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Abstract

Autophagy is a cellular mechanism involved in the bulk degradation of proteins and turnover

of organelle. Several studies have shown the significance of autophagy of the renal tubular

epithelium in rodent models of tubulointerstitial disorder. However, the role of autophagy in

the regulation of human glomerular diseases is largely unknown. The current study aimed to

demonstrate morphological evidence of autophagy and its association with the ultrastruc-

tural changes of podocytes and clinical data in patients with idiopathic nephrotic syndrome,

a disease in which patients exhibit podocyte injury. The study population included 95

patients, including patients with glomerular disease (minimal change nephrotic syndrome

[MCNS], n = 41; idiopathic membranous nephropathy [IMN], n = 37) and 17 control subjects

who underwent percutaneous renal biopsy. The number of autophagic vacuoles and the

grade of foot process effacement (FPE) in podocytes were examined by electron micros-

copy (EM). The relationships among the expression of autophagic vacuoles, the grade of

FPE, and the clinical data were determined. Autophagic vacuoles were mainly detected in

podocytes by EM. The microtubule-associated protein 1 light chain 3 (LC3)-positive area

was co-localized with the Wilms tumor 1 (WT1)-positive area on immunofluorescence

microscopy, which suggested that autophagy occurred in the podocytes of patients with

MCNS. The number of autophagic vacuoles in the podocytes was significantly correlated

with the podocyte FPE score (r = -0.443, p = 0.004), the amount of proteinuria (r = 0.334, p =

0.033), and the level of serum albumin (r = -0.317, p = 0.043) in patients with MCNS. The

FPE score was a significant determinant for autophagy after adjusting for the age in a multi-

ple regression analysis in MCNS patients (p = 0.0456). However, such correlations were not

observed in patients with IMN or in control subjects. In conclusion, the results indicated that
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the autophagy of podocytes is associated with FPE and severe proteinuria in patients with

MCNS. The mechanisms underlying the activation of autophagy in association with FPE in

podocytes should be further investigated in order to elucidate the pathophysiology of MCNS.

Introduction

Minimal change nephrotic syndrome (MCNS) is one of the most common causes of idiopathic

nephrotic syndrome; it is identified in approximately 10–25% of adult patients with the condi-

tion [1]. On histological examination, patients with MCNS show no glomerular lesions on

light microscopy and no specific findings on fluorescence microscopy; however, electron

microscopy (EM) of renal biopsy specimens reveals extensive foot process effacement (FPE) in

the glomerular podocytes [2]. Clinically, massive proteinuria is a main diagnostic and thera-

peutic marker in these patients.

Autophagy is the process through which the bulk degradation of cellular proteins takes

place. The cytoplasmic components are enclosed by double-membrane structures known as

autophagosomes, which are delivered to lysosomes and then form vacuoles in the cell cyto-

plasm [3]. The breakdown products in lysosomes are subsequently recycled back to cytoplasm.

The Atg gene family plays an crucial role in the regulation of cellular autophagy. The p62 gene

encodes several proteins that are important for the initiation and maturation of autophago-

somes [4–7]. The mammalian target of rapamycin (mTOR) is known to be a key governor of

both autophagy and cellular metabolism [8, 9].

The traditional method for observing autophagy within the cell is EM. In the late 1950s, an

electron microscopic study demonstrated autophagy in the lysosomes in mammalian cells

[10]. At the ultrastructural level, an autophagosome is characterized by a double-membraned

structure containing undecomposed cytoplasmic components, which has not fused with a

lysosome. Autophagosomes frequently contain intracellular organelles, such as fragments of

the endoplasmic reticulum and mitochondria [10].

Besides the physiological role of autophagy in cellular homeostasis, the dysregulation of autop-

hagy may be involved in various disease conditions, such as inflammation, aging, metabolic dis-

eases, neurodegenerative disorders and cancer [11–13]. The DNA of mitochondria that escapes

from autophagy leads to Toll-like receptor 9-mediated inflammation and thus induces myocardi-

tis and dilated cardiomyopathy [14]. Recent studies have shown the alteration of autophagy in

tubular epithelial cells in renal tubulointerstitial disorder [8, 15–26]. The podocyte-specific

knockout of the vacuolar protein sorting defective 34 or the prorenin receptor was associated

with severe proteinuria, FPE and the autophagy of numerous podocytes after birth [27–29]. How-

ever, little is known about autophagy in glomerular diseases, in particular, in human idiopathic

nephrotic syndrome in which alteration of the glomerular podocytes plays a critical role [30–32].

We therefore hypothesized that altered autophagy may be involved in the pathophysiology

of MCNS, one of the most common forms of idiopathic nephrotic syndrome. In this study, we

investigated the presence of autophagic vacuoles in glomerular podocytes in renal biopsy spec-

imens by EM and further analyzed its association with the degree of FPE in podocytes and the

amount of proteinuria, both of which are hallmarks of MCNS.

Methods

Subjects

Our study included 95 patients (male, n = 50; female, n = 45) who were admitted to the Unit of

Renal Medicine in Okayama University Hospital and underwent percutaneous renal biopsies
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between February 2007 and January 2015. All procedures in the present study were performed

according to national and institutional ethical guidelines for human studies, and guidelines in

the Declaration of Helsinki. The ethics committee of Okayama University Hospital approved

the study (No. 1607–010). Each patient gave their written informed consent.

Laboratory measurements

Blood was taken from all subjects in the morning after 12 h of fasting. The serum levels of cre-

atinine, total cholesterol, total protein and albumin were obtained using an automated ana-

lyzer (JCA-BM8040; JEOL, Tokyo, Japan). A 24-h urine sample was collected to measure the

urinary levels of total protein. The eGFR was calculated as previously described [33].

Human renal biopsy specimens

Specimens of human renal tissue were obtained by percutaneous renal biopsy. Patients were

diagnosed on the basis of clinical symptoms, laboratory data and immunofluorescence, light

and EM findings [34]. Control renal tissue specimens were obtained from patients who under-

went renal biopsy due to slight asymptomatic proteinuria or hematuria, but in whom glomeru-

lar disease was excluded. Each tissue section obtained was routinely evaluated under a light

and fluorescence microscope (Olympus, Tokyo, Japan).

Electron microscopy

Human kidney specimens were observed by EM as described previously [35]. In brief, tissue

blocks of kidney pieces were immersed in 2.5% glutaraldehyde for 2 hours at 4˚C and subse-

quently fixed with 1% osmium tetroxide. The blocks were then subjected to dehydration, epon

embedding, and ultrathin sectioning. The four serial ultrathin sections were set on a grid and

observed under an electron microscope (H7650; Hitachi, Tokyo, Japan). Two ultrastructural

types of autophagy are recognized: type I and type II autophagy [36–38]. Type I autophagy is

characterized by a condensed ribosome area with a limiting membrane. Type II autophagy is

characterized by the aggregation of ribosomes, forming a condensed ribosome area, which

always includes numerous aggregated lipid droplets in autophagic vacuoles observed in most

of all autophagy. In agreement with previous studies on podocyte autophagy in renal biopsy

specimens [36, 37], type I autophagy accounted for<10% of all autophagy and type II autop-

hagy was mainly observed in this study. Thus, we counted autophagic vacuoles (type II autop-

hagy) and the average number of autophagic vacuoles per glomerulus was determined in each

subject. A quantitative examination was carried out to count the number of podocyte foot pro-

cesses per 10 μm of glomerular basement membrane (GBM) in each glomerulus. The mean

number of podocyte foot processes was determined as the FPE score, as described previously

[39, 40]. Representative electron micrographs used for the evaluation of the podocyte FPE

score are shown in S1 Fig.

Immunofluorescence analysis

Renal biopsy specimens were subjected to immunolabelling of microtubule-associated protein

1 light chain 3 (LC3; a homologue of yeast Atg8, which is localized to membranes of autopha-

gosomes) to investigate its cytosolic and autophagosomal distribution. Immunofluorescence

staining was performed using 4-μm-thick frozen sections of renal biopsy specimens fixed in

cold acetone for 3 min and air dried, as described previously [41]. Double immunofluores-

cence staining were carried out with rabbit polyclonal anti-LC3 (clone PM036; MBL) diluted

1:50 and mouse monoclonal anti-Wilms tumor 1 (WT1) (clone IR055; DAKO), the latter
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reacted with the cytoplasm of glomerular podocytes [42, 43]. The sections were blocked in 3%

bovine serum albumin for 1 hour at room temperature and then left overnight at 4˚C, and

stained with the antibodies described above. Next, secondary antibodies conjugated with fluo-

rescein isothiocyanate (FITC) (sc-2012; anti-rabbit IgG, 1:100 dilution, Santa Cruz) and those

conjugated with rhodamine (sc-2092; anti-mouse IgG, 1:100 dilution, Santa Cruz) were

applied for 1 hour at room temperature. Nuclei were then stained with 4’,6-diamidino-2-phe-

nylindole (DAPI) (Life Technologies). Fluorescence images were obtained using an immuno-

fluorescence microscope (BZ-9000; Keyence, Osaka, Japan).

Statistical analysis

When the data did not follow a normal distribution, they were expressed as the median and

interquartile range. A simple linear regression analysis of the data was performed. A multiple

regression analysis was performed to determine autophagic vacuoles per glomerulus. P values

of< 0.05 were considered to indicate statistical significance. Differences between groups were

analyzed using the Mann-Whitney U-test, or the Steel’s multiple comparison test as appropri-

ate. The statistical analyses were carried out using the JMP software program (version 11; SAS

Institute Inc., Cary, NC, USA).

Results

Patient profiles

The baseline characteristics of the study population are shown in Table 1. The study popula-

tion included 95 patients (median age, 55.0 [28.0–69.0] years). Seventeen of the patients were

control subjects without any significant clinical or pathological abnormalities (17.9%), 41

patients were diagnosed with MCNS (43.2%), and 37 were diagnosed with idiopathic membra-

nous nephropathy (IMN) (38.9%). At the time of renal biopsy, 28 of 41 patients with MCNS

(68.3%) and 9 of 37 patients with IMN (24.3%) had taken corticosteroids and/or immunosup-

pressants, including cyclosporine for the treatment of glomerular disease. Eighteen of 41

patients with MCNS (43.9%) and 13 of 37 patients with IMN (35.1%) exhibited clinical

nephrotic syndrome at the time of renal biopsy.

Morphological evidence of autophagy in renal biopsy specimens

Autophagic vacuoles were mainly detected in the cytoplasm of glomerular podocytes, seldom

detected in that of glomerular mesangial cells or endothelial cells in renal biopsy specimens

observed by EM (Fig 1). The localization of LC3, a marker of autophagy, was investigated by

co-staining with antibodies to WT1, which are expressed in the cytoplasm of glomerular podo-

cytes in nephrotic syndrome [43]. Most of the LC3-positive podocytes in the glomerulus were

co-positive for WT1 (Fig 2), suggesting that autophagy mainly occurred in the glomerular

podocytes.

The number of autophagic vacuoles in podocytes was significantly

associated with proteinuria, serum albumin, and the podocyte foot process

effacement score in patients with MCNS

We next evaluated the relationships among the number of podocyte autophagic vacuoles, FPE

score, and clinical data in patients with MCNS and IMN, who are prone to nephrotic syn-

drome, and in control subjects (Table 2). The number of autophagic vacuoles in podocytes

was positively correlated with the amount of urinary protein and was negatively correlated

with the serum albumin level in patients with MCNS (Fig 3A and 3C), whereas no such
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correlations were recognized in patients with IMN (Fig 3B and 3D). Ultrastructural mor-

phometry revealed that the number of autophagic vacuoles was significantly correlated with

the FPE score in podocytes of MCNS patients (Fig 3E), while no significant correlations were

observed in IMN patients (Fig 3F). In control subjects, no significant correlations were

observed among the number of autophagic vacuoles and proteinuria, serum albumin, or the

FPE score (S2 Fig). Since a decline in autophagic activity may play a role in the aging process

[11–13], we next examined the relationships between age and the autophagic vacuoles in

patients with idiopathic nephrotic syndrome and controls. The number of autophagic vacuoles

in podocytes was significantly correlated with age in control subjects and MCNS patients, but

not in IMN patients (S3 Fig). We further conducted a multiple regression analysis to deter-

mine the autophagic vacuoles per glomerulus. After adjusting for the age as a confounding fac-

tor, the FPE score was found to be a significant determinant for autophagy in podocytes in

patients with MCNS (Table 3). There were no significant determinants for autophagic vacuoles

per glomerulus in patients with IMN (S1 Table) or control subjects (S2 Table) after adjusting

for the age.

Discussion

This is the first study to demonstrate the association between autophagy of glomerular podo-

cytes and proteinuria or hypoalbuminemia, both of which are clinical characteristics in

patients with MCNS and FPE in podocytes, which is an ultrastructural hallmark in MCNS.

At present, little is known about autophagy in podocytes in human glomerular diseases, in

particular in patients with idiopathic nephrotic syndrome. Sato et al. demonstrated ultrastruc-

tural evidence of autophagy in podocytes in human renal biopsy specimens [36, 37]. They

reported that in type I autophagy (approximately 1 μm in diameter), a condensed ribosome

Table 1. The baseline characteristics of the study population.

Control

(n = 17)

MCNS

(n = 41)

IMN

(n = 37)

Total

(n = 95)

Age

(years)

28

(18–39)

40a

(23–66)

68b, d

(60.5–72.5)

55

(28–69)

Male/Female 7 / 10 21 / 20 22 / 15 48 / 39

eGFR (mL/min/1.73m2) 105.2

(83.8–115.8)

77.1a

(58.9–105.6)

57.8b, d

(47.9–71.4)

72.3

(56.3–98.7)

Serum creatinine

(μmol/L)

56.6

(51.3–71.6)

64.5

(55.7–80.9)

80.4

(58.8–97.7)

66.3

(55.7–84.0)

Total Protein

(g/L)

74

(71.5–76.5)

49b

(42.3–55)

55b, c

(49–60.5)

55

(47–67)

Albumin

(g/L)

45

(44.5–47)

20b

(14.5–29.5)

26b, c

(20.5–33.5)

26

(18–38)

Total cholesterol (mmol/L) 4.7

(4.3–5.2)

10.1b

(7.1–12.9)

7.0b, d

(5.7–8.7)

7.3

(5.5–10.5)

Urinary protein (g/day) 0.1

(0.05–0.2)

3.1b

(1.0–6.7)

3.8b

(1.6–5.2)

2.4

(0.3–5.0)

eGFR, estimated glomerular filtration rate; MCNS, minimal change nephrotic syndrome; IMN, idiopathic membranous nephropathy.

The clinical data at the time of renal biopsy are expressed as the median value (interquartile range).
a: P<0.05
b: P<0.01 vs. Control
c: P<0.05
d: P<0.01 vs. MCNS.

https://doi.org/10.1371/journal.pone.0228337.t001
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area and a few lipid droplets were observed with a limiting membrane originating from mito-

chondria, while in type II autophagy (3–8 μm in diameter), a condensed ribosome and numer-

ous lipid droplets were observed with a limiting membrane originating from the rough

endoplasmic reticulum. Type II autophagy transformed to autophagosomes and autophagic

vesicles. Their results suggested that type II autophagy may play a more important role in the

clearance of proteins and lipids than type I autophagy. In pediatric patients with IgA nephrop-

athy, which is the most common type of chronic glomerulonephritis [44], the existence of type

I autophagy may be associated with a more progressive histopathological class in comparison

to type II autophagy [38]. In our study, however, the type I autophagy accounted for <10% of

all autophagy, and was much less prevalent than type II autophagy (autophagic vacuoles).

Fig 1. The ultrastructural morphology of autophagy in glomerular podocytes, as observed by electron microscopy. Electron

micrographs of a glomerulus in patients with MCNS (A-C, 73-year-old female; D, 19-year-old female) are shown (A-D). A condensed

ribosome with limiting membranes (type I autophagy) (A and D) and autophagic vacuoles containing lipid droplets and vacuoles (type

II autophagy) (B and C) are indicated by arrows. CL, capillary lumen; Ep, glomerular epithelial cell (podocyte); GBM, glomerular

basement membrane; US, urinary space.

https://doi.org/10.1371/journal.pone.0228337.g001
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Fig 2. Dual immunolabelling of LC3 and WT1 in the glomerulus of an MCNS patient, as detected by immunofluorescence

microscopy (73-year-old, female). Fluorescence micrographs of sections single stained for LC3 with FITC (A), WT1 with rhodamine

(B), and dual stained for LC3 and WT1 (D) are shown. The cell nuclei were stained with DAPI (C). Note the LC3-positive area is co-

localized with the WT1-positive area in panel D.

https://doi.org/10.1371/journal.pone.0228337.g002

Table 2. Evaluation of autophagy and foot process effacement in glomerular podocytes by electron microscopy.

Control

(n = 17)

MCNS

(n = 41)

IMN

(n = 37)

Total

(n = 95)

Autophagic vacuoles per glomerulus 12.0

(7.0–16.0)

10.5

(8.0–18.5)

11.5

(8.4–19.5)

11.5

(8.0–18.0)

Foot process effacement score 16.7

(14.3–19.8)

8.7a

(6.5–10.3)

5.3a, b

(3.1–7.5)

8.0

(5.5–11.0)

MCNS, minimal change nephrotic syndrome; IMN, idiopathic membranous nephropathy.

Histological data at the time of renal biopsy are expressed as median values (interquartile range).
a: P<0.01 vs. Control
b: P<0.01 vs. MCNS.

https://doi.org/10.1371/journal.pone.0228337.t002
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Fig 3. The relationships between the number of autophagic vacuoles in podocytes and proteinuria, serum albumin, and the foot process

effacement score in patients with MCNS (A, C, E) and IMN (B, D, F). The correlation between the number of the autophagic vacuoles in

podocytes and daily urinary protein (g/day) (A, B), serum albumin (g/dL) (C, D) and the podocyte FPE score (E, F). MCNS, minimal change

nephrotic syndrome; IMN, idiopathic membranous nephropathy.

https://doi.org/10.1371/journal.pone.0228337.g003
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Thus, we evaluated the number of autophagic vacuoles alone. The appearance of autophagy

should be further investigated in other forms of human glomerular diseases, including lupus

nephritis [45] and diabetic nephropathy [26].

The mechanism of interaction between autophagy and FPE in podocytes is largely

unknown. In the podocytes of cathepsin D-knockout mice exhibiting proteinuria, the accumu-

lation of podocin, a slit diaphragm (SD) protein, was co-localized with the lysosome-associated

membrane glycoprotein 1 and the late endosomal marker Rab7 [46]. The granular structures

that accumulated in the podocyte cytoplasm were thus indicated to be autophagosomes and

autolysosomes containing degraded podocin, suggesting a degradation of podocin by autop-

hagy, which eventually leads to the disruption of SD and FPE of podocytes. Another candidate

mediator involved in the interaction between autophagy and FPE is the Ca2+ influx into podo-

cytes. Several studies have shown that Ca2+ in the cytoplasm can regulate the cellular process

of autophagy [47]. Podocyte FPE involves the dynamic reorganization of actin filaments, a

process controlled by the Ca2+ influx, as a modulator of the actin cytoskeleton [48].

Focal segmental glomerulosclerosis (FSGS) is another major cause of idiopathic nephrotic

syndrome. Patients with the disease show podocyte injury, including FPE, podocyte detach-

ment from the GBM, and podocyte loss, eventually leading to end-stage renal disease with a

poorer prognosis than that in MCNS [49]. A recent study showed that the number of autopha-

gosome-positive podocytes in patients with FSGS was significantly lower than that in patients

with MCNS [32]. The study showed, using repeat renal biopsies, that decreased podocyte

autophagy in MCNS patients was associated with the subsequent progression of MCNS to

FSGS. Variants of the apolipoprotein L1 (APOL1) gene in African Americans are known to be

related to FSGS [50]. Both soluble urokinase plasminogen activator receptor (suPAR) and

APOL1 synergistically induced beta 3 integrin activation in podocytes, resulting in the dysre-

gulation of the actin cytoskeleton, thereby leading to podocyte FPE as well as the formation of

dysfunctional autophagosomes [51]. Since we could only obtain a very small number of renal

biopsy specimens from patients with FSGS, it was not possible to compare the degree of podo-

cyte autophagy in our study.

Idiopathic membranous nephropathy (IMN) is one of the most frequent causes of

nephrotic syndrome in adults, especially in the elderly population [52]. A recent report showed

that there is a greater accumulation of LC3-positive vacuoles with the markedly enhanced

expression of p62/SQSTM1 protein, a target of autophagy degradation, in the podocytes of

IMN patients in comparison to controls, suggesting the impaired degradation of this protein

and insufficient autophagy in IMN [31]. Another report demonstrated an increase in Atg3

mRNA in microdissected glomeruli from patients with IMN in comparison to controls [30].

In the current study, we did not recognize a significant increase in the number of autophagic

vacuoles in patients with IMN in comparison to controls. The positive correlation of podocyte

Table 3. A multiple regression analysis to determine autophagic vacuoles per glomerulus in MCNS.

Independent variables β p-value model r2

Urinary protein (g/day) 0.190368 0.1866 0.3071

Serum albumin (g/dL) 0.006299 0.9731

Serum creatinine (μmol/L) -0.192575 0.1709

Total cholesterol (mmol/L) 0.174846 0.3233

Foot process effacement score -0.320560 0.0456�

Adjusted for age. MCNS, minimal change nephrotic syndrome.

�: P<0.05.

https://doi.org/10.1371/journal.pone.0228337.t003
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autophagy with proteinuria, hypoalbuminemia, and FPE, which was observed in patients with

MCNS, was not recognized in patients with IMN in this study. Why we noted no relationship

between podocyte autophagy and proteinuria in the IMN patients in this study is unknown.

We were unable to exclude the possibility that the lower ratio of patients with IMN (24.3%)

than that of those with MCNS (68.3%) taking corticosteroids and/or immunosuppressants

(including cyclosporine) for the treatment of glomerular disease affected the podocyte autop-

hagy. Clinically, patients with MN exhibit the gradual onset of edema and a slow increase in

proteinuria, while those with MCNS exhibit the sudden onset of edema and rapid and massive

proteinuria. While this is highly speculative, the difference in the time course of the disease

appearance and progression might explain why there was no relationship between podocyte

autophagy and proteinuria in IMN patients. Another possible explanation is that IMN is an

immune complex disease while MCNS is not. Certain immune complexes can suppress autop-

hagy in glomerular endothelial cells [53]. Immune complexes including specific antigens, such

as phospholipase A2 receptor and thrombospondin type-1 domain-containing 7A [54] might

affect the interaction of autophagy of podocytes and proteinuria in IMN. Further studies

should be performed to investigate the abnormalities in the system of the autophagic degrada-

tion of podocytes, such as the expression of p62/SQSTM1 protein, which is reported in other

conditions associated with podocyte injury, such as Fabry disease [55, 56].

There are two cellular mechanisms by which misfolded proteins decompose: one is autop-

hagy, which is a lysosome-mediated pathway; the other is the ubiquitin-proteasome system,

which is a non-lysosomal and highly specific pathway through which ubiquitinated proteins

decompose [57]. Previously published data have reported certain interactions between the two

pathways [58]. However, these interactions still remain to be investigated in human podocytes

in healthy individuals and in patients with glomerular diseases, such as nephrotic syndrome.

In injured podocytes, the counterbalancing of cell survival by autophagy and cell death by apo-

ptosis may play an essential role in the progression of glomerular disease [59–62]. Cross-talk

between autophagy and apoptosis via Atg6 homologue beclin 1, which binds to anti-apoptosis

bcl-2 in signal transduction, can regulate both autophagy and apoptosis [63]. This interaction

in the regulation of podocyte death and survival, which could affect proteinuria and glomeru-

losclerosis should be further investigated.

The present study is associated with several limitations and strengths that must be kept in

mind when understanding the results. First, we did not have data from patients with FSGS,

which is a major cause of idiopathic nephrotic syndrome. Since FSGS is less frequent than

MCNS and IMN [44], we did not obtain enough samples from patients with FSGS in our

study. There are still controversial reports describing a significant decrease in number of

autophagic podocytes [32] or an increase in glomerular Atg3 mRNA in relation to autophagy

[30] in patients with FSGS in comparison to patients with MCNS. Second, we did not have

repeat renal biopsy data, which might have enabled us to obtain causative data that would have

allowed us to explore the role of autophagy in disease progression, such as the transition of

MCNS to FSGS [32], or the effects of therapeutic interventions (e.g., rituximab treatment) [64,

65] on autophagy in the podocytes in patients with MCNS. Third, we evaluated the expression

of LC3, a marker of autophagic activities as well as disturbed lysosomal recycling. We did not

evaluate the autophagy flux [66, 67] in this study, as recommended by the guidelines for the

use and interpretation of assays for monitoring autophagy [68]. We were unable to detect the

glomerular expression of p62/SQSTM1 protein, which is degraded by autophagy and therefore

serves as a marker of impaired autophagy (unpublished observation). Fourth, we included

patients who were already undergoing treatment with corticosteroids and/or immunosuppres-

sants at the time of renal biopsy; thus, we could not exclude the possibility that these treat-

ments affected the autophagy status in podocytes. Fifth, this study contained an insufficient
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number of controls who were age-matched with patients with MCNS, so a sufficient number

of age-matched controls should be accumulated in the future.

In conclusion, we have demonstrated that there were significant associations between the

autophagy of glomerular podocytes and proteinuria, hypoalbuminemia, and FPE in podocytes

in patients with MCNS. Such correlations were not recognized in patients with IMN, another

form of proteinuric glomerular disease. Further investigations should be performed to clarify

the autophagic flux and autophagic activities in podocytes in MCNS. The precise mechanism

of molecular interaction between autophagy and FPE in the podocytes should be examined,

since modulation of this interaction may have novel therapeutic applications in the treatment

of MCNS.
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