used Raman microspectroscopic analysis 
(affording spatial resolution of 0.6–1 μm) to analyze paired iliac crest 
biopsies obtained from postmenopausal women at baseline and after 2 
years treatment with HRT, to achieve two goals: a) to expand on pre-
viously published results (Paschalis et al., 2003) and investigate the 
effects of this treatment on bone material / compositional properties at 
precisely defined micro-areas and tissue ages. Specifically, we analyzed 
osteoid, three tissue ages at forming cortical and trabecular surfaces 
(based on the presence of double fluorescent labels), and interstitial 
bone. The following parameters were measured: mineral / matrix ratio, 
mineral maturity / crystallinity, and tissue water, glycosaminoglycan, 
and pyridinoline content. b) We have previously shown in a nonhuman 
primate model that estrogen depletion due to ovariectomy alters the 
correlations between osteoid composition (GAG and Pyd content) and 
content of earliest deposited mineral. In the present study, we investi-
gated whether these correlations were absent in the untreated post-
menopausal women (in line with what was observed with the 
ovariectomized animals), and whether HRT restored them. Additionally, 
in the present work we report on the content of osteoid sulfated pro-
teoglycans (sPG), and their correlation with the content of the earliest 
deposited mineral. 

2. Material & Methods 

2.1. Patients 

Details have been previously published (Eriksen et al., 1999). Briefly, 
paired iliac crest biopsies from 10 healthy (patient N = 10, total number 
of biopsies = 20), early postmenopausal (cessation of menstrual 
bleeding within 6–24 months before inclusion in the study) women, 
45–55 years of age, who were not on any medication known to influence 
calcium metabolism were obtained. The first biopsy was obtained at 
baseline, and the second after 2 years on a cyclic HRT (estradiol [2 mg]/ 
norethisterone acetate [1 mg]) treatment (Trisequence; NOVO-Nordisk 
A/S, Copenhagen, Denmark). Histomorphometric analysis showed that 
progressive osteoclastic hyperactivity characterizes bone remodeling in 
early postmenopausal women, and this is reduced by cyclic HRT. 
Moreover, this reduction of resorptive activity at the BMU level after 
HRT precedes the reduction in activation frequency demonstrated in 
older postmenopausal women (Eriksen et al., 1999). 

All patients provided informed consent, and the present analysis was 
approved by the Ethics Commission of the city of Vienna (EK 17–096- 
VK). 

Bone tissues were fixed in alcohol and embedded in poly methyl 
methacrylate (PMMA). All tissues were processed and stored in an 
identical manner. 

2.2. Raman microspectroscopic analysis 

Raman microspectroscopic analysis utilized a Senterra (Bruker Optik 
GmbH) instrument. The instrument was operated in a temperature- 
controlled room (constant temperature of 20o C), to minimize any po-
tential performance variability due to ambient temperature fluctuations. 
It employs SureCAL™ technology to optimize short- and long-term 
precision, allowing spectral collection which is independent from 
typical and unforeseen instrument instabilities (SureCAL, n.d.). A 
continuous laser beam was focused onto the sample through a Raman 
fluorescence microscope (Olympus BX51, objective 50×) with an exci-
tation of 785 nm (100 mW) and a lateral resolution of ~0.6 μm. The 
technical characteristics of the instrument have been published else-
where (Gamsjaeger et al., 2014a). All Raman spectra were obtained in 
confocal mode (1 μm below the biopsy surface, FlexFocus, Bruker Op-
tics; www.bruker.com). Confocal measurements restrict the sampling 
depth to a certain region, improve the rejection of stray light and reduce 
fluorescence interference. For the Raman measurements, the integration 
time was 5 s and co-additions were 10 to improve the signal to noise 
ratio (SNR; minimum SNR for a peak to be considered acceptable was 3 
(Mcreery, 2000)). Spectra of pure PMMA from every biopsy block were 
also obtained to check the consistency of the instrument between the 
different biopsies. The spectra were acquired from the surface of the 
bone biopsy, using a thermo-electric–cooled charge-coupled device 
(CCD) (Bruker Optik GmbH). All data analysis was done with the Opus 
Ident software package (OPUS 7.2, Bruker Optik GmbH). Raman spectra 
were cut (350–1800 cm− 1) and baseline corrected (5-point rubber band) 
to account for fluorescence background. No further spectra manipula-
tion was performed. If cosmic spikes were evident in any of the collected 
spectra, these spectra were rejected from further consideration rather 
than applying smoothing or spike removal algorithms. The following 
parameters were calculated:  

i. The mineral/matrix ratio (MM) from the integrated areas of the 
v2PO4 (410–460 cm− 1) and the amide III (1215–1300 cm− 1) 
bands, which is independent of tissue organization / orientation 
(Gamsjaeger et al., 2010), unlike the most commonly used v1PO4/ 
amide I ratio. Different from mineral content measures such as 
BMD, this ratio corrects mineral content for the amount of 
organic matrix content in the microvolume analyzed. Spectro-
scopically determined MM has been validated against ash weight 
measurements (Boskey et al., 1992a), and is directly proportional 
to bending stiffness and failure moment, as well as a superior 
predictor of bone-bending stiffness compared to BMD alone 
(Donnelly et al., 2010a). The mineral content at the youngest 
tissue age (between the second fluorescent label and the miner-
alizing front was also estimated based on the ratio of the inte-
grated area of the v2PO4 (410–460 cm − 1) band to the spectral 
slice 494–509 cm− 1 representative of PMMA (Paschalis et al., 
2019).  

ii. Tissue water content (TW; nanoporosity), approximated by the 
ratio of the integrated areas of the spectral slice 494–509 cm− 1 

(PMMA) to Amide III band (Paschalis et al., 2016b). This metric 
in embedded bone tissue is a surrogate for tissue water in fresh 
bone tissue. Bone contains water ~20% by volume, and is a major 
determinant of mechanical properties of bone, especially strength 
and toughness (Creecy et al., 2016; Granke et al., 2015; Nyman 
et al., 2016; Nyman et al., 2019). 
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iii. The glycosaminoglycan (GAG) content was expressed as the GAG 
/ matrix ratio (the ratio of the integrated areas of the proteo-
glycan/CH3 [1365–1390 cm− 1] band [representative of muco-
polysaccharides] to the Amide III [1215–1300 cm− 1] band) 
(Gamsjaeger et al., 2014b), validated against a series of standard 
proteoglycans, as well as model tissues (Gamsjaeger et al., 
2014b). GAGs are part of proteoglycans, present in both cartilage 
and bone. In bone, they fulfill several roles involving the organic 
matrix assembly, modulate both organic matrix mineralization 
and remodeling rates (Gualeni et al., 2013; Bi et al., 2006; Xu 
et al., 1998; Mochida et al., 2009; Mochida et al., 2003), and 
preserve the perilacunar matrix around the osteocyte lacunae, 
and the canaliculi in compact lamellar bone mineral-free 
(Thompson et al., 2011). They undergo posttranslational modi-
fications, some of which are both age- and tissue-age dependent 
(Grzesik et al., 2002), including size, sulfation, and charge den-
sity, all critical for their specific role (Gualeni et al., 2013). 
Although it is not possible to identify individual proteoglycans by 
Raman analysis, the major proteoglycans in bone are biglycan 
and decorin-chondroitin 4-sulfate, accounting for about 90% of 
the total GAG content (Smith et al., 1997).  

iv. The sulfated proteoglycan content was expressed either as the 
sPG / organic matrix ratio (the ratio of the absorbance height of 
proteoglycan at peak ~1062 cm− 1 indicative of the OSO3

− 1 group 
(Bansil et al., 1978; Ellis et al., 2009) to the Amide III 
[1215–1300 cm− 1] band), or as the sPG / GAG ratio (the ratio of 
the integrated areas of the proteoglycan peak ~1062 cm− 1 

indicative of the OSO3
− 1 group (Bansil et al., 1978; Ellis et al., 

2009) to the proteoglycan/CH3 [1365–1390 cm− 1] band (repre-
sentative of mucopolysaccharides). For the sPG calculation, the 
PMMA was subtracted manually from each Raman spectrum and 
the peak position was additional verified by second derivative, as 
collagen has a weak Raman band ~1067 cm− 1 (Frushour and 
Koenig, 1975). Only Raman spectra obtained in the osteoid sur-
face (Fig. 1) were investigated, as in mineralized tissue the peak is 
overlapped by the strong B- type carbonate peak at ~1070 cm− 1 

and the v3 phosphate vibrations of apatite (Awonusi et al., 2007; 
Penel et al., 1998).  

v. The pyridinoline (Pyd; enzymatic trivalent collagen cross-link) 
content was calculated as the absorbance height at 1660 cm− 1 

/ area of the amide I (1620–1700 cm− 1) (Gamsjaeger et al., 2017; 
Paschalis et al., 2001), validated against biochemically charac-
terized collagen cross-linked peptides, as well as biochemically 
analyzed model tissues (Gamsjaeger et al., 2017). It correlates 
with mechanical properties at the nano- and whole bone organ 
levels (McNerny et al., 2015; Paschalis et al., 2011), and is 
dependent on both age- and tissue-age, as well as health status 
(Paschalis et al., 2016a). It is the most discriminant bone quality 
index distinguishing between changes due to healthy aging and 
postmenopausal osteoporosis (Paschalis et al., 2016a). In cases 
where bone resistance to fracture cannot be attributed to either 
BMD or architecture outcomes, or predicted by finite element 
analysis, this metric positively correlates with fracture incidence 
rather than predicted fracture risk (Malluche et al., 2013; Misof 
et al., 2012; Paschalis et al., 2004; Paschalis et al., 2005; Blank 
et al., 2003; Rokidi et al., 2019).  

vi. The maturity/crystallinity (MMC) of the bone mineral apatite 
crystallites (crystallite chemistry and size) was approximated 
from the full width at half height (FWHH) of the v1PO4 (930–980 
cm− 1) band, validated against x-ray diffraction and small angle x- 
ray spectroscopy (Paschalis et al., 2017b; Kazanci et al., 2006). 
Size and shape are important mineral crystallite attributes in 
determining bone strength. Healthy bone has a range of crystal-
lite sizes, which are dependent on both patient- and tissue-age 
(Paschalis et al., 2016a), while values outside this range asso-
ciate with fragile bone (Fratzl et al., 2004; Fratzl et al., 1996; 
Jager and Fratzl, 2000; Gao et al., 2003). 

2.3. Area selection for analysis 

All biopsies were double tetracycline labeled. Raman spectra were 
acquired at the following microanatomical locations: 

Fig. 1. Raman spectra obtained in the osteon and trabecular osteoid as well as interstitial bone are shown, with the Raman peak position of the sulfated proteoglycan 
(sPG) ~ 1062 cm− 1, gylcosaminoglycans (GAGs) and the amide III area highlighted. The Raman spectrum from the interstitial bone area of the cortex shows that the 
sPG area is strongly overlapped by the B-type carbonate Raman band, thus we did not consider sPGs in mineralized bone areas. 
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1. Osteoid defined as a surface with evident tetracycline labels, 1 μm 
distance from the mineralizing front, and for which the Raman 
spectra showed the presence of organic matrix but not mineral, as 
described elsewhere (Paschalis et al., 2019).  

2. TA1: surfaces with evident tetracycline labels, mid-distance between 
the mineralizing front and the second label.  

3. TA2: between (mid-point) two tetracycline labels.  
4. TA3: 1 μm behind the 1st label.  
5. Interstitial bone (at least 50 μm away from any fluorescent label), 

and geometrical centers of trabecular bone without any fluorescent 
label evident at their surfaces, indicative of older tissue age. 

2.4. Statistical analysis 

The operator was blinded until all the raw spectroscopic data were 
obtained, at which point the code was broken and the two biopsy groups 
identified. 

Data between the two biopsy groups in the osteoid and interstitial 
bone were compared with paired t-tests. At the three precisely defined 
tissue ages at actively forming cortical (osteons) and trabecular surfaces, 
data were analyzed by 2-way ANOVA. 

Correlations between osteoid GAG and Pyd content and TA1 mineral 
content, and between osteoid GAG and Pyd content were explored. 
Spearman’s or Pearson’s r values were calculated (depending on 
whether the data were normally distributed or not). Additionally, cor-
relations between sulfated proteoglycan content and TA1 mineral con-
tent were also investigated, and analyzed by nonlinear regression, 
followed by extra sum-of-squares F-test. 

In all instances, statistical significance was assigned to p < 0.05. 

3. Results 

In the osteoid, the Pyd content was significantly elevated after 2 
years of HRT therapy (Fig. 2). 

Osteoid GAG and Pyd content significantly correlated with the initial 
mineral content formed at both cortical (osteons; for PMOP: r = 0.215, p 
= 0.55 and for HRT: r = − 0.632, p = 0.048, respectively) and trabecular 
actively forming surfaces (for PMOP: r = − 0.408, p = 0.242; and for 
HRT: r = − 0.801, p = 0.005, respectively), in the HRT but not in the 
PMOP group (Fig. 3). Moreover, the GAG and Pyd osteoid content 

significantly correlated in both the cortical (for cortical PMOP: r =
0.517, p = 0.126; and for HRT: r = 0.948, p < 0.0001) and trabecular 
(for PMOP: r = 0.134, p = 0.711; for HRT: r = 0.980, p < 0.0001) osteoid 
in the HRT group only. 

There were no significant differences between the two groups at 
actively forming surfaces, with the exception of tissue water content 
which was lower in the HRT group, at the oldest of the three tissue ages 
considered (Fig. 4). 

No significant differences between the two groups were evident in 
interstitial bone, in any of the measured parameters (Fig. 5). 

In the cortical compartment, sPG/GAG ratio was significantly 
elevated in the HRT treated group (p < 0.05), while the ratio of sPG/ 
Amide III although elevated, did not reach significance (Fig. 6a, and c, 
respectively). Further examination of potential correlations between 
sPG/GAG ratio and mineral content at TA1 could not be performed, as 
the two data sets (PMOP and HRT) could not be described by the same 
non-linear regression model (Fig. 6b). On the other hand, when the sPG 
/ Amide III ratio was considered against the mineral content at TA1, 
both PMOP and HRT data sets were described by a Gaussian distribu-
tion, while the two curves were significantly different (extra sum-of- 
squares F-test, p = 0.0027; Fig. 6d). 

In the cancellous compartment, sPG/GAG ratio was significantly 
elevated in the HRT treated group (p < 0.05) (Fig. 7a, and c, respec-
tively). Further examination of potential correlations showed that the 
correlation between either sPG/PG ratio, or sPG/Amide III ratio, and 
mineral content at TA1 were described by a Gaussian model, while in 
both instances the curves were significantly different (extra sum-of- 
squares F-test, p = 0.0009, Fig. 7b; and p = 0.0002, Fig. 7d, 
respectively). 

4. Discussion 

HRT is one of the options available to reverse effects of menopausal 
estrogen depletion on bone quantity and quality. 

In a small, randomized, double-blind, prospective clinical trial 
including 35 early postmenopausal women treated with either HRT 
(cyclic estradiol/norethisterone acetate) or placebo, Raman micro-
spectroscopic analysis of paired iliac crest biopsies from 10 of them, 
obtained at baseline and after 2 years of HRT therapy, revealed that HRT 
administration affected the compositional properties of freshly 
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deposited organic matrix exclusively. 
Bone material / compositional properties are important contributors 

to the determination of bone strength (Fratzl et al., 2004), and are 
significantly dependent on age, tissue age within the same patient, and 
health status (Paschalis et al., 2016a; Fratzl et al., 2004; Donnelly et al., 
2010b). Moreover, bone is a hierarchically structured composite mate-
rial consisting of mineral, organic matrix, and water, thus it is expected 
that the amount and quality of all three components contribute to its 
mechanical attributes. 

There were no significant differences due to 2 years of HRT therapy 
in the bone quality indices measured in the present study, in either 

interstitial or actively forming mineralized areas in either cortical or 
trabecular compartment. We have previously reported using FTIR im-
aging analysis of large areas from the same iliac crest biopsies analyzed 
in the present study that HRT therapy has an effect on the mineral 
maturity / crystallinity and enzymatic collagen cross-links ratio prop-
erties of bone tissue (Paschalis et al., 2003). This apparent discrepancy 
may be explained by the fact that while tissue age was precisely 
accounted for in the present study (thus changes due to variable bone 
turnover rates may be excluded), the already published results reflect 
changes due to changes in bone turnover, thus average tissue age. 

On the other hand, significant differences due to HRT therapy were 
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Fig. 4. Comparison of spectroscopically determined parameters at actively forming (based on the presence of double fluorescent labels) cortical (top row) and 
trabecular (bottom row) surfaces, by ANOVA. Data for the PMOP group are plotted as black bars, and HRT as grey bars. Mean and SD values are shown. No significant 
differences between the two groups was evident, with the exception of tissue water content which was lower in the HRT group, at the oldest of the three tissue 
ages considered. 
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observed in the osteoid, as well as the relationship between osteoid 
components and the content of the youngest mineral deposited. Spe-
cifically, Pyd content was elevated after 2 years of HRT therapy. The 
reason for this is not clear, but it may not be attributed to the suppres-
sion of bone turnover rates previously reported (Eriksen et al., 1999), as 
the comparison between the two groups here was between newly formed 
osteoid, thus changes in the average tissue age may be excluded. 

Significant negative correlations were observed between osteoid 
GAG content and mineral content at the youngest mineralized surfaces, 

in the HRT but not in the PMOP group. Additionally, significant positive 
correlations were evident between osteoid Pyd content and mineral 
content at the youngest mineralized surfaces, in the HRT but not in the 
PMOP group. GAGs are part of the proteoglycans which fulfill multiple 
roles in bone, one of which is negative modulation of mineralization 
(Mochida et al., 2009; Boskey et al., 1997a; Chen and Boskey, 1985; 
Boskey et al., 1992b; Boskey et al., 1991; Boskey et al., 1997b), while 
collagen cross-link content has been reported to modulate mineraliza-
tion (Wassen et al., 2000), amongst other roles in bone homeostasis and 
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Fig. 5. Comparison of spectroscopically determined parameters at the oldest tissue age considered in the present study for the geometrical centers of cortical (top 
row) and cancellous compartments. No significant differences (paired t-test) between the two biopsy groups were evident in interstitial bone, in any of the 
measured parameters. 
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Fig. 6. In the cortical compartment, sPG/GAG ratio was significantly elevated in the HRT treated group (Wilcoxon matched-pairs signed rank test; p < 0.05), while 
the ratio of sPG/Amide III although elevated, did not reach significance (Fig. 6a, and c, respectively). The data for the sPG/GAG ratio and mineral content at TA1 
could not be fitted by the same non-linear regression model (Fig. 6b). The sPG / Amide III ratio against the mineral content at TA1 for both PMOP and HRT data sets 
could be fitted by a Gaussian distribution, but the two curves were significantly different (extra sum-of-squares F-test, p = 0.0027; Fig. 6d). 
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determination of bone strength. Thus, the correlation between osteoid 
GAGs (negative) and Pyd (positive) content, and earliest deposited 
mineral content would be in agreement with these publications. We 
have previously shown in an ovariectomized monkey animal model, that 
while similar correlations exist in the SHAM-operated animals, they are 
lost in the ovariectomized ones (Paschalis et al., 2019). The lack of any 
correlations in the PMOP group would be in agreement with what was 
observed in the ovariectomized animals (Paschalis et al., 2019), while 
their manifestation in the HRT group suggests that this therapy restores 
the mineralization regulation mechanisms. 

Proteoglycans fulfill a multitude of roles in mineralizing tissues, and 
although they have been shown to negatively modulate mineralization, 
one sub-category of them, namely sulfated proteoglycans, have been 
reported to be mineralization promoters (Lormée et al., 1996; Arias 
et al., 2004; Slater et al., 1994). In both cortical and cancellous com-
partments, the ratio of sPG/GAG in the osteoid was significantly higher 
in the HRT group, unlike the sPG/Amide III ratio. This may be attributed 
to the fact that while GAGs are present in PGs, Amide III encompasses all 
organic matrix moieties present in the osteoid. Further exploring the 
relationship between sPGs and mineral content at TA1, we found that 
this relationship is different between the PMOP and HRT groups, a 
finding that suggests that the mineralization regulation mechanism is 
altered between the two groups, in general agreement with what we 
previously reported in a primate ovariectomized animal model 
(Paschalis et al., 2019). Moreover, it has been shown that in murine 
bladder, the level of estrogen does not affect the initiation of the poly-
saccharide chain, but instead affects the elongation and sulfation (Anand 
et al., 2012). 

Early on, it was postulated that the acidic glycosaminoglycan 
component of proteoglycans most likely controls the size and organi-
zation of collagen fibers (Borcherding et al., 1975). Nowadays, it is well 
established that collagen intimately interacts with proteoglycans 
(Mochida et al., 2003; Chen et al., 2020; Robins, 2006; Robins, 2007; 
Kalamajski and Oldberg, 2010); it’s striated appearance, as well as the 
diameter of the fibrils (which is tissue-specific and unique for each 
collagen type), is greatly influenced by its association with pro-
teoglycans (Junqueira and Montes, 1983). Glycosaminoglycans (GAGs), 

part of proteoglycans, are, generally composed of repeating di-
saccharides possessing sulfated sugars with the exception of hyaluronic 
acid (Junqueira and Montes, 1983). In aqueous environments, the 
polysaccharide chains of GAGs electrostatically repel each other, filling 
any space available (Junqueira and Montes, 1983). The acid groups of 
GAGs bind to the basic groups of collagen (the amino groups present in 
the side chains of collagen lysyl and arginyl residues), thus held in the 
extracellular matrix through their interaction with collagen (Junqueira 
and Montes, 1983). They are also reported to be involved in the non- 
enzymatic conversion of immature, divalent collagen cross-links into 
mature trivalent ones (Pyd being of the latter). This collagen cross-link 
conversion is thought to be controlled by the microenvironment (pres-
ence of mineral), the glycosylation state of the immature cross-links, and 
the presence of proteoglycans around the collagen cross-linking sites 
(Terajima et al., 2014). Collagen fibrillogenesis is a multistep process 
concerning assembly of molecules into fibrils and bundles of fibrils. In in 
vitro experiments, dermatan sulphate and chondroitin sulphate do not 
change the diameter of fibrils formed during the early stages of fibril-
logenesis (nucleation), whereas proteoglycans added during the final 
stages of collagen fiber formation cause changes in ultimate tensile 
strength. Chondroitin sulphate proteoglycans have been reported to 
result in efficient stress transfer between collagen fibrils, modulating the 
ultimate tensile strength. (Garg et al., 1989). When we explored po-
tential correlations between GAGs and Pyd content in the osteoid, the 
data indicated that significant correlations in both cortical and trabec-
ular bone compartments were evident in the HRT group only, possibly 
suggesting that HRT therapy influences fibrillogenesis. This suggestion 
would agree with published data showing that both estrogen and es-
trogen receptors are involved in fibrillogenesis (Markiewicz et al., 2013; 
Magruder et al., 2014). These correlations were not evident in PMOP. 

Immediately following menopause, there is a significant increase in 
bone turnover rates which eventually levels off (Khosla and Pacifici, 
2021). The major effect of this on bone compositional/material prop-
erties is a reduction of average tissue age. In the present study we 
compared properties at precisely defined tissue ages, thus the con-
founding factor of altered bone turnover rates is lifted. 

A limitation of the present study is that no iliac crest biopsies were 
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Fig. 7. The sPG/GAG ratio in the cancellous compartment was significantly elevated in the HRT treated group (Wilcoxon matched-pairs signed rank test; p < 0.05) 
(Fig. 7a, and c, respectively). Both the sPG/PG, and sPG/Amide III ratios considered against mineral content at TA1 were described by a Gaussian model, while the 
curves were significantly different (extra sum-of-squares F-test, p = 0.0009, Fig. 7b; and p = 0.0002, Fig. 7d, respectively). 
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available from placebo-treated patients, and the N is small. One the 
other hand, the analyzed biopsies were paired. 

In summary, the results of the present study offer indications that in 
addition to changes in bone turnover rates, HRT affects the osteoid 
composition, mineralization regulation mechanisms, and possibly 
fibrillogenesis. 
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