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Abstract: Type-II diabetes mellitus (T2DM) results from a combination of genetic and lifestyle factors,
and the prevalence of T2DM is increasing worldwide. Clinically, both α-glucosidase and α-amylase
enzymes inhibitors can suppress peaks of postprandial glucose with surplus adverse effects, leading
to efforts devoted to urgently seeking new anti-diabetes drugs from natural sources for delayed starch
digestion. This review attempts to explore 10 families e.g., Bignoniaceae, Ericaceae, Dryopteridaceae,
Campanulaceae, Geraniaceae, Euphorbiaceae, Rubiaceae, Acanthaceae, Rutaceae, and Moraceae as medicinal
plants, and folk and herb medicines for lowering blood glucose level, or alternative anti-diabetic
natural products. Many natural products have been studied in silico, in vitro, and in vivo assays
to restrain hyperglycemia. In addition, natural products, and particularly polyphenols, possess
diverse structures for exploring them as inhibitors of α-glucosidase and α-amylase. Interestingly, an
in silico discovery approach using natural compounds via virtual screening could directly target α-
glucosidase and α-amylase enzymes through Monte Carto molecular modeling. Autodock, MOE-Dock,
Biovia Discovery Studio, PyMOL, and Accelrys have been used to discover new candidates as inhibitors
or activators. While docking score, binding energy (Kcal/mol), the number of hydrogen bonds,
or interactions with critical amino acid residues have been taken into concerning the reliability of
software for validation of enzymatic analysis, in vitro cell assay and in vivo animal tests are required
to obtain leads, hits, and candidates in drug discovery and development.

Keywords: polyphenol; in silico; herb medicine; type II diabetes

Highlights

In silico approaches can rapidly provide evolving experimental and analytical tools to
identify polyphenol plant families for treating T2DM.

In silico studies can determine polyphenols as putative inhibitors of α-glucosidase
and α-amylase enzymes regulating blood glucose in T2DM.

In silico modeling accelerates screening of a huge database in a high throughput
fashion to facilitate drug discovery and development.

1. The Impact of T2DM

Diabetes mellitus (DM) is a medical condition characterized by metabolic and chronic
disorders with abnormal levels of carbohydrate, protein, lipid, and electrolysis metabolism,
resulting in loss of control over blood glucose level [1,2]. Clinically, DM can be categorized
into four subtypes: type 1 DM (T1DM), which was formerly known as insulin-dependent
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DM (IDDM) or juvenile-onset DM and is primarily resulted from pancreatic β-cell de-
struction and diagonized by absolute insulin deficiency; type 2 DM (T2DM), which was
formerly known as noninsulin dependent DM (NIDDM) or adult-onset DM and is pre-
dominantly characterized by insulin resistance with relative insulin deficiency or secretory
defect with insulin resistance; gestational DM (GDM), in which women are diagnosed as
diabetic during pregnancy, and other specific types of diabetes that were not included in
any previous forms according to the American Diabetes Association (ADA) [3].

The prevalence of diabetes in the world was estimated to be 2.8% for all ages in 2000,
and that is expected to increase to approximate 4.4% in 2030 [4]. Diabetes causes of death
will increase to 366 million by 2030 [5]. The World Health Organization (WHO) estimates
that 415 million people will be affected by diabetes in 2015 [6], and this is expected to rise
to 642 million by 2040, worldwide [7]. Currently, the numbers of diabetic patients has
significantly increased in the population between 45 and 64 years of age in many countries,
particularly in China, India, and Southeast Asia [8–10]. Of various DM subtypes, T2DM,
which is characterized by chronic metabolic imbalance [4], beta-cell failure and insulin
resistance, and can be alleviated by changing lifestyle by dietary control and exercise [11],
is the most common type, accounting for more than 90% of all DM patients. The onset
of T2DM can be attributed to behavioral, environmental, and genetic factors, leading to
insulin resistance and deficiency [11–14]. Importantly, the involvements of several factors
in T2DM that cause resistance of target tissues to insulin, usually resulting from abnormal
insulin secretion [15]. T2DM is a common and increasingly prevalent disease and is a major
public health problem worldwide [16].

The clinical diagnosis of T2DM is reliant on one of four plasma glucose (PG) evalua-
tions: (i) fasting plasma glucose (FPG) (>126 mg/dL); (ii) 2-h 75-g oral glucose tolerance test
(OGTT) (>200 mg/dL) [4]; (iii) random PG (>200 mg/dL) with symptoms of hyperglycemia,
or (iv) hemoglobin A1C level >6.5% [17]. Furthermore, human subjects are considered as
prediabetics when their FPG is above the normal value but less than the threshold, namely
110–126 mg/dL, and they are predispose to diabetes, insulin resistance, and a higher risk
of cardiovascular (CV) and neurological pathologies [18,19].

2. T2DM Medicines

A healthy lifestyle and drug treatments are common practices in controlling blood
glucose levels and delaying or preventing the occurrence of complications in T2DM pa-
tients [20]. Insulin treatment is available in clinics as are innovative T2DM therapy agents
that may be applicable for patients based on various molecular targets and pathways.
Specific inhibitors include α-glucosidase, sodium glucose linked transporter-2 (SGLT-2),
dipeptidyl peptidase 4 (DPP-4), peroxisome proliferator activated receptor-γ (PPARγ),
insulin receptor kinase (IRK), and glucose transporter 4 (GLUT4). A G protein-coupled
receptors (GPCR) such as the GLP-1 receptor inhibitor blocks G protein (heterotrimeric)
production (Table 1) [17]. To date, all available T2DM medicines are associated with vari-
ous side effects such as digestion disorder, increased risk of heart failure, infection of the
urinary tract, nerves, kidneys, and eye damage [9]. For instance, metformin, which is the
most prescribed oral therapeutic agent to treat T2DM in western counties and Japan [21],
can cause gastrointestinal side effects, such as loss of appetite, diarrhea, nausea, vomiting,
flatulence, and abdominal pain [22].

Folk or herbal medicines as traditional medicines or traditional Chinese medicines
(TCM) have been used as botanical products or compounds for many years, and some
of them have been derived from crude extraction [23]. Some have shown the potential
as therapeutic agents against T2DM and other disease conditions [18]. The necessity
for developing therapeutic drugs with fewer side effects is still unmet, due to limited
efficacy or unacceptable disadvantages including side effect sand drug resistance in current
available therapeutic agents [24]. Antidiabetic properties of more than 1200 plants have
been asserted and, using these, the adverse effects and inflammation associated with the
most common drugs can be reduced [25].
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Table 1. Molecular targets of antihyperglycemia therapy drug.

Class Mechanism of Action Generic Name Side Effects

α-Glucosidase and
α-amylase inhibitors

Retards carbohydrate digestion,
extends overall digestion time and

diminishes glucose level
absorption [26].

Acarbose, Miglitol [27]
Mild stomach pain, gas or

bloating, constipation,
diarrhea [28].

Sodium glucose linked
transporter-2 (SGLT-2)

inhibitors

Inhibits SGLT2 in proximal convoluted
tubule (PCT) to block reabsorption of

glucose and facilitate its secretion
in urine [29].

Dapagliflozin, Canagliflozin,
Sitagliptin [30].

Upset stomach, diarrhea,
headache [31].

Dipeptidyl peptidase 4
(DPP-4) inhibitors

Blocks DPP-4 activity in peripheral
plasma, that inhibits the incretin

hormone glucagon-like peptide (GLP)-1
in the peripheral circulation [32].

Sulfonylureas,
Thiazolidinediones,

Biguanides [33]

Hunger, weight gain, skin
reaction [34]

Peroxisome proliferator
activated receptor-γ

(PPARγ)

Diminishes triglyceride level related to
regulation of energy homeostasis [35].

PPAR γ agonist, RXR
(Retinoid X receptors)

agonists (rexinids) [35].

Weight gain, fluid
retention, increased risk of

heart failure [36].

Insulin receptor kinase
(IRK)

Insulin receptor as a tetrameric
glycoprotein and binds to specific cell

surface receptors in its target cells
resulting in insulin effects on

phosphorylation [37].

IRS (1, 2, 3, 4), SHC (Src
homology 2 domain

containing) [38].

Unclear whether safe or
effective treatment [39].

Insulin receptor
substrate (IRS)

Protein cytoplasmic adaptor that
functions as a crucial signalling

intermediates downstream of the
activated cell surface [40].

IGF-1 (insulin-like growth
factor 1), IGF-2, Insulin [41].

Hypotension, fluid
retention, orthostatic [42].

Glucose transporter 4
(GLUT4)

Expressed in muscle and regulates
insulin-stimulated glucose uptake

within muscle tissue [43].

MET2 (Myocyte enhancer
factor-2), MyoD myogenic

protein [43].

Remained largely
unknown [44].

G protein-coupled
receptors (GPCR)

Works with β-cells to inhibit insulin
secretion and the number of β-cell

GPCRs related to insulin controlling
secretion [45].

Insulin secretagogues,
GLP-1 (glucagon-like

peptide-1), GIP
(glucose-dependent

insulinotropic peptide) [45].

Vomit, diarrhea,
gastrointestinal
problems [46].

3. Polyphenols & Plant Families

Polyphenols, which are natural compounds and can be extracted from common
plants, have been a subject of considerable research interest in recent years because of their
implications in the treatment of various diseases such as DM and human health-related
disorders [23].

Several plant families have been investigated for their anti-hyperglycemic abilities [47].
Recently, polyphenol-rich functional foods have been proposed as supplementary and
nutraceutical treatments for T2DM [48]. It has been demonstrated that polyphenolic
compounds, which contain multiple phenolic moieties such as lignans, stilbenes, flavonoids,
phenolic acid, hydroxycinnamic acids, hydrobenzoic acids, and olive oil polyphenolics [19],
can result in antioxidation and anti-inflammation, and mediate enzymatic metabolism to
moderate and decrease glucose absorption in the intestine [49]. For various reasons in
recent years, traditional plant and herb therapies prescribed in the indigenous system of
medicine [50], with different mechanisms [51], have commonly been used.

3.1. Euphorbia thymifolia Linn. (E. thymifolia)

Euphorbia thymifolia Linn. (Euphorbiaceae), commonly known as laghududhika or choti-
dudhi, is a prostate annual herb [52]. Their leaves, seeds and fresh juice of the whole plant
are used as a stimulant and astringent in worm infection [53]. It has been reported that
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plant extracts can be used as traditional medicines to treat various disorders in many parts
of the world [54], using plants such as cassava (Manihot esculenta), castor oil plant (Rici-
nus communis), Barbados nut (Jatropha curcas), and the Para rubber tree (Hevea brasiliensis)
despite the fact that many of them are grown as ornamental plants such as poinsettia (E.
pulcherrima), leafy spurge (E. esula), and Chinese tallow (Triadica sebifera). Euphorbiaceae
species have been used by different populations as folk medicines for remedying a broad
range of diseases and complaints, including cancer, diabetes, diarrhea, heart diseases, hem-
orrhages, hepatitis, jaundice, malaria, ophthalmic diseases, rheumatism, and scabies [55],
with some disadvantages including drug resistance to the plants’ components [56]. The hy-
poglycemic potential of this plant family was mainly identified by virtual screening for high
binding energies (4.8–9.9 Kcal/mol) and strong hydrogen interactions. Moreover, insulin
levels were significantly increased and the lipid profile and body weight were improved
after 20 days when an ethanolic extract of R. communis (Euphorbiaceae) at 500 mg/kg
p.o. was administrated to those diabetic rats [57]. Recently, some herbal medicines have
been reportedly to treat T2DM in worldwide studies, and some of their functions as α-
glucosidase and α-amylase inhibitors to exert their anti-hyperglycemia efficacy have been
identified [58], since inhibition of intestinal α-glucosidases can limit postprandial glucose
levels by delaying the process of carbohydrate hydrolysis and absorption, making such
inhibitors useful for the management of T2DM. Plants and microorganisms are rich sources
of α-glucosidase inhibitors. For example, acarbose, 1-deoxynojirimycin, and genistein
were originally isolated from natural sources [59]. E. hirta L., which is a traditional plant
used for various disease treatments, has been under investigation as an α-glucosidase
inhibitor. Triphala, which is a combination of Terminalia chebula, T. belerica, E. officinalis, is
under in vivo evaluation for antidiabetic potential in relation to antioxidant activity [60]. T.
belerica was found to be most active in reducing serum glucose levels followed by E. offici-
nalis, T. chebula, and Triphala, which is a combination of all the three products, significantly
reducing hyperglycemic effect in alloxan-induced diabetic rats [61]. Aqueous extracts of
E. hirta L. showed inhibition of α-amylase activity compared to acarbose [62]. In contrast,
α-amylase inhibitors from plant sources have a lower effect against α-amylase activity and
stronger inhibition of α-glucosidase activity [63].

3.2. Bignoniaceae

Bignoniaceae are woody, trees, shrubs, and lianas found in all tropical floras of the
world, with lesser representation in temperate regions, and belong to a family of flowering
plants in the order Lamiaes, commonly known as the bignonias [64]. Bignonieae comprise
a major component of neotropical liana flora. Most other species are woody shrubs and
trees including savannah and tropical forest canopy trees, although these three groups
have adopted a herbaceous habit, mostly at high elevations in the Himalaya (Incarvillea)
and the Andes (Arggylia, Tourrettia) [65,66]. Interestingly, Tecona stans (L.) Juss ex Kunth
plants are extensively used for empirical DM treatment, but their antidiabetic mechanisms
remain to be clarified [67]. This family of compounds may show their antidiabetic effect by
stimulating glucose uptake in T2DM [68].

3.3. Ericaceae

The Ericaceae are dominant plants of acid heathlands and upland soils, and include
the genera Calluna, Erica, Vaccinium, Azelea, Rhododendron, and the Epacrids of Australasia,
which grow in dry sandy soils [66]. The Ericaceae are a family of flowering plants, com-
monly known as the heath or heather family, and can be found most commonly in acid
and infertile growing conditions [69]. Wan and Shou (2013) observed that a crude extract
from Vaccinium corymbosum (Ericaceae), including a phenolic compound, shows powerful
α-glucosidase inhibitory activity and it is even more efficacious than the marketed drug
acarbose [70]. Moreover, the α- and β-glucosidases inhibitory activities of Rhododendron ar-
boreum (Ericaceae) have been investigated by various in vitro studies and the results suggest
that it is a potent α-glucosidase inhibitor with an IC50 of 3.3 ± 0.1 µM, many-fold higher
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than that of acarbose [71]. A wide variety of phenolic compounds, which are the most
abundant secondary metabolites of plants with more 8000 phenolic structures, have great
potential in protecting against cardiovascular diseases, diabetes, cancer, and obesity [72].

3.4. Dryopteridaceae

Many of the Dryopteridaceae, which are a family of leptosporangiate ferns in the order
Polypodiales, are cultivated as ornamental plants. The fern genus Dryopter (Dryopteridaceae)
is among the most common, and includes 225–300 species worldwide in temperate forests
in the northern hemisphere [73]. Dryopteris cycadina is a medicinal plant from the Dry-
opteridaceae family. It has been traditionally used as a folk medicine to treat rheumatism,
epilepsy, and pain and to remedy snake bites and fungal infections [74]. In vitro studies
show that compounds in D. cycadina inhibit α-glucosidase in a concentration-dependent
manner, further validated by in silico studies, and show strong hydrogen bonds interaction.
Four strong interactions between amino acid side chains and hydrogen bonds (Asp215,
Asp352, Arg422, and Gln182) are reported [75].

3.5. Campanulaceae

Codonopsis, belonging to the family Campanulaceae, is a genus including 42 species of
dicotyledonous herbaceous perennial plants predominantly found in central, east and south
Asia. Several Codonopsis species are widely used in traditional medicine and are considered
to have multiple medicinal properties. It has been shown in phytochemical studies that
Codonopsis species, which contain mainly polyacetylenes, phenylpropanoids, alkaloids,
triterpenoids, and polysaccharides, contribute to multiple biological functions [76]. The
less popular Codonopsis species remain to be studied and exploited. One of genus, Lobilia
chinensis has been extracted to obtain two new pyrrolidine alkaloids, radicamines A and B,
that are α-glucosidase inhibitors [77]. In addition, Codonopsis lanceolate Trautvein is a plant
of Campanulaceae family, which is distributed throughout China, Japan, and Korea. The
roots of C. lanceolate have been cultivated and used as a food. Other Codonopsis species
such as C. pilosula and C. tangshen have been used as medicines (Tang-Sam) for ulcers
treatment, memory improvement, and immune stimulation [78,79].Various reports have
indicated that the isolated secondary metabolites of C. lanceolata roots e.g., triterpenoid,
saponin, and alkaloids, show tangshenoside I and β-adenosine with an IC50 of 1.4 and
9.3 mM for α-glucosidase inhibition, respectively [80]. It has been demonstrated previously
that Lobelia sessilifolia can potently inhibit rice α-glucosidase, and crude extracts and coffee
beans can be very specific and potent α-galactosidase inhibitors [81]. Zafar and Khan (2016)
recently reported that the alkaloids isolated from some of Campanulaceae and Lobelia species,
along with standard acarbose, exert significant anti-glucosidase effects. Strong hydrogen
bond binding modes of these inhibitors display four interactions between amino acid side
chain and hydrogen bonds (Lys155, Glu304, Arg312, and Asn153) [82].

3.6. Geraniaceae

The genus, Geranium, which belongs to the Geraniaceae family, is represented by
350 species in the world, of which 38 species include 14 endemic taxons in Turkey [83].
The genus Geranium is known to contain flavonoids, tannins, anthocyanidins, lignans,
sterols, and polyphenolic compounds, as well as essential oils [84]. Geraniaceae are herbs
or subshrubs, and a family of flowering plants in the order Geraniales. The extracts of
Geranium graveolens L. of Geraniaceae are essential oils and act as both α-amylase and α-
glucosidase inhibitors [77]. G. wallichianum has shown very good α-glucosidase inhibition
activity. These observations suggest that the presence of potent compounds can inhibit
these carbohydrate digesting enzymes. A methanolic extract prepared from the aerial parts
of G. wallichianum is the most potent agent for inhibition of α-glucosidase, α-amylase, and
pancreatic lipase with inhibitions of 65.81%, 72.89%, and 52.80%, respectively. Thus, G.
wallichianum is a plausible subject for further studies for the treatment and management
of metabolic syndrome [85]. Some Geranium species have been used to treat diabetes. G.
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asphodeloides, for instance, showed high α-glucosidase inhibitory effect compared with
acarbose with an IC50 value of 0.85 µM in vitro study [86].

3.7. Rubiaceae

The Rubiaceae are flowering plants, commonly known as the coffer, or bedstraw family.
They consist of terrestrial trees, shrubs, lianas, or herbs that are recognizable by simple,
opposite leaves with interpetiolar stipules. Alkaloids, phytosterols, carbohydrate, and
saponins extracted from many species of the Rubiaceae family, such as Gardenia taitensis,
can reduce blood glucose, total cholesterol, LDL and VLDL cholesterol, and improve HDL
cholesterol associated with T2DM treatment [77]. Ethanol extracts of leaves and twig of
some plants in the Rubiaceae can have 80% inhibitory activity of α-glucosidase [87]. For
example, Xeromphis uliginosa Retz. is found in root extracts and reduces the blood glu-
cose [88]. The extract from Morinda tinctoria fruits shows inhibition of glucose diffusion [89].
The leaves and root extracts of Nauclea latfolia Sm lower fasting blood glucose, increase
MCV and MCH, reduce iWBC and increased lymphocyte levels. A stem bark extract of
Neolamarckia cadamba shows antihyperglycemic activity [90]. An extract of Anthocephalus
indicus leaf can reduce blood glucose and total cholesterol, triglycerides, HDL and LDL [91].
These families may be used as diabetic herbal treatments. Rubia cordfolia Linn. from root
extracts acts as an α-amylase and α-glucosidase inhibitor [92]. Furthermore, oral adminis-
tration of Hamelia patens (Rubiaceae) exhibited the greatest inhibition of α-glucosidase in
an in vivo test. H. patents inhibits α-glucosidase activity as a traditional medicine dur to
its active compounds [93]. Methanol extracts of Hedyotis biflora L. (Rubiaceae) showed 50%
inhibition of α-glucosidase at a concentration of 480.20 ± 2.37 µg/mL in in vitro tests [94].
Nauclllea latifolia also belongs to Rubiaceae family and the root stem is traditionally and
empirically used by diabetic patients in Benin to manage glycemia [95]. In in vivo studies,
N. latifolia (Rubiaceae) was assessed for lowering fasting blood glucose in normoglycaemic
and streptozotocin (STZ)-diabetic rats at the highest administered dose (400 mg/kg) and
lowered the fasting blood glucose of the diabetic rats by 31.7% (aqueous extract) and 36.1%
(ethanolic extract), respectively. Consequently, this plant can be can have traditional use
for treatment of T2DM [96].

3.8. Acanthaceae

Acanthaceae is a family of dicotyledonous flowering plants. Flavonoids, alkaloids,
terpenoids, tannins, and steroids extracted of Acanthus illicfolius reduce blood glucose level
and result in better regeneration of β-cells [77]. Additionally, extracts from Justicia secunda
Vahl. leaves used to treat DM symptoms showed inhibitory effects on α-glucosidase,
and the potential of J. secunda for traditional medicinal use in T2DM treatment was sup-
ported [97]. Justicia is the largest genus of the Acanthaceae family and consists of ap-
proximately 600 species distributed in pantropical and tropical regions. In traditional
medicine, the extracts of leaves are used to treat diabetes and diabetic symptoms [98].
Diterpenoid lactones and andrographoloids, including gibenclamide, glimepiride, glip-
izide, nateglinide, rosiglitazone, pioglitazone, and repaglinide from Andrographis paniculata
Nees are found to inhibit CYP2C9, CYP2C19, CYP2D6, CYP3A4, and glucose transporter
(GLUT4) [99], as well as increasing glucose metabolism and reducing lipid accumulation in
differentiated adipocytes [100–102]. Moreover, A. paniiculata. (Burm.f.) Nees (Acanthaceae)
when applied in oral carbohydrate tolerance tests with starch (3 g/kg), sucrose (4 g/kg),
or glucose (2 g/kg), separately in 18-h fasted rats, resulted in reduced sucrose and starch,
similar to an acarbose effect, while it had no peak blood glucose with a suppressive ef-
fect after an exogenous glucose load in both normal and STZ-induced diabetes rats [103].
Interestingly, Clinacanthus nutans belongs to the Acanthaceae family and is used to treat
diabetes in Malaysia. In vitro, this plant was identified as a potential α-glucosidase in-
hibitor with an IC50 lower than 50 µg/mL. In silico, it showed strong hydrogen bonding
and some hydrophobic interaction between inhibitors and proteins including Asn259,
Hid295, Lys156, Arg335, and Gly209. Additionally, hydrogen bonding is involved in
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Trp15, Tyr158, Val232, Hie280, Ala292, Pro312, Leu313, Val313, Phe314, Arg315, Try316,
Val319, and Trp343 amino acid residues [104]. Previously, this plant was also identified
as having potential α-glucosidase inhibition properties. Interaction between inhibitors
and protein were predicted involving residues Lys156, Thr310, Pro312, Leu313, Glu411
and Asn415 with hydrogen bonds at Phe314, and at Arg315 with hydrophobic bonding.
Hence, α-glucosidase inhibitor has been identified in C. nutans leaves, indicating the plant’s
therapeutic effect to relieve T2DM [105].

3.9. Rutaceae

Rutaceae, commonly known as citrus family, is a family of flowering plants with ap-
proximatively 160 genera, also having flowering species. The most economically important
genera in the family are Citrus, including the orange (Citrus sinensis), lemon (C. limon),
grapefruit (C. paradisi), and lime (mostly C. aurantifolia) as well as Zanthoxylum or Fagara
and Agathosma. Species of the Fagara genus have been found to have antimicrobial activities.
Fagara leprieurii (Guill and Perr) Engl. is used traditionally in cases of gastritis, diarrhea,
cancer, ulcer, and kidney ache, as well as other infectious diseases [106]. In this term, finger
citron (C. medica L. var.) fruits, widely cultivated in Japan; possess insulin secretagogues
and slimming effects that would be very beneficial to T2DM patients [107]. The extract of
Clauserna anisate Bum. f. root was show to stimulate secretion of insulin [108]. Moreover,
leaf extracts of Murraya koeingii (L.) Spreng can increase glycogenesis, decrease glycogenoly-
sis and gluconeogenesis [109]. After oral administration of pulp extract of Syzygium cumini
fruit to normoglycemic and STZ-induced diabetic rats they showed hypoglycaemic activity
in 30 min, possibly mediated by insulin secretion and inhibited insulin activity of the
pancreas [52]. Interestingly, a flavonoid from Rutaceae aurantiae inhibits advanced glycation
end-products (AGEs) and reduces albumin, that are significantly diminished in flavonoid-
treated diabetic rats [110]. In an in vitro study, terpenoids isolated from stem and bark of
Fagara tessmannii (Rutaceae) showed strong inhibitory activity with an IC50 of 7.6 µmol/L,
which resembled the inhibitory activity of acarbose which was used as a positive con-
trol [111]. Many α-glucosidase inhibitors such as alkaloids, terpenoids, anthocyanin, and
phenolic compounds were found to have α-glucosidase inhibitory potency.

3.10. Moracea

Moraceae, often called the mulberry family of flowering plants, comprises about 40 gen-
era and over 1000 species. The includes Artocarpus heterophyllus (Jackfruit), A. altilis (Bread
fruit), A. camans (Bread nut) and A. integer (cempedak) which possess antibacterial, anti-
inflammation, antioxidant, and antidiabetes properties [112]. Moreover, Dieffenbachia picta
is an herbaceous plant used in southern Cameroon as an antidiabetic and antihypertensive
drug [113]. Leaves of white mulberry (Morus alba, Moraceae) have been used in traditional
medicine to treat diabetes. Recently, leaves and stems were found to inhibit both α-amylase
and α-glucosidase activities by at least 50% [114]. Bark extract of Ficus bengalensis decreased
blood glucose level, restores the levels of serum electrolytes, glycolytic enzymes, and hep-
atic cytochrome P-450 dependent enzyme systems and decreases the formation of liver and
kidney lipid peroxides [115]. Other F. religiosa Linn. can cause rising serum insulin and
initiate insulin release [116]. Leave from Morus alba increased the β-cell number in diabetic
islets reduced levels of glycosylated hemoglobin [117], especially decreasing triglycerides
and VLDL, and restored elevated levels of blood urea. Besides, this species can protect
pancreatic β-cells from degeneration and diminish lipid peroxidation [118]. M. indica L.
leaf extracts increased glucose uptake [119]. M. bomoysis regenerated β-cells of the islets of
Langerhans [77]. The oral administration of the extract of F. bengalensis caused enhanced
serum insulin levels in normoglycaemic and diabetic rats. The increased insulin secretion
was mainly due to inhibition of pancreatic insulin activity from the liver and kidney [120].
The blood glucose lowering activity of a dimethoxy derivative of leucocyandin 3-O-beta-d-
galactosyl cellobioside isolated from the bark of F. bengalensis at a dosage of 250 mg/kg, p.o.
in normal and moderately diabetic rats was mainly due to insulinomimetic activity [121].
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A glycoside of leucopelargonidin isolated from the bark of F. bengalensis demonstrated
significant hypoglycaemic, hypolipidemic and serum insulin-raising effects in moderately
diabetic rats. Dimethoxy ether of leucopelargonidin-3-O-alpha-L rhamnoside at a dose of
100 mg/kg, p.o. had significant hypoglycaemic and insulinomimetic activity in healthy
and alloxan-induced diabetic dogs during a 2 h test [121].

4. Potential Polyphenols of 10 Plant Families with Regulation of α-Glucosidase and
α-Amylase Activity

α-Glucosidase is located in the brush border of the small intestine and breaks down
starch and disaccharides. α-Amylase breaks internal α-1, 4-glycosidic linkages of starch
into glucose and maltose in the digestive organs [6]. Amylase is found in saliva glands
whereas pancreatic amylase is secreted by the pancreas into the small intestine [7]. However,
blood glucose level can be determined by α-amylase via increasing digestion of starch
and disaccharides [8]. The therapeutic approach to treating T2DM is to delay absorption
of glucose through inhibition of enzymes including α-glucosidase and α-amylase in the
digestive organs [15,122]. The mechanisms and therapeutic potential of polyphenols can
be used for clinical trials and drug discovery in the management of T2DM. Polyphenols
are found mainly in plant-based foods e.g., fruits, vegetables, whole grains, coffee, tea, and
nuts. Polyphenols may affect glycemia and T2DM through different mechanisms, such as
promoting the uptake of glucose in tissues (α-glucosidase and α-amylase) and improving
insulin sensitivity [123]. Besides, polyphenol compounds such as caffeic acid, curcumin,
cyanidin, daidzein, epicatechin, eridyctiol, ferulic acid, hesperetin, narenginin, pinoresinol,
quercetin, resveratrol, and syringic acid can significantly inhibit the α-glucosidase enzyme.
Especially, catechin, hesperetin, kaempferol, silibinin, and pelargonidin are found to be
potent α-amylase inhibitors [49]. The current study aimed to investigate polyphenol
families to discover a new class of α-amylase and α-glucosidase inhibitors to target these
enzymes. Different treatments such as diets and drugs are recommended for α-glucosidase
and α-amylase inhibition. Especially, the primary structure of polyphenols can affect
the inhibition levels of α-glucosidase and α-amylase enzymes [124]. Various families
of polyphenols have beneficial effects and have been shown to suppress α-glucosidase
and α-amylase at a 50% inhibition level and higher [125]. The abundant polyphenols
flavan-3-ol monomers (catechins), were evaluated against the pharmacological glucosidase
inhibitor-acarbose, and catechin 3-galltes strongly inhibited both α-glucosidase and α-
amylase activity [126]. Moreover, positive relationships among α-glucosidase inhibitory
and the polyphenol content of these 28 edible plants were found in both aqueous and
methanolic extracts as well as the fresh juice of the whole plant [127]. Interestingly, some
plants show inhibition of both α-glucosidase and α-amylase against T2DM (Table 2).

Table 2. List of polyphenol plant families that inhibit α-glucosidase and α-amylase.

Family Enzymatic Type Scientific Name

α-Glucosidase inhibitor

Theaceae Camellia sinensis Ktze [128]

Myrtaceae Cleistocalyx operculatus Roxb [129]

Fabaceae Sophora japonica L. [130]

Senna surattensis [11]

Alhagi camelorum [51]

Neptunia oleracea [131]

Peltophorum pterocarpum [132]

Asteraceae Artemisia vulgaris L. [133]

Lecythidaceae Careya arborea Roxb [134]

Apiaceae Centella asiatica (L.) Urb [135]
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Table 2. Cont.

Family Enzymatic Type Scientific Name

Eryngium foetidum L. [136]

Levisticum officnale [137]

Ligusticum porter [138]

Moraceae Ficus racemosa L. [16]

Artocarpus champeden [139]

Morus alba [140]

Myristicaceae Horsfieldia amygdalina Warb [130]

Saururaceae Houttuynia cordata Thunb [141]

Rubiaceae Paederia lanuginosa Warb [130]

Cinchona succirubra [142]

Hintonia latiflora; H. standleyana [143]

Verbenaceae Premma corymbosa (Burm) [144]

Euphorbiaceae Euphorbia thymifolia [124]

Lamiaceae Perilla frutescens (L.) Britton [145]

Rosmarinus officinalis [146]

Zataria multiflora [147,148]

Zhumeria majdae [51]

Polygonaceae Polygonum odoratum Lour [149]

Clusiaceae Garcinia daedalanthera [87,150]

Scrophulariaceae Verbascum kermanensis [51]

Rosaceae Rosa damascene [151]

Sanguisorba minor [51]

Sarcopotarium spinosum L. [152]

Anacardiaceae Pistacia vera [51]

Ericaceae Vaccinum arctostaphylus [153]

Salvadoracae Salvadora persica [154]

Zingiberaceae Alpinia officinarum [155,156]

Phyllantaceae Antidesma bunius Spreng [157]

Oxalidaceae Averrhoa bilimbi L. [158]

Biophytum sensitivum L. DC [159]

Rhizophoraceae Ceriops tagal Perr. Rob [160]

Rhizophora mucronata Lam [161]

Cyperaceae Kyllinga monocephala Rottb [162]

Asteraceae Brickellia cavanillesii [163]

Blumea lanceolaria Roxb [164]

Celastraceae Salacia oblonga [165]

Lamiaceae Scutellaria baicalensis [166]

Cucurbitaceae Cucurbita pepo L. [167]

Convolvulaceae Ipomoea aquatica Forssk [168]

Ipomoea batatas (L.) Lam [169]

Piperaceae Piper lolot DC [130]
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Table 2. Cont.

Family Enzymatic Type Scientific Name

Brassicaceae Nasturtium officinale R. Br [170]

Myrtaceae Eucalyptus grandis [171]

E. urophylla [171]

Syzygium aqueum [172]

S. cumini [173]

Meliaceae Azadirachta indica [139]

Clusiaceae Garcinia mangostana [174]

Sapindaceae Nephelium lappaceum [175]

Vitaceae Vitis vinifera [176]

Santalaceae Osyris alba L. [177]

Hypericaceae Hypericum triquetrifolium Turra [178]

Ericaceae Arbutus andrachne L. [179]

Vaccinium oxycoccos [180]

Bignoniaceae Oroxylum indicum [123]

Campanulaceae Codonopsis pilosula [181,182]

Geraniaceae Geranium collinum [183]

Dryopteridaceae Dryopteris cycadina [75,184]

Acanthaceae Clinacanthus nutans [142]

Rutaceae Orixa japonica Thunb [156]

α-Amylase inhibitor

Anacardiaceae Spondias pinnata (Koenig) [185]

Myrtaceae Syzygium cumini L. [186]

Zygophyllaceae Balanites aegyptiaca L. [187]

Amaranthaceae Amaranthus caudatus L. [188]

Theaceae Camellia sinensis L. Del [128]

Fabaceae Galega officinalis L. [189]

Tamarindus indica L. [190]

Cassia auriculata [191]

Apocynaceae Holarrhena floribunda [192]

Melissa officinalis L. [193]

Rubiaceae Mitragyna innermis (Wild.) [189]

Lamiaceae Rosmarinus officinalis L. [193]

Polygalaceae Securidaca longepedunculata [194]

Asparagaceae Polygonatum adoratum [195]

α-Glucosidase and
α-amylase inhibitor

Nelumbonaceae Nelumbo nuciffera Gaertn [47]

Asteraceae Artemisia vulgaris L. [133]

Enydra fluctuans Lour [185]

Araliaceae Polyscias fruticosa (L.) Harms [196]

Myrtaceae Syzygium zeylanicum (L.) DC [186]
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Table 2. Cont.

Family Enzymatic Type Scientific Name

Phyllanthaceae Phyllanthus amarus [126]

Phyllanthus urinaria [127]

Lamiaceae Ocimum basilicum L. [125]

Thymus serpyllum [197]

Meliaceae Khaya senegalensis [198]

Moraceae Artocarpus altilis [1,199]

Ranunculaceae Aconitum heterophyllum [199]

Acoraceae Acorus calamus [200]

Berberidaceae Berberis aristata [199]

Cyperaceae Cyprus rotundus [201]

Calophyllaceae Mesua ferrea [186]

Plumbaginaceae Plumbago zeylanicum [202]

Combretaceae Terminalia arjuna [203]

Myrtaceae Brazilian cerrado [204]

Eugenia dysenterica [205]

Stryphnodendron adstringens [206]

Pouteria caimito [206]

Pouteria torta [206]

Pouter ramiflora [207]

Psidium guajava L. [2]

DPP-4 inhibitors improve β- and α-cell function and decrease glucagon concentra-
tions [208]. Normally, DPP-4 is widely expressed in numerous tissues including endothelial
cells of multiple vascular beds, rendering the enzyme highly accessible to peptide substrates
circulating through the gut, liver, lung, and kidney [209]. In an in silico study, the DPP-4
active site interacted widely with a hydrophobic pocket via hydrophobic inhibitor moieties
such as Try629 and Try547 [210] and also interacted with other proteins and proline (P)
and alanine (A) residues [211]. GLP-1, which is a physiological incretin hormone from the
lower gastrointestinal (GI) tract [212], is produced from the proglucagon gene in the L cell
of the small intestine and secreted in response to nutrients. GLP-1 exerts its major effects
by stimulating glucose-dependent insulin release from the pancreatic islets. GLP-1 has also
been shown to slow gastric emptying [213] with substantial postprandial GLP-1 release
which, in these conditions, interferes with GLP-1 receptor signaling and has a significant
impact on glucose regulation after eating, including DPP-4 inhibition [214]. The GLP-1
receptor is a member of family B with G protein-coupled receptors and is an important
drug target for T2DM. This hormone docks with high affinity and is a full agonist with
specific amino acid residues namely, Arg131, Lys136, Glu133, and Glu125 within the same
region of the receptor amino termini [215,216]. GLP-1 plays an important physiological
role in maintaining blood glucose homeostasis, and may be a very effective therapeutic
drug for the treatment of T2DM [216,217]. Thus, the basis of molecular docking of ligand
binding and subsequent activation is clinically important for the GLP-1 receptor [215].

Insulin receptor kinase (IRK) is a heterotetrameric receptor composed of two extra-
cellular α-subunits and two transmembrane β-subunits. Insulin is a hormone responsible
for glucose and lipid metabolism. Binding of this hormone to the extracellular domain
of the insulin receptor (IR) induces a conformational change that facilitates ATP bind-
ing and leads to increased autophosphorylation of the receptor [218]. Moreover, IRK is
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subsequently autophosphorylated and activated to tyrosine-phosphorylated key cellular
substrates that are essential for interacting with the insulin response [219]. IRK activation
occurs at the beginning of insulin signaling in the cell surface, while in silico studies have
shown insulin-sensitive auto-phosphorylation of receptors with mutated glycosylation
sites lacking glycan chains at Asn624-730, Asn730-743 and Asn881, but with a constitutively
active tyrosine kinase [220]. At Asn1234, IRK lacking glycosylation exhibited a threefold
increase of basal autophosphorylation and played a critical role in signal transduction for
IRK activation [221].

Insulin receptor substrate (IRS) molecules are key mediators in insulin signaling.
Several polymorphisms in the IRS gene have been identified; however, only the Gly to Arg
972 substitution of IRS-1 seems to have a pathogenic role in the management of T2DM [222].
In the IRS-1 gene, Gly972 with an Arg substitution has shown to be related to insulin
resistance in T2DM [223]. Therefore, IRS is an important ligand in the insulin response of
human cells; especially, IRS-1 and IRS-2 are ubiquitously expressed and are the primary
mediators of insulin-dependent mitogenesis and regulation of glucose metabolism in most
cell types [224]. IRS-1 was originally identified as the major substrate of insulin receptor and
IGF-1 receptor tyrosine kinase and represents the prototype of the IRS family proteins [225].
IRS-2 contains an additional domain, the KRLB domain, that interacts with the tyrosine
kinase domain of the IR and may function to limit IRS-2 tyrosine phosphorylation [226]. In
addition, both IRS-1 and IRS-2 have been associated with regulating GLUT4-dependent
glucose uptake in the response to insulin [227]. To explore targeting of specific molecules or
genes, and further accelerate the drug discovery and development, computational biology
associated with virtual screens plays a key role.

5. In Silico Approaches

In silico technologies play an increasingly imperative role in drug discovery and
development mainly due to their fast throughput, economical efficiency, and labor saving
characteristics [228], especially compared with their in vitro and in vivo counterparts that
for identifying new natural compounds as drug targets with predicted biological activ-
ity [228]. Basically, in silico approaches can be categorized as structure-based modelling,
in which protein structures, especially cocomplexed structures, are adopted to investigate
protein-ligand interactions normally carried out by docking, and analogue-based modeling
by quantitative structure-activity relationship (QSAR) and pharmacophore, in which the
predictive models are derived based solely on ligand information.

Importantly, in silico methods are a logical extension of controlled in vitro experiments
to shorten massive screens via high throughput methods. There are the natural results
of the explosive increase in computing power available to the research scientist [229].
Several molecular models have selected protein-ligand complexes from the protein data
bank (PDB) database, and the performance of docking has been evaluated by software
including LigandFit, Glide, Gold, MOE Dock, AutoDock, and Surflex-Dock [14]. Recently,
the polyphenol primary structure of catechin, hesperetin, and kaempferol have been found
to express stable chemical characters that can have inhibitory effects on α-glucosidase
and α-amylase enzymes [230]. Interestingly, polyphenol families provide an enormous
resource to explore novel α-glucosidase and α-amylase inhibitors because their biological
properties are abundant in functional foods represent supplementary and nutraceutical
use for DM treatment [230]. The objective of this review is to investigate in silico strategies
to screen polyphenol-containing herb plants that can inhibit α-glucosidase and α-amylase
enzymes. In silico approaches to find novel α-glucosidase and α-amylase inhibitors from
natural compounds to treat T2DM have been demonstrated by Esmail et al. (2019) [231],
in that polyphenols can reduce hyperglycemia and improve acute insulin secretion or
insulin sensitivity [13]. Inhibition of α-glucosidase and α-amylase can reduce the impact
of dietary carbohydrate on blood glucose level [49]. Moreover, it has been observed that
polyphenols play an important role in decreasing insulin resistance in vitro and improving
glucose homeostasis in vivo [51]. Polyphenols such as flavonoids, phenolic acid, and
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stilbene have been implicated in the treatment of various human disorders [128] including
diabetes [232]. As such, it is plausible to expect that polyphenols can be an important
source of α-glucosidase and α-amylase inhibitors to treat T2DM. Model simulation have
predicted candidates in relation to the binding of polyphenols to the three-dimensional
structure of both enzymes [129]. Inhibition of carbohydrate metabolism during saccharide
digestion, via α-glucosidase and α-amylase inhibition, can play a major role in T2DM
treatment associated with docking studies to determine enzyme inhibition based on the
free energy of binding, since hydrogen bond interactions are when binding α-glucosidase
and α-amylase [233].

5.1. Docking

In general, several elements should be included in a homology template: the nature
of the docked ligands; the docking program; the molecular dynamics (MD) package
(refining the docked poses), and post docking calculations (Force field for MD) in the
procedure of molecular docking. The procedure should involve the following: (i) three-
dimensional structures of target protein are explored in the PDBor “Uniprot” website;
(ii) three-dimensional structure of anticipated small molecules are retrieved from PubChem;
(iii) the H2O of target proteins and small molecules are removed, and (iv) molecular docking
is conducted by the “GOLD” platform.

A selected target such as α-glucosidase protein structure is constructed by homol-
ogy modeling based on the protein structure of oligo-1,6-glucosidase from B. cereus (PDB
1UOK). Next, various nature of docked ligand derivatives are docked using the program
CDOCKER, followed by molecular dynamics (MD) calculations by GROMACS with AM-
BER03 force field for refinement. The correlation coefficient between the observed Ki
values and calculated interaction energies is 0.89, suggesting that binding modes are
plausible [234]. Various crystal structures of enzymes, whose PDB codes are 2ZJ3 [235],
3TOP [236], 3AJ7 [237], 3A47 [238], 3A4A [239], 3AHX [239], and 3CZJ [240] have been
published. Some protein structures have been adopted to conduct docking studies, as
listed in Table 3, along with a selection of docking packages. PDB is the enzyme from Homo
sapiens but specific proteins are not determined due to functional protein divergence of
gene sets of these protein against α-glucosidase and α-amylase [27]. Inhibiting the activity
of these two enzymes can mediate and control postprandial hyperglycemia and reduce
developing diabetes [241]. The interaction between betulinic acid (BA) and α-glucosidase
is obtained from the oligo-1,6-glucosidase structure (PDB ID: 3AJ7) using the CDOCKER
module of Discovery Studio. The predominate factors in determining BA-α-glucosidase are
hydrophobic interactions and hydrogen bonds [242]. Moreover, the oligo-1,6-glucosidase
structure (PDB ID: 3AJ7) was used as the template by Ding et al. (2018) to build an α-
glucosidase homology model to study the inhibitory mechanisms of oleanolic acid and
ursolic acid using LeDock (available at http://www.lephar.com/software.htm, accessed
on 4 July 2019). Oleanolic acid can form hydrogen bonds with Ser295 and Glu270, whereas
ursolic acid can establish hydrogen bonds with Gln66 andGln67. Zeng et al. (2019) docked
galangin into a homology-built α-glucosidase based on oligo-1,6-glucosidase from S. cere-
visiae (PDB ID: 3A4A) using AutoDock (available at http://autodock.scripps.edu/accessed
on 12 August 2019). It was observed that galangin can form hydrogen bonds with Leu313
and Glu411 of α-glucosidase. Interestingly, it was also found that α-glucosidase can un-
dergo conformation change upon binding with galangin, leading to decreased enzymatic
activity by hindering substrate entrance consistent with the observation made by Ding et al.
(2018) (vide supra) [243]. In silico methods are expanded for predicting potent receptor
targets, including AutoDock Vina, VMD Quantum Chemistry Visualization, Maestro 10.2
software package (Maestro is a front-end GUI), PyMol software (PyMol is a visualizer),
MOE-Dock module (v.2011.10), Model Scoring of GB/VI test, force field AMBER, SCM
model, SiteMap (Schrodinger Release 2018-1: SiteMap), and Pardock (Table 3).

http://www.lephar.com/software.htm
http://autodock.scripps.edu/accessed
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Table 3. Natural compounds against α-glucosidase and α-amylase enzymes discovered via in silico approaches, listing the
docking package and scoring function used in the studies.

In Silico Modeling

Natural Compound Plant Family
Binding
Energy

(Kcal/mol)
PDB ID

Hydrophobic &
Hydrogen-Bond

Interaction

Quercetin Euphorbiaceae −7.6

2ZJ3; Homo sapiens, AutoDock
Vina [211], VMD Quantum

Chemistry
Visualization [228,244]

Ser420, Lys675, Gln421,
Thr375, Ser422

Quercitrin −9.0

Quercetin-3-O-galactoside −9.1

Cosmosiin −9.9

Kaempferol −7.6

2-(4 methyl-3-cyclohexene-1-
yl)-2-propanol −5.4 Val677, Ala674, Thr375

B-amyrine −9.0

B-Sitosterol −7.8

Campesterol −8.2

Caryophyllene −7.1

Limonene −4.8

Phytol −5.2

Piperitenone −5.4

Safranal −5.5

Stigmasterol −8.5

Taraxerol −8.9

Euphorbol −8.3

24 methylene cycloartenol −7.9

1-O-Galloyl-beta-D-glucose −8.0

Corilagin −8.9 Ser420, Lys675, Gln421,
Thr375, Ser422

Baicalein Bignoniaceae −6.98 3TOP; Homo sapiens, Schrodinger
Maestro [116]

Pro1327, Glu1284,
Pro1405, Leu1401

Catechin −7.70
His1584, Asp1279,
Asp1526, Arg1510,

Asp1157

Luteolin −7.52

Quercetin −7.19

Quinoline Rubiaceae −8.6
3AJ7; Saccharomyces cerevisiae,

MOE-docking
2010.11software [140]

Phe177, Asp214,
His279, Phe157

Benzothiazole Ericaceae −8.08

No mentioned for PDB code, 3D
structure: α-glucosidase of

Saccharomyces cerevisiae,
AutodockTools 1.5.6

package [161],
PyMol 1.7.6 software

(http://www.pymol.org/,
accessed on 19 February 2020)

Phe157, Phe310, Phe311

http://www.pymol.org/
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Table 3. Cont.

In Silico Modeling

Natural Compound Plant Family
Binding
Energy

(Kcal/mol)
PDB ID

Hydrophobic &
Hydrogen-Bond

Interaction

β-Sitosterol Dryopteridaceae −16.097

The three-dimensional structure
for α-glucosidase of

Saccharomyces cerevisiae has not
yet been solved, MOE-Dock

(MOE 2010.11) software [165]

Asp215, Asp352,
Arg442, Gln182

β-Sitosterol3-O-β-D-
glucopyranoside −7.756 Asn415

2, 3, 5,
7-trihydroxy-2-(p-tolyl)

chorman-4-one
−22.480

Arg315, Asp307,
His280, Lys156, Ser240,

Thr310, Tyr158

Quercetin-3-0-β-D-
glucopyranoside

(3/→0-3///)-β-D-
Quercetin-3-0-β-D-
galactopyranoside

−12.931 Arg442, Tyr158

5, 7, 4/-Trihydroxyflavon-3-
glucopyranoid −15.752 Asp242, Lys156, Pro312,

Tyr158

2,6-diethylpiiperidine-3,4,5-
triol Campanulaceae −6.1790

3A47; Saccharomyces cerevisiae,
MOE-Dock module (v.2011.10),
Model Scoring of GB/VI test,

The force field AMBER99 [143]

Lys155, Glu304, Arg312,
Asn153

2-ethyl-6-methylpiperidine-
3,4,5-triol −8.8493

6-ethyl-2-
(hydroxymethyl)piperidine-

3,4-diol
−6.9539

1,2,4-tri-O-gal-loyl-β-D-
glucopyranose Geraniaceae −8.7

3AHX; Clostridium cellulovorans,
The SCM model, SiteMap

(Schrodinger Release 2018-1:
SiteMap, Schrodinger, LLC,
New York, NY, 2018) [163]

Asp232, Ser235,
Asn314, Glu426

Kaempferol-3-O-α-
rhamnopyranoside −9.4 Asp214, Asn241, Val277

Kaempferol-3-O-α-
arabinofuranoside −9.2 Asp68, Asp214, Thr215,

Glu276, Asp408

Quercetin-3-O-β-
glucuronopyranoside −9.8 Asp68, Asp214, Arg312,

Asp349, Gln350

Quercetin-3-O-α-
arabinofuranoside −5.4 Asp232, Asp429

Kuwanon L Moraceae −8.4412

3A4A; Saccharomyces cerevisiae,
Agilent Masshunter software Ver.

B.04.00, The Molecular
Operating Environment

(MOE.2009.10) software [131]

Asp 69, Asp215,
Asp352, Asp307

Mulberrofuran G −8.4634

Sanggenon C −8.4291 Asp69, Asp352, Asp215,
Glu277



Biomolecules 2021, 11, 1877 16 of 31

Table 3. Cont.

In Silico Modeling

Natural Compound Plant Family
Binding
Energy

(Kcal/mol)
PDB ID

Hydrophobic &
Hydrogen-Bond

Interaction

Moracenin D −8.3188 Asp 69, Asp215,
Asp352, Asp307

Mortatarin C −5.4358 No interaction

Sanggenon G −9.2855 Asp69, Asp352, Asp215,
Glu277, Phe178

Sanggenon O −8.9427 Asp69, Asp352, Asp215,
Glu277

Sanggenol A −7.7639 No interaction

Sanggenon W −8.4194 Asp 69, Asp215,
Asp352, Asp307

5′-Geranyl-5,7,2′,4′-
tetraphydroxy

flavone
−8.2431 No interaction

Nigrasin F −8.0232 Asp 69, Asp215,
Asp352, Asp307

Sanggenol G −8.7875 Asp69, Asp352, Asp215,
Glu277

Mortatarin B −5.9508 Asp 69, Asp215,
Asp352, Asp307

4,6,8-Megastigmatrien-3-one Acanthaceae −7.47

3A4A; Saccharomyces cerevisiae,
2PQR; Saccharomyces cerevisiae,

AutoDock Tools, Biovia
Discovery Studio (San Diego,
CA, USA), PyMOLTM 1.7.4.5

(Schrodinger, LLC, New York,
NY, USA) [245]

Asn259, Hid295

N-Isobutyl-2-nonen-6,8-
diynamide −5.54 Lys156

1′,2′-bis(acetyloxy)-3′,4′-
didehydro-2′-hydro-β,ψ-

carotene
−10.19 Arg335

22-acetate-3-hydroxy21(6-
methyl-2,4-octadienoate)-

olean-12-en-28-oic
acid.

−8.31 Gly209

Polyhydroxy pyrrolidines Rutaceeae −2.4

3CZJ; Escherichia coli, Pardock
(http://scfbio-iitd.res.in/dock/

paradock.jsp, accessed on 19
February 2020), Accelrys and

AutoDock software (AutoDock
v.4.2.6, San Diego, CA,

USA) [246,247]

No interaction

Tosyl −3.1 Asp229, Asp231

More specifically, e.g., AutoDock was used to dock quercetin compounds into the
α-amylase structure extracted from the human glutamine-complexed structure (PDB:
2ZJ3) using the binding scoring function. The binding strength between enzymes hit
compounds were identified. The docking results presented novel inhibitors that were

http://scfbio-iitd.res.in/dock/paradock.jsp
http://scfbio-iitd.res.in/dock/paradock.jsp
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obtained according to the different criteria of docking program. Scoring functions for
docking are potent approximate mathematical protocols applied to predict the strength of
hydrogen interactions and binding affinity [244]. Importantly, scoring can predict robust
intermolecular interactions [248]. In addition, scoring function focuses on nonbonded terms
of a molecular force-field [249]. Recently, Etsassala (2019) found abietane diterpenes from
Salvia Africana-lutea act as novel α-glucosidase and α-amylase inhibitors that exhibit strong
antioxidant and anti-diabetic activities [250]. In vitro methods have characterized their
chemical structure that consists of terpenoids including mangiferolic acid, cycloartenol,
and ambonic acid [250,251]. Moreover, a novel in silico study revealed a new class of
triazoloquinazolines that are potent α-glucosidase inhibitors [252]. Lastly, key residuals
are revealed when Phloretin is docked into the protein using Surflex-Dock (Tripos Inc.,
St. Louis, MO, USA). It is found that phloretin can interact with Asp69, Asp215, Arg442,
Gln353, and Asn350 to form five hydrogen bonds [253]. In another example, the α-amylase
structure was excerpted from RCSB Protein Data Bank (http://www.rcsb.org/pdb accessed
on 4 July 2019) (PDB: 1B2Y), whereas the α-glucosidase structure was built based on the
protein structure of oligo-1,6-glucosidase from S. cerevisiae (PDB ID: 3A4A). The docking
simulations were carried out by the Molecular Operating Environment (MOE, Chemical
Computing Group, Montreal, Canada). It was found that the most potent FG forms
hydrogen bonds with His 201, Glu 233, Asp 197, Gln 63, Trp 59 of α-amylase, and the
most potent α-glucosidase inhibitor interacts with Thr 306, Asp 352, Arg 213, Glu 277,
Asp 215, Arg 442 of the target protein through hydrogen bonds [253]. Quintero-Soto et al.
(2021) selected the most active alcalase hydrolyzate fraction from eight chickpea (Cicer
arietinum L.) samples to align with the complex α-amylase enzyme (PDB code: 1HNY) and α-
glucosidase enzyme (PDB: 5NN8) using GRAMM-XProtein-Protein, followed by molecular
dynamic simulation using the Rosetta FlexPepDock. It was found that inhibitors can bind
to both enzymes by electrostatic interaction, hydrogen bonds, and hydrophobic interactions.
Furthermore, sulfur-X bonds were found in the inhibitor-α-glucosidase interaction [254].
Swaraz et al. (2021) selected the crystal structures of α-amylase (PDB code: 1B2Y) and
α-glucosidase (PDB code: 5NN8) to dock phenolic compounds from Blumea laciniata (Roxb.)
DC. by AutoDoc Vina. Unlike the other molecular docking studies, the conformations
of docked ligands were searched by the Lamarckian genetic algorithm prior to docking.
It was found that Van der Waals interactions, hydrogen bonds, halogen bonds, and π–π
interactions were involved in the interactions between inhibitors and enzymes. The in vitro
results indicated that borassoside E, protodioscin, and diosgenin were the most potent
inhibitors, whereas in silico calculations suggested otherwise [255]. Molecular docking
or virtual screening has demonstrated appealing advantages, including low error level,
greater stabllty and operability, wide application, low-cost and capability to scale up easily.
Several limitations have been found in applications of molecular docking including poor
synergistic computational models, poor quality datasets, and poor standardization, poor
accurate scoring functions, model interpretation issues, issues with multi-domain proteins,
and assessment of multi-drug effects.

5.2. Pharmacophore Models

A pharmacophore model is derived from the most potent ligand-protein structure by
Discovery Studio to give rise to chemical features including two hydrogen bond donors
(HBDs) and two hydrophobic groups (2 PHs). Pharmacophore modeling that can be
classified as ligand and structure-based approaches has become a major tool in drug dis-
covery [256] and has been extensively used in virtual screening [257]. The objective of
pharmacophore modeling is to find chemical features responsible for a specific biological
activity among potent ligands [258]. Therefore, the use of appropriate modeling for screen-
ing drugs for T2DM is important in evaluating the interaction between the receptor and
ligand, defined as essential geometric arrangement of atoms or functional groups necessary
to produce a given biological response [259]. For instance, Teresa et al. (2015) used Ligand-
scout [260], which is a ligand-based pharmacophore modeling package to identify one of

http://www.rcsb.org/pdb
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the most important structural properties that can prevent the increase of blood glucose
levels. Thus in modern medicinal chemistry it is necessary to find therapeutic agents for
T2DM treatment [261].

Gerhard et al. (2005) developed multiple pharmacophore models based on different
binding modes using LigandScout [262], and observed different pharmacophore models
comprised of different chemical features. The built models were further adopted to virtually
screen a number of commercially available chemical databases, totaling ca. 1.4 million
compounds. The selected hit compounds were then docked into the α-amylase structure
(PDB code: 3OLE) using Gold. Unlike most docking studies, in which the pose selection
generally relies on scoring function, the docked poses were selected based on the chemical
features derived from the acarviostatin II03 complexed structure in this study. The final
hit compounds showed α-amylase inhibitory activities with assayed IC50 values of tens of
micromoles. This study clearly illustrated the synergy between structure and analogue-
based modeling, as well as in vivo assays and in silico approaches.

Pharmacophore modeling can be used in conjunction with molecular docking and
molecular dynamics (MD) in some cases [263]. They are suitable for identifying the treat-
ment of T2DM as a known anti-pharmacophore was generated to remove all potential
agonists from the screening database [264]. For example, PPAR-α/γ agonists can reg-
ulate glucose metabolism including hyperglycemia and insulin resistance [265]. Thus,
alternative therapeutics for antidiabetic drugs can use this modeling to arrange chemical
features and some elements of drug design such as the absence of structural data for the
target enzyme-linked receptor [266]. Lee et al. (2014) discovered sulfonamide chalcone
derivatives from Saccharomyces cerevisiae as a novel class of non-saccharide compounds
that can potentially inhibit α-glucosidase by molecular docking and MD simulation [267].
Interestingly, oleanonic acid and other components of P. lentiscus oleoresin are new partial
PPARγ agonists unveiled by a pharmacophore hypothesis to treat T2DM [268]. More-
over, pharmacophore models were adopted to identify stilbene derivatives as a class of
α-glucosidase competitive inhibitors [266] and sulphonamide chalcone derivatives as a
new class of compounds to treat T2DM [269]. Pharmacophore also have long been studied
with α-amylase to control diabetes and found to have good binding affinity [269]. Pharma-
cophore packages and computer software include Discovery Studio, LigandScout, Phase,
MOE–Pharmacophore Discovery, ICM-Chemist, ZINCPharmer, and Pharmit model; phar-
macophores are used to determine potent features of one or more molecules with the same
biological activity [270]. Qualitative or quantitative studies can predict qualitative and
quantitative properties and can be used for identification through virtual screening or in sil-
ico models [271]. Findings related to the docking studies, and molecular docking are used
in computer-aided drug design approaches related to structure-based 3-D pharmacophore
because they can predict free energy and scoring schemes to test PDB binding [271].

The major advantages of pharmacophore models are virtual screening of a large
database, no need to know the binding site of the ligands for the target protein, the
design and optimization of drugs, scaffold-hopping, 2-D structural representation, all
with a comprehensive and editable approach. However, some limitations are that 2D
pharmacophore is less accurate than 3D pharmacophore, no interactions with the proteins,
and sensitivity to physicochemical features.

5.3. QSAR Model

The quantitative structure-activity relationship model (QSAR model) is a classification
model used in the chemical and biological sciences and engineering. QSAR shows biologi-
cal activity which can be expressed quantitatively and can be used to predict the model
response of other chemical structures [272]. The QSAR model has function that identifies
chemical structures for drug discovery that could have inhibitory effects on specific targets
with low toxicity (nonspecific activity). Of special interest is the prediction of partition
coefficient log P, which is an important measure used in identifying drug likeness according
to Lipinski’s Role of Five [273]. QSAR schemes, which are mathematically designated to
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map chemical characteristics with biological activity, have been extensively adopted to
predict α-glucosidase and α-amylase inhibitors [274]. QSAR studies include ligands with
their binding sites, inhibition constants, rate constants and other biological end points, in
addition molecular to properties such as lipophilicity, polarizability, electronic, and steric
properties or with certain structural features [275]. The model attempts to find consistent
relationships between the variations in the values of molecular properties and the biological
activity of a series of compounds which can then be used to evaluate the properties of new
chemical entities [276].

One study used the QSAR model to search natural α-amylase and α-glucosidase
inhibitors of all collected compounds, including active α-amylase and α-glucosidase in-
hibitors from ChEMBl, and inactive α-amylase and α-glucosidase inhibitors from Drug-
Bank; 640 and 214 compounds were divided into the training set and validation set for
the α-amylase inhibition model development, respectively, and 1540 and 515 compounds
into the training set and validation set for the α-glucosidase inhibition model development.
Descriptor enumerations were carried out by Dragon, descriptor selection was done by
linear discriminant analysis (LDA), and the classification models were built by the classifi-
cation tree (CT) algorithm. The best derived model showed a very high level of predictivity
(>95% accuracy in the training set, 86.80% in the test set, and 85.32% by the10-fold cross
validation) [277].As we know, the advantages of predicting biological activity with QSAR
modelling includes a large number of compounds with little to no prior experimental data
on activity, molecular properties that may be worth investigating further, chemical waste is
not generated when performing in silico predictions, the procedure reduces the need for
testing on animals and/or on cell cultures, and saves time. Disadvantages of predicting
biological activity with QSAR modelling include no in-depth insight on the mechanism
of biological action, and some risk of highly inaccurate predictions of pharmacological or
biological activity.

6. Comparing In Vitro (Enzymatic, Cellular) and In Vivo Advantages and
Disadvantages of In Silico Modeling Applications in T2DM)

A variety of in vitro and in vivo assays have been proposed to find novel therapeutic
agents targeting various putative molecular targets (vide supra) for T2DM treatment [278].
Drug discovery processes are important and include variety of activities using assay models
(in vitro, in vivo, and in silico) [279]. In vitro and in vivo tests for T2DM can also evaluate
the toxicity of drugs or compounds in development and the modified activity, and bioavail-
ability of herbal medicine compounds [280]. Importantly, preliminary study includes
protein-ligand interactions comparable to the lock and key principle [281]. The major
potent force for binding is hydrophobic interaction, while in silico modeling can be helpful
to identify drug target via bioinformatics tools [282]. The advantage of in silico methods is
to explore the target structures as possible active sites to generate candidate molecules with
results related to their binding affinity and hydrogen interaction [283]. The disadvantage
of in silico methods is that the binding mode and score function has been extensively
tested with multiple ligands for binding mode prediction, and affinity prediction and
many scoring functions might yield inaccurate predictions with less precision compared
to in vitro and in vivo methods [284]. Hence, enzymatic or cellular assays, animal models,
and in silico modelling are essential for developing new anti-diabetic agents and alternative
therapeutics in the future. Moreover, use of techniques and algorithms “in silico” is a good
way to identify new molecules as subjects for in vitro cell studies, animal in vivo tests for
validation and finally in human clinical trials for filing drug licenses.

7. Perspectives of In Silico Modelling for Discovery and Development of
Anti-Diabetes Drugs

Drug repositioning (DR) is the process of classifying new indications for approved
drugs and can substantially expedite drug discovery and development based on the fact
that their toxicity issues have been evaluated previously [285]. DR can reduce time and cost
because it takes advantage of drugs already in clinical use for other indications, or drugs
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that have passed phase I safety trials but failed to show efficacy for the intended diseases.
In silico drug discovery methods, and the development of antidiabetic drug repurposing
has become an important factor in new drug discovery. Several computational approaches
that help us to uncover new antidiabetic drug opportunities and discovery process have
been screened or adapted from previous applications [286]. Accordingly, identification of
new drugs is expected to help predict new drug-targets, [228]. In silico approaches are
capable of complement and integrating with each other in drug repurposing and will result
in drugs for the future [287]. Computational (in silico) methods have been developed and
widely applied to pharmacological hypothesis development and tests, including database,
structure-activity relationships (SAR), pharmacophores, molecular docking, and super-
speed computer tools [288]. Drug design and development for T2DM are still in early
stages of management. The conventional target and structure-based methods can be linked
toward therapeutic mechanism of T2DM treatment [257]. In contrast, several approaches in
silico have the advantage of fast speed and low cost, and has been receiving more attention
worldwide; the disadvantage being over-estimation of binding affinity and arbitrarily
choosing non-bonded cut off terms [245]. Currently, we have performed in silico assays to
accelerate new discoveries from herbal or natural compounds and confirmed the validation
of preclinical levels. These include: α-amylase and α-glucosidase activities suppressed by
Garcinia linii extracts, including syringaldehyde, via docking, and further confirmed by
in vitro (cell) and in vivo (diabetic mice) studies [289]; by the mixture of extracts (purple
onion, cinnamon, and tea) via docking, and further confirmed by in vitro (enzyme) and
in vivo (diabetic mice) studies [290]; by γ-mangostin via docking and further confirmed
by in vitro (cell, enzyme) and in vivo (diabetic mice) studies [291]; by syringaldehyde via
docking and further confirmed by in vitro (enzyme, organ culture) and in vivo (diabetic
mice) [292] studies; and by curcumin, antroquinonol, HCD, docosanol, tetracosanol, rutin,
and actinodaphnine via virtual screen and further confirmed by in vitro (cell) and in vivo
(diabetic mice) studies [293]. Remarkably, drug design is a process in which new leads
(efficacy drugs) are discovered which have therapeutic benefits in antidiabetic drugs and
can have potential effects on the management of T2DM in human clinical trials [246,247].
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