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KRAS is the most commonly mutated oncogene in human cancers. Targeted therapy and
immunotherapy for this gene have made remarkable progress in recent years. However,
comprehensive molecular landscape analysis of KRAS in rare tumors is lacking.
Retrospective analysis was performed on clinical samples from patients with rare
tumors collected between September 2015 and September 2021, using hybrid-
capture-based next-generation sequencing for genomic profiling and
immunohistochemistry assay for PD-L1. Of the 3,453 patients included in analysis,
KRAS mutations were identified in 8.7% patients in overall; mutation rate and mutation
subtypes varied widely across tumor systems and subtypes. KRAS mutations included 21
missense mutations, of which G12D (29.2%), G12V (24.6%), and G13D (10.8%) were
most common. Interestingly, KRAS G12C was observed in 0.6% patients overall, and in
5.7% of sarcomatoid carcinoma of the lung and 5.4% of clear cell ovarian cancer tumors,
but none in small-bowel cancer tumors. 31.8% KRAS mutations and 36.4% KRAS G12C
mutations co-occurred with other targetable alterations. No significant correlation was
observed between TMB-H, MSI-H, PD-L1 status, and KRAS mutation status, which may
be related to the high proportion of G12D. This study is the first KRAS mutation landscape
study in rare tumors of large sample size in China and worldwide. Our results suggest that
targeted therapy and immunotherapy are both feasible, albeit complex, in these patients.
This information may have significant impact on the operation of clinical trials for rare tumor
patients with KRAS mutations in China.
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INTRODUCTION

Rare cancers are roughly defined as cancers with fewer than 15
new diagnoses in 100,000 people a year, but there is no universally
adopted definition (Abbas-Aghababazadeh et al., 2020). For
example, sarcomatoid carcinoma of the lung (SARCL) is rare
tumor, with <3% of nonsmall-cell lung cancer (NSCLC) (Fallet
et al., 2015). Collectively rare cancer account for more than 20%
of all cancer diagnoses in a year (Abbas-Aghababazadeh et al.,
2020). Clear cell ovarian cancer, CCOV are rare aggressive,
chemo-resistant tumors comprising approximately 13% of all
epithelial ovarian cancers, which have distinct clinical and
molecular features, when compared to other gynecological
malignancies (Khalique et al., 2020). Neuroendocrine tumors
(NETs) are a group of rare neoplasms originating from
dispersed neuroendocrine cells, mainly of the digestive and
respiratory tract (Poblocki et al., 2020). Gastrointestinal
stromal tumors (GIST) are the most common of the rare non-
epithelial neoplasms of gastrointestinal tract, accounting for
0.1–3% of gastrointestinal malignancies (Al-Share et al., 2021).

Kirsten rat sarcoma (KRAS) gene is the most commonly
mutated oncogene in human cancers. KRAS mutations are
identified in approximately 90% of pancreatic cancers, 30–40%
of colon cancers, and 15–20% of lung cancers, mostly non-small-
cell lung cancer (NSCLC) (Pylayeva-Gupta et al., 2011; Singh
et al., 2015). Apart from genetic alterations associated with
spontaneous tumor development, it has been increasingly
appreciated that KRAS mutation also exhibits a broad impact
on the tumor microenvironment, which helps to promote and
maintain the malignancy of cancer (Young et al., 2013; Kortlever
et al., 2017; Ambrogio et al., 2018; Dias Carvalho et al., 2019). In
addition to the exciting progress in the development and approval
of targeted therapeutic drugs for KRAS (Hallin et al., 2020; Hong
et al., 2020; Jänne et al., 2020), many studies have been carried out
investigating the effects of KRAS mutations on immunotherapy
(Kim et al., 2017; Lee et al., 2018; Köhler and Jänne, 2021).

Our team has previously studied the genomic profiling of rare
tumors in China, which indicated that employing targeted
therapy and immunotherapy in rare tumors is highly feasible
(Wang et al., 2020; Wang et al., 2021). However, the molecular
landscape of KRASmutation in rare tumors has not been studied.
This retrospective study describes the landscape of KRAS
mutation in 3,453 Chinese patients with rare tumors, in order
to provide valuable information for the operation of clinical trials
for patients with rare tumors which harbor KRAS mutations in
China.

METHODS

Patient Recruitment
According to the definition and update of rare tumors established
by the China National Cancer Centre (Wang et al., 2020), we
collected and retrospectively analysed genomic profiling data of
3,453 patients with rare tumors from the Geneplus database. This
database contained patients enrolled from multiple hospitals in
China from September 2015 to September 2021. All patients

received hybrid-capture-based next-generation sequencing
(NGS) testing in Geneplus-Beijing Institute after obtaining
written informed consent. Meanwhile, all the patients were
stratified into different clinicopathological subgroups according
to OncoTree system (http://oncotree.mskcc.org/). Tumor
subtypes with more than 30 samples were also included in the
analysis. The final data analysed included 3,453 cases with NGS
data, 1,697 cases of tumour mutational burden (TMB), 1,436
cases of microsatellite instability (MSI) status and 488 cases of
programmed cell death ligand-1 (PD-L1) expression.

Next-Generation Sequencing
All samples were tested by NGS in the Geneplus-Beijing
laboratory, which is accredited by American College of
Pathologists (Sun et al., 2019; Wang et al., 2020; Zhuo et al.,
2020; Wang et al., 2021). Briefly, all tissue samples were
hematoxylin-eosin stained and reviewed to ensure a minimum
of 20% tumor cells. Tumor DNA and ctDNA were extracted from
serial sections of formalin fixed paraffin embedded (FFPE) tumor
tissue and 4–5 ml plasma, respectively. Genomic profiling was
performed on hybridization-captured, adaptor ligation–based
libraries to a minimal mean effective depth of coverage of
100× in leukocytes, 300× in tumor tissue and 1,000× in cell-
free DNA samples, for 59 or 1,021 cancer-related genes. All
classes of genomic alterations were identified, including single
nucleotide variants (SNV), small insertions and deletions
(InDels), copy number alterations, and rearrangements.

TMB was defined as the number of somatic nonsynonymous
SNV and InDels per megabase of the coding region, with allele
frequency ≥0.03 in tumor tissue sample or ≥0.005 in ctDNA
sample respective. The threshold for high tumour mutational
burden (TMB-H) was identified as the top quartile and
determined to be greater than 9 mutations per megabase (Jia
et al., 2018; Wang et al., 2019). microsatellite instability high
(MSI-H) was defined by MSIsensor score greater than 8 (Niu
et al., 2014).

PD-L1 Expression
PD-L1 expression was assessed in FFPE tumor tissues using the
PD-L1 immunohistochemistry (IHC) 22C3 pharmDx kit and
Dako Automated Link 48 platform (Agilent Technologies, Santa
Clara, CA, United States) in 414 patients and using the SP263
pharmDx kit and Ventana Bench-Mark XT automated staining
platform (Ventana Automated Systems, Inc., Tucson, AZ,
United States) in 74 patients. The methodology for PD-L1
tests was performed according to standard protocols. Positive
PD-L1 expression was identified using a cut-off of greater
than 1%.

Statistics
The Chi-square test or Fisher’s exact test was performed to
analyse the correlation between KRAS and immunotherapeutic
molecular markers. All statistical analysis was performed with
SPSS (v.23.0; STATA, College Station, TX, United States) or
GraphPad Prism (v. 6.0; GraphPad Software, La Jolla, CA,
United States) software. Statistical significance was defined as a
two-sided p-value of <0.05.
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RESULT

Clinicopathological Characteristics of
Patients
Three thousand four hundred and fifty-three patients (3,453)
with rare tumors were included in this study. Table 1
summarizes the clinicopathological characteristics of all
patients. The median age was 56, and male patients
accounted for 55.1% (1901/3,453). Among these patients,
tumor tissue samples were available for genetic analysis for
2,595 patients. Cell-free tumor DNA (ctDNA) was available
for 842 patients, pleural effusion samples for 17, peritoneal
effusion samples for 14, and cerebrospinal fluid (CSF) samples
for 3. These 3,453 cases included 122 rare tumor subtypes, with
soft tissue (1,076 cases), digestive (9,310), neural (732), cancer
of unknown primary (CUP) (262), and respiratory (207)
systems as the top 5 affected bodily systems. 33.4% of
patients underwent surgery and 32.0% of patients received
systemic therapy. The other 34.6% had no available treatment
records.

Genomic Profiling of KRAS
Somatic mutations were detected in 94.03% of patient samples
(3,247/3,453), with TP53 (31.9%), KIT (16.4%), TERT (12.9%),
CDKN2A (12.8%), and EGFR (11.1%) as the top 5 mutant genes.
The top 20 mutant genes are summarized in Supplementary

Table S1). 11.9% (202/1,697) of samples were TMB-H, 1.5% (22/
1,436) were MSI-H and 45/3% (221/488) were PD-L1 positive.

KRAS mutations were identified in 302 patient samples
(8.7%). Prevalence of KRAS mutation varied widely across
tumor systems, ranging from 0% in patients with endocrine
system tumors to 50.0% in patients in urinary system disease.
The five systems with the highest rate of KRAS mutation were
urinary (50.0%, 6/12), digestive (22.1%, 206/931), CUP (14.1%,
37/262), reproductive (11.1%, 9/81), and bone (9.1%, 1/11). With
respect to tumor subtypes, small bowel cancer (41.8%, 51/122),
cholangiocarcinoma (22.6%, 125/553), sarcomatoid carcinoma of
the lung (SARCL) (17.0%, 9/53), clear cell ovarian cancer
(CCOV) (13.5%, 5/37), and neuroendocrine tumors (NETs)
(11.2%, 20/178) had the highest rates of KRAS mutation,
while the mutation rates in glioma and glioblastoma were only
about 2%. KRAS mutations were extremely rare in a variety of
sarcoma subtypes (Figure 1 and Supplementary Table S2).

A total of 305 KRAS mutations were detected, including 21
missense mutations (Table 2). The most common mutations
were G12D (29.2%), G12V (24.6%), and G13D (10.8%). Overall,
mutations were mainly concentrated in G12 (72.5%, 223/305),
followed by G13 (13.1%, 39/305) and H61 (6.9%, 20/305). The
3.6% (11/305) mutation rate of T146mutation is also noteworthy.
We further analysed the distribution of KRAS mutation subtypes
in 3 tumor subtypes with high KRAS mutation rate and sufficient
sample size, namely small bowel cancer, cholangiocarcinoma, and
CUP. G12D, and G12V were the main mutations in small bowel
cancer, and G12Cmutation was not detected. KRASmutations in
cholangiocarcinoma are heterogeneous, mainly in G12D and
G12V mutations, and G12C was observed in 5.6% of patients.
In contrast, the mutation subtypes of CUP were relatively simple.
The incidence of G12V, G13D, G12D, and G12C were 28.6, 17.1,
14.3 and 14.3%, respectively, (Figure 2).

Correlation of KRAS With Other Genes and
Molecular Markers
97% of KRAS mutated tumors have other gene alterations. 140
targetable alterations co-mutated with KRAS were identified in
102 patients (33.8%), of which CDKN2A, PIK3CA and ATM were
the top three co-mutated genes, while ALK, NTRK1/2/3, RET and
ROS1 were not observed to be co-mutated with KRAS in any
patients. Notably, 36.4% of KRAS G12C patients also had
targetable alterations (Table 3).

By analysing the correlation between KRAS and
immunotherapeutic molecular markers, we found that KRAS
mutation was not related to TMB-H (p = 0.45), MSI-H (p =
0.41) or PD-L1 (p = 0.35) (Figure 3).

DISCUSSION

This study reveals the KRAS mutation landscape of rare tumors
in China for the first time. To our knowledge, it is also the first
study with such a large sample size of rare tumors worldwide.
This study provides valuable information with regard to the

TABLE 1 | Clinicopathological characteristics of patients.

Characteristic Pts. (N = 3,453) (%)

Age, years
median 56
range 1–97

Gender
female 1,520 (44.0%)
male 1901 (55.1%)
unknown 32 (0.9%)

Specimen
tumour tissue 2,595 (75.2%)
ctDNA 824 (23.9%)
pleural effusion 17 (0.5%)
peritoneal effusion 14 (0.4%)
CSF 3 (0.1%)

System
1.head and neck 52 (1.5%)
2.digestive 931 (27.0%)
3.respiratory 207 (6.0%)
4.reproductive 81 (2.3%)
5.urinary 12 (0.2%)
6.multiple system 57 (1.7%)
7.skin 24 (0.7%)
8.soft tissue 1,076 (31.2%)
9.bone 11 (0.3%)
10.endocrine 8 (0.2%)
11.neural 732 (21.2%)
12.CUP 262 (7.6%)

Treatment
operation 1,152 (33.4%)
systemic therapy 1,106 (32.0%)
not recorded 1,195 (34.6%)
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feasibility of targeted therapy and immunotherapy in KRAS-
mutated rare tumors.

KRAS is themost frequentlymutated oncogene in human cancers,
with mutations in about 30% of all cancers, although the prevalence
varies greatly in different tumors (Uprety and Adjei, 2020). In this
study, KRAS mutations were identified in 8.7% rare tumors.

Importantly, not only mutation rate, but also mutation subtypes
varied widely across tumor systems and subtypes.We identified some
interesting commonalities. The 41.8% KRAS mutation rate and
prevalence of G12D/V mutations in small cancer was similar to
that in colorectal cancer (Moore et al., 2020). In addition to small
bowel cancer and cholangiocarcinoma, we found a high prevalence of
KRAS mutations in SARCL, OOCV, CUP, and NETs. The
prognostic and predictive value of KRAS in these rare tumor
subtypes deserves further study.

In recent years, the development and approval of KRAS G12C
inhibitors has attracted extensive attention (Hallin et al., 2020;
Hong et al., 2020; Jänne et al., 2020). The mutation rate of KRAS
G12C in cholangiocarcinoma and CUP was similar to that in
previous study (Nassar et al., 2021), suggesting that it is feasible to
select patients with these tumor subtypes for clinical trials.
However, in this study, although the KRAS mutation rate in
small bowel cancer reached 41.8%, there was no G12C mutation
detected, which was different from the G12C mutation rate of
3.1% in previous study (Nassar et al., 2021). This study observed
that the proportion of KRAS G12Cmutations in colorectal cancer
and non-small cell lung cancer samples was higher in whites than
in Asians. Interestingly, 5.7% of SARCL patients and 5.4% of
CCOV patient samples were observed to have KRAS G12C in this
study, indicating that such patients should also be considered in
clinical trials of KRAS G12C inhibitors.

We found that 33.8% KRAS mutations co-occurred with other
known targetable alterations (36.4% in KRAS G12C), which was
similar to rates of co-mutation observed in NSCLC and CRC
(Loong et al., 2020). This substantial frequency of co-mutation
leads to high complexity of targeted treatment strategies in a

FIGURE 1 | Prevalence of KRAS mutations and KRAS G12C in different systems and subtypes of rare tumors. Cancer of unknown primary, CUP; sarcomatoid
carcinoma of the lung, SARCL; clear cell ovarian cancer, CCOV; neuroendocrine tumors, NETs; gastrointestinal stromal tumor, GIST.

TABLE 2 | KRAS mutations identified in rare tumors.

Mutation Mutated No. Mutated rate (%)

G12D 89 29.2
G12V 75 24.6
G13D 33 10.8
G12C 23 7.5
G12A 15 4.9
Q61H 15 4.9
G12R 14 4.6
A146T 8 2.6
G13C 6 2.0
G12S 5 1.6
Q61L 5 1.6
Q22K 3 1.0
A146V 3 1.0
G12F 2 0.7
Q61R 2 0.7
E63K 2 0.7
L19F 1 0.3
D33E 1 0.3
A59G 1 0.3
T74P 1 0.3
K117R 1 0.3
Total 305 100.0
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considerable number of patients, when considering whether to
use KRAS G12C inhibitors or other approved drugs with known
targetable alterations. Combination therapy may be a feasible
strategy.

The predictive and prognostic value of KRAS mutation status
in immunotherapy of solid tumors remains controversial (Kim

et al., 2017; Jeanson et al., 2019). Studies have shown that KRAS
mutation in NSCLC is significantly correlated with PD-L1
positive (Schoenfeld et al., 2020), and KRAS/TP53 co-
mutation in lung adenocarcinoma is associated with higher
TMB (Xiang et al., 2020). In this study, it was found that
KRAS was not associated with TMB-H, MSI-H, or PD-L1

FIGURE 2 | Distribution of KRAS mutations in all rare tumors and three subtypes.

FIGURE 3 | Correlation of KRAS with immunotherapeutic molecular markers.
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positivity in rare tumors. This may be due to the different KRAS
mutation subtypes present in this study. In the analysis of
different KRAS mutation subtypes in lung adenocarcinoma, it
was found that the most common mutant subtype of KRAS was
G12C, which was associated with higher TMB and PD-L1
positivity rate compared with wild type KRAS. This study also
found that the proportion of patients with G12Dwas much lower,
TMB was lower than that of wild-type tumors, and PD-L1
positivity in patients with TP53 co-mutation was significantly
lower (Gao et al., 2020). In our study, the proportion of KRAS
mutation G12Dwas as high as 24%, whichmay be the reason why
KRAS mutation has no significant correlation with TMB-H and
PD-L1 positivity.

Previously, the investigation of KRAS mutations in rare
tumors is still limited. In this study, we analyzed the KRAS
mutation landscape in rare tumors of large sample size in
China. A previous study identified 27.2% of KRAS mutations
in SARCL of France using mass spectrometry (Fallet et al.,
2015). In this study, they reveal that KRAS mutations were
always found to involve codon 12, with KRAS G12C being the
most frequently found (63.6%). Most KRAS mutations (72.7%)
were found in tumors with adenocarcinoma component. In
our analysis, we found a 17% KRAS mutations in SARCL. The
most common mutations were G12D (29.2%), G12V (24.6%),
and G13D (10.8%). Another analysis indicates a 14% KRAS
mutations at codon12, exon 2, of KRAS in CCOV of Italy, in
which G12V, G12A, and G12S are found (Zannoni et al., 2014).
In our analysis, we found a 13.5% KRAS mutations in CCOV.
These data identify the difference of KRAS mutation rate and
types of rare tumors between China and Europe. This might
have a different role of G12C KRAS inhibitors in this latter
population. Moreover, compared with KRAS, HER-2
amplification, BRAF mutation and NTRK fusion may have
more clinical significance for targeted therapy even if the
incidence of those gene alterations is low. The mutation
landscape of HER-2, BRAF, and NTRK should be
investigated in the system in future analysis.

There are many therapeutic strategies with KRAS as molecular
marker. In addition to targeting therapy and immune checkpoint
inhibitors, adoptive T-cell therapy has also been studied.

Adoptive T-cell therapy targeting mutant KRAS G12D in
colon cancer might mediate effective antitumor
immunotherapy (Tran et al., 2016; Sim et al., 2020). In view
of the high proportion of KRAS G12D mutation of 29.2% in rare
tumors, the application of adaptive T-cell therapy in rare tumors
is also worth pursuing.

CONCLUSION

Through this first KRAS mutation landscape study of large
sample size rare tumors in China and worldwide, we have
found that KRAS mutation is common in rare tumors, with an
overall mutation rate of 8.7% and a G12C mutation rate of
0.6%, with mutation rate and mutation subtypes varying
widely across tumor systems and subtypes. Interestingly,
5.7% of SARCL tumors and 5.4% of CCOV tumors were
observed to harbour KRAS G12C mutations. As 33.8% of
KRAS patients have other targetable alterations, and KRAS
mutation has no correlation with TMB-H, MSI-H, and PD-L1
positivity, it suggests that targeted therapy and
immunotherapy are feasible but may be complex in patients
with rare tumors with KRAS mutation. This information may
have significant impact on operation of clinical trials in rare
tumor patients with KRAS mutation in China.
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TABLE 3 | Targetable alterations co-mutated with KRAS.

Gene Targetable genomic alteration Co-mutated case No. Co-mutated rate (%) Co-mutated with G12C case No. Co-mutated rate (%)

CDKN2A loss, substitution, truncation 36 11.9 3 13.6
PIK3CA substitution, amplification 19 6.3 3 13.6
ATM substitution, truncation 18 6.0 1 4.5
IDH1,2 substitution 12 4.0
NF1 loss, truncation 10 3.3
PTEN loss, substitution, truncation 10 3.3 1 4.5
BRCA2 substitution, truncation 8 2.6
ERBB2 amplification, substitution 7 2.3
BRAF substitution, fusion 5 1.7
FGFR1,2,3 substitution, amplification, fusion 5 1.7
MET amplification 5 1.7
BRCA1 substitution, truncation 2 0.7
KIT substitution 2 0.7
EGFR substitution 1 0.3
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