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Background: Hepatocellular carcinoma (HCC) is a common and deadly malignancy
worldwide. Current treatment methods for hepatocellular carcinoma have many
disadvantages; thus, it is urgent to improve the efficacy of these therapies. Glycolysis
is critical in the occurrence and development of tumors. However, survival and prognosis
biomarkers related to glycolysis in HCC patients remain to be fully identified.

Methods: Glycolysis-related genes (GRGs) were downloaded from “The Molecular
Signatures Database” (MSigDB), and the mRNA expression profiles and clinical
information of HCC patients were obtained from TCGA. Consensus clustering was
performed to classify the HCC patients into two subgroups. We used the least
absolute shrinkage and selection operator (LASSO) regression analysis to construct
the risk signature model. Kaplan–Meier (K-M) survival analysis was performed to
evaluate the prognostic significance of the risk model, and the receiver operating
characteristic (ROC) curve analysis was used to evaluate the prediction accuracy. The
independent prediction ability of the risk model was validated by univariate and multivariate
Cox regression analyses. The differences of immune infiltrates and relevant oncogenic
signaling between different risk groups were compared. Finally, biological experiments
were performed to explore the functions of screened genes.

Results: HCC patients were classified into two subgroups, according to the expression of
prognostic-related GRGs. Almost all GRGs categorized in cluster 2 showed upregulated
expressions, whereas GRGs in cluster 1 conferred survival advantages. GSEA identified a
positive correlation between cluster 2 and the glycolysis process. Ten genes were selected
for risk signature construction. Patients were assigned to high-risk and low-risk groups
based on the median risk score, and K-M survival analysis indicated that the high-risk
group had a shorter survival time. Additionally, the risk gene signature can partially affect
immune infiltrates within the HCCmicroenvironment, and many oncogenic pathways were
enriched in the high-risk group, including glycolysis, hypoxia, and DNA repair. Finally,
in vitro knockdown of ME1 suppressed proliferation, migration, and invasion of
hepatocellular carcinoma cells.
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Conclusion: In our study, we successfully constructed and verified a novel glycolysis-
related risk signature for HCC prognosis prediction, which is meaningful for classifying
HCC patients and offers potential targets for the treatment of hepatocellular carcinoma.
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INTRODUCTION

Liver cancer is the sixth most common malignancy and ranks
fourth in terms of mortality in all types of cancer, owing to its
highly invasive nature (Bray et al., 2018). The mortality rates,
about 2.8% in males and 3.4% in females, increase annually, and
patients diagnosed with liver cancer only have 6–20 months of
survival period without any intervention (Yang et al., 2019).
Hepatocellular carcinoma (HCC) occupies over 90% of liver
cancer cases, which is usually accompanied by chronic
hepatitis or cirrhosis (Kanwal and Singal, 2019). Due to its
hidden and high metastasis, it is rather difficult to accurately
diagnose and treat HCC during early occurrence (Imamura et al.,
2003). With the continuous development of medical research, the
treatment of HCC is also gradually progressed. Curative
treatments such as traditional hepatectomy and liver
transplantation have been accepted as the main therapies for
HCC (Bruix et al., 2016; Zhu et al., 2020); however, since most
patients diagnosed are at middle and advanced stages, it is not
ideal for them to adopt surgical treatments (Mak et al., 2018).
Furthermore, most patients are highly refractory to target
therapies such as sorafenib and lenvatinib (Couri and Pillai,
2019). Therefore, the identification of specific diagnostic and
prognostic biomarkers for HCC patients is urgently needed.

With the progress of oncology research in the past few
decades, energy metabolism reprogramming is regarded as one
of the main hallmarks of cancers (Hanahan andWeinberg, 2011).
Sufficient energy and biosynthetic metabolic intermediates are
the preconditions of cancer cell progression (DeBerardinis et al.,
2008). The metabolism pattern of tumor cells was totally different
from normal cells; normal cells tend to convert glucose to
pyruvate, which was then oxidized to synthesize adenosine
triphosphate (ATP) through the tricarboxylic acid (TCA) cycle
(Koppenol et al., 2011); normal cells also ferment and consume
glucose to lactic acid in hypoxic conditions. However, in cancer
cells, even in the presence of abundant oxygen, glucose is
predominantly converted into lactic acid accompanied by less
ATP production, which is known as the Warburg effect (Wong
et al., 2020).

Increasing evidence reveals that high levels of glycolytic flux,
with large quantities of glucose consumed and massive amounts
of lactate produced, confer advantages to the proliferation,
metastasis, and drug resistance of tumor cells (Ganapathy-
Kanniappan and Geschwind, 2013; Chakraborty et al., 2017;
Bhattacharya and Scimè, 2019). Many glycolysis-related genes
are found expressed abnormally and they play a vital role in the
development and recurrence of HCC (Zhang et al., 2021). For
instance, the glucose transporter type 1 (GLUT1) expression is
upregulated significantly in HCC tissues and is positively
associated with the tumor size (Sun et al., 2016). Pyruvate

kinase M2 (PKM2), a key glycolysis rate-limiting enzyme, is
overexpressed in HCC and is a prognosis marker for poor
survival; its knockdown inhibits proliferation and metastasis of
HCC cells (Li et al., 2020). In addition, elevated PKM2 level is
correlated with treatment resistance in HCC patients receiving
TACE (Martin et al., 2020). Overexpression of enolase 1 (ENO1),
another glycolytic enzyme, in HCC, especially in metastatic
lesions, can often indicate worse clinical characterizations
including tumor-node-metastasis (TNM) stage, differentiation
grade, and poorer prognosis (Jiang et al., 2020). Moreover,
hepatic hexokinase 2 (HK2) catalyzes the first step in glucose
metabolism; its deletion inhibits tumorigenesis in a mouse
hepatocarcinoma model and promotes cell apoptosis (DeWaal
et al., 2018). Since aerobic glycolysis plays a vital role in HCC
progression; it is of great significance to explore sensitive
biomarkers from the perspective of glycolysis to prolong the
survival of HCC patients.

In this study, we first screened prognosis-related GRGs via
analyzing transcriptional data and clinical information in the
HCC cohort. Next, using the algorithm and clustering method,
we divided the patients into two clusters based on the expression
level of screened prognosis-related GRGs. Finally, by means of Lasso
regression analysis, we identified a ten-GRG signature, which can
effectively predict HCC patients’ prognosis and can be validated in
another independentHCC cohort. Our workmay lay the foundation
for further in-depth studies focusing on the relevance of glycolysis-

TABLE 1 | Clinical pathological features of HCC patients (n = 370) from TCGA
database.

Characteristic Group No. of cases (%)

Age (year) <65 221 (59.73)
≥65 149 (40.27)

Gender Male 249 (67.3)
Female 121 (32.7)

Survival status Alive 240 (64.86)
Dead 130 (35.14)

Pathological stage Stage I-II 256 (69.19)
Stage III-IV 90 (24.32)
Unknown 24 (6.49)

Pathological T T1-T2 274 (74.05)
T3-T4 93 (25.14)
Unknown 3 (8.1)

Pathological N N0 252 (68.11)
N1 4 (1.08)
Unknown 114 (30.81)

Pathological M M0 266 (71.89)
M1 4 (1.08)
Unknown 100 (27.03)

Grade G1-G2 232 (62.7)
G3-G4 133 (35.96)
Unknown 5 (1.34)
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related genes in HCC and show that glycolytic activity is an
important part of personalized treatment of HCC.

MATERIALS AND METHODS

Data Acquisition and Processing
The mRNA expression data and related clinical information
of HCC patients were obtained from TCGA data portal
(https://portal.gdc.cancer.gov/). TCGA HCC cohort
consisting of 374 HCC specimens and 50 adjacent normal
specimens were included in this study. The raw
transcriptome expression data and clinical information
were collated by the Perl programming language (5.32.1.
1). Last, only 370 patients with both genomic expression
data and clinical data were enrolled for further survival
analysis. The detailed clinical information of these
patients, including survival status, survival time after
diagnosis, gender, age, TNM stage, tumor grade, and
pathological stage, is summarized in Table 1. These
370 HCC patients were randomly assigned to the training

cohort and the testing cohort at a 1:1 ratio. For further
validation, the GSE14520 dataset containing transcription
data and survival information of over 200 HCC patients was
downloaded from GEO (https://www.ncbi.nlm.nih.gov/
geo/).

Identification of Glycolysis-Related Genes
With Prognostic Significance
To obtain GRGs, we searched the Molecular Signatures Database
(MSigDB) using the following terms: “glycolysis” and
“glycolytic,” and downloaded four glycolysis-associated gene
sets: “HALLMARK_GLYCOLYSIS, KEGG_GLYCOLYSIS_
GLUCONEOGENESIS, REACTOME_GLYCOLYSIS and WP_
GLYCOLYSIS_AND_GLUCONEOGENESIS” (Liberzon et al.,
2015). We deleted the repeated genes from these four gene sets,
and 292 GRGs were left. Next, we performed univariate Cox
regression analysis to search the prognostic significance of
these GRGs in hepatocellular carcinoma patients using the
survival package in R. One with p < 0.001 was considered a
survival-associated GRG. The differential expression of

FIGURE 1 | Heatmap showing the mRNA expression of the prognosis-related GRGs between HCC and non-malignant tissues.
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prognostic-related GRGs between HCC and adjacent normal
specimens was analyzed using the limma package in R software
(Ver4.0.3).

Functional Enrichment Analysis
To investigate the biological function of prognostic-related GRGs
in HCC, the Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway (Kanehisa et al., 2012) and Gene Ontology (GO)
enrichment analyses were conducted through the DAVID
database (Huang et al., 2009). When performing multiple
comparisons, the false discovery rate (FDR) method was
utilized to adjust p values. The figures were drawn by the
ggplot2 package (R software), and pathways with
FDR <0.05 were considered significantly enriched.

FIGURE 2 | Functional enrichment of prognosis-related GRGs. Bubble charts showing significantly enriched Gene Ontology terms of the biological process
(indicated as dots), cellular component (indicated as triangles), and molecular function (indicated as squares) (A) and KEGG pathways (B).
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Consensus Clustering Based on the
Expression of Prognosis-Related
Glycolysis-Related Genes
We employed the “ConsensusClusterPlus” R package (Wilkerson
and Hayes, 2010) to classify the HCC patients into two subtypes
without overlapping. The procedure of clustering was carried out
with the iteration number set as 1,000. In each iteration, 80% of the
data were sampled, and “k” defined the number of groups. We then
performed Kaplan–Meier survival analysis to evaluate whether there
is a survival difference between the two clusters by using “survival” R
package. Heatmaps showing gene expression differences in the two
clusters and the correlation of these clusters with clinicopathological
characteristics were generated using the “pheatmap” package. Gene
set enrichment analysis (GSEA) was conducted to find whether the
glycolysis-associated pathway activity varied significantly between
two groups; gene sets were considered significantly enriched when
p < 0.05 and FDR <0.25 (Thomas et al., 2011).

Estimation of Immune Cell Infiltration
The stromal and immune scores were measured by ESTIMATE
analysis using “estimate” R package, which can calculate the
abundance of stromal and immune cells (Yoshihara et al.,

2013). A violin plot representing the immune cell abundance
between the two clusters was generated by using the “vioplot”
package of R.

Construction and Validation of the
Glycolysis-Related Gene–Based Prognostic
Risk Score Model
The association between the GRG expression and overall
survival of HCC patients was investigated by conducting
univariate Cox regression analysis. Prognosis-related genes
with p < 0.05 were selected, followed by the elimination of
highly correlated genes using the “glment” R package (Simon
et al., 2011). Ultimately, the optimal value with minimum
deviation was calculated by Lasso regression analysis after a
10-fold cross-validation, and, a 10-gene-based risk-predictive
model was constructed. The risk score was calculated using the
formula: “risk score = β1× Exp (Gene 1) + β2 × Exp (Gene 2) +
/ + βn × Exp (Gene n).” HCC patients were grouped into
high- and low-risk subgroups based on the median risk score.
The KM survival curve analysis and the log-rank test were
utilized to estimate the prognosis difference between the two
subgroups. ROC curves were utilized to examine the model’s

FIGURE 3 | Differential clinicopathological characteristics and survival of HCC patients in two clusters. (A)Consensus matrix (k = 2). (B)Heatmap showing different
clinicopathologic features between the two clusters. (C) K-M curves for HCC patients in two clusters.
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accuracy for prognostic prediction. Moreover, we performed
univariate and multivariate analyses to test whether the risk
score or clinical features were an independent prognostic
indicator. Finally, we employed the CIBERSORT algorithm
from the tumor immune estimation resource (TIMER)
database to analyze the correlation between the risk score
and the infiltration degree of immune cells (Li et al., 2017).

External Analysis of the Prognostic
Signature
To get a better view of the genomic profiles of GRGs,
mutation analyses of the GRGs were performed using the
cBioPortal database (Gao et al., 2013). We also compared the
expression of prognosis-related GRGs at the protein level
between normal and HCC tissues by analyzing the
immunohistochemistry (IHC) staining images retrieved
from the Human Protein Atlas (HPA) online database
(Uhlén et al., 2015).

Cell Culture and Transfection
Human hepatocellular carcinoma cell lines HepG2 and Huh7 were
cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Gibco,
United States) containing 10% bovine fetal serum (Gibco) and were
maintained at 37°C with 5%CO2 supply. Transient gene knockdown
was achieved by transfecting cells with specific small-interfering
RNAs using the Lipofectamine® RNAiMAX Transfection Reagent
(Invitrogen, United States).

Quantitative Real-Time PCR
Total RNAs were extracted from cells using RNAiso Plus
(Takara, Japan); then RNAs were converted into cDNA
using the PrimeScript™ RT reagent Kit (Takara, Japan). TB
Green Premix Ex Taq II reagent (Takara, Japan) was added to
the qRT-PCR reaction system according to the manufacture’s
instruction. The amplification process was carried out on the
LightCycler@480II/96 platform (Roche, Switzerland). Beta-
actin was used as an internal control, and the relative gene
expression was calculated by the 2−ΔΔCt method.

Western Blot
Cells were lysed in RIPA lysis buffer (Beyotime, China) for 30 min
on ice, followed by centrifugation at 12,000 g at 4°C for 10min. The
supernatant was harvested and protein concentration was measured
with BCA Assay Kit (Beyotime, China). Proteins were separated on
10% SDS-PAGE gels and then transferred to PVDF membranes.
After blocking in 5% skimmed milk for about 1 h at room
temperature, the membranes were incubated with primary
antibodies at 4°C overnight. The membranes were visualized in
the Bio-Rad gel image analysis system after incubation with
corresponding second antibodies on the next day. The following
primary antibodies were used in our study: anti-β-actin (A1978,
Sigma-Aldrich), anti-HK2 (22029-1-AP, Proteintech), anti-PKM2
(15822-1-AP, Proteintech).

Colony Formation Assay
Cells were seeded in six-well plates and cultured for about 14 days
to allow single clones to form, then the cells were fixed with 4%

FIGURE 4 | Significantly enriched glycolysis signaling pathways in cluster 2 based on GSEA (A-E).
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paraformaldehyde and stained with crystal violet. The colonies
were photographed under the microscope. Three independent
experiments were performed.

Migration and Invasion Assay
For the migration assay, 4 × 10̂5 cells resuspended with
serum-free medium were seeded in the upper chamber of a
24-well transwell culture plate (Corning, United States);
then, 600 µl of complete medium was added to the lower
chamber. After 48 h, cells that migrated into the lower
chamber were fixed, stained, and counted under the
microscope. For the invasion assay, the upper chambers
were coated with Matrigel (BD Biosciences, United States)
before seeding cells. After Matrigel curdled, 8 × 10̂5 cells
resuspended with serum-free medium were seeded in the
upper chamber and 600 µl of complete medium was added
into the lower chamber. Migrated cells were fixed, stained,
and counted under the microscope 48 h later.

Statistical Analysis
All data processing and statistical analyses (except for GSEA
analysis) were carried out in the R software (version 4.0.3).
Differences were considered statistically significant when p <
0.05, unless otherwise indicated.

RESULTS

Identification of Prognosis-Associated
Glycolysis-Related Genes in the
TCGA-Hepatocellular Carcinoma Cohort
We collected clinical data along with expression data of 370 HCC
patients from TCGA database. In an attempt to obtain glycolysis-
related genes, we downloaded four gene sets from the MSigDB,
including “HALLMARK_GLYCOLYSIS, KEGG_GLYCOLYSIS_
GLUCONEOGENESIS, REACTOME_GLYCOLYSIS, and
WP_GLYCOLYSIS_AND_GLUCONEOGENESIS,” repeated
genes were removed and finally 292 GRGs were extracted for
analysis. The mRNA expression levels of glycolysis regulators
were analyzed, and the differential expression profiles of
292 GRGs between HCC and normal tissues were presented in
the heatmap (Supplementary Figure S1). Univariate Cox
regression analysis further identified 58 GRGs that were
significantly correlated with HCC patients’ overall survival
(OS) (p < 0.001) (Supplementary Figure S2). The mRNA
expression difference of the screened prognostic-associated
GRGs between tumor and normal tissues is also indicated in
Figure 1. The expression levels of ADH4, GOT2, and SDC3 were
obviously higher in normal tissues than in HCC; no significant

FIGURE 5 |Construction and validation of the prognostic signature for HCC patients. (A–B) Lasso Cox regression identified 10 prognostic genes. Survival analysis
results in the training cohort (C) and the validation cohort (E). ROC curve showing the prediction accuracy of the prognostic signature in the training cohort (D) and the
validation cohort (F).
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difference was found for the HK2 expression, whereas others were
significantly upregulated in HCC.

For a deeper understanding of the biological functions of
the 58 prognostic-related GRGs, we performed GO and
KEGG pathway enrichment analysis. GO analysis showed
that major pathways enriched in the molecular function part
were NAD binding and structural constituent of nuclear pore.
The enriched terms of cellular component were “cytosol” and
“membrane.” For the biological process, the primary enriched
terms were mitotic nuclear envelope disassembly, viral
process, tRNA export from nucleus, and so on
(Figure 2A). In the KEGG pathway analysis the
prognostic-related GRGs were mainly involved in RNA
transport, carbon metabolism, biosynthesis of antibiotics,
and glycolysis/gluconeogenesis (Figure 2B).

Consensus Clustering Based on
Prognosis-Related Glycolysis-Related
Genes Correlated With Clinical
Characteristics and Survival of
Hepatocellular Carcinoma patients
We performed consensus clustering to classify 370 HCC patients
into different subgroups based on the expressions of the
58 prognostic-related GRGs. When the clustering index k = 2,
we obtained the optimal point that indicated the largest
differences between two clusters, and there was no significant
increase in the area under the CDF curve (Supplementary
Figures S3A–C), and almost no overlap was presented
between clusters when k = 2 (Figure 3A). Subsequently, a
total of 370 HCC patients were divided into two subtypes,

FIGURE 6 | Distribution of the risk score, overall survival, and gene expressions in the training cohort (A–C) and the validation cohort (D–F).
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with 304 (82.16%) patients in cluster 1 and 66 (17.84%) in cluster
2 (Figure 3A). We then analyzed the expression difference of the
prognostic-related GRGs between these two clusters and found
elevated expressions of almost all the genes in cluster 2 than in
cluster 1, except for ADH4 and GOT2 (Figure 3C). Moreover,
K-M survival analysis indicated better OS of patients in cluster
1 than those in cluster 2 (p = 0.002) (Figure 3B). The
clinicopathological characteristics of the two clusters were also
compared; the cluster 1 was closely related to a lowWHO grade (p <
0.01) and a better survival status (p < 0.05) (Figure 3C). Next, we
performed gene set enrichment analysis (GSEA) to identify the
association of the two clusters with the glycolytic function. The
results showed that multiple glycolytic pathways including
“HALLMARK_GLYCOLYSIS,” “REACTOME_GLYCOLYSIS,”
“GO_GLYCOLYSIS_PROCESS,” “MOOTHA_GLYCOLYSIS,” and
“WP_GLYCOLYSIS-AND_GLUCONEOGENESIS” were
dynamically correlated with cluster 2 (Figure 4), which is
consistent with differential mRNA expression between two clusters.
In addition, the violin plot indicated that the abundance of naïve
B cells, memory B cells and plasma cells were obviously higher in
cluster 1 than in cluster 2, and the stroma score was also higher in
cluster 2 (p = 0.011), whereas no significant difference of immune

score was observed between two clusters (Supplementary Figures
S4A–C).

Construction of a Prognostic Risk Signature
Based on the Expression Level of
Glycolysis-Related Genes
Totally 370 TCGAHCC patients were equally assigned to the training
group (n = 185) and the testing group (n = 185) to demonstrate the
clinical effects of glycolysis regulators in HCC patients. We further
conducted the LASSO regression analysis on the basis of the
prognostic-related GRGs screened by univariate Cox regression
previously (Figures 5A,B). Ultimately, ten optimal genes (ABCB6,
ANKZF1, CENPA, DLAT, G6PD, GOT2, HOMER1, ME1, PHKA2,
and STC2) were selected for establishing the prognostic risk model for
HCC patients; we calculated the risk score of each patients in the two
cohorts with the assistance of coefficients obtained from the LASSO
analysis according to the following equation: “risk score =
(0.0413*ABCB6 expression level) + (0.029*ANKZF1 expression
level) + (0.1258*CENPA expression level) + (0.0367*DLAT
expression level) + (0.005*G6PD expression level) +
(0.052*HOMER1 expression level) − (0.005*GOT2 expression level)

FIGURE 7 | Univariate andmultivariate Cox regression analyses in the two cohorts. Multivariate Cox regression analyses in the training cohort (A) and the validation
cohort (C). Univariate Cox regression analyses in the training cohort (B) and the validation cohort (D).
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+ (0.002*ME1 expression level) + (0.057*PHKA2 expression level) +
(0.015*STC2 expression level).” To verify the prognostic ability of the
ten-risk gene signature, we divided the patients into low- and high-risk
groups based on the median risk score. Survival analysis showed that
patients with low-risk scores had better overall survival than patients
with high-risk scores both in the training cohort (p < 0.001) and the
testing cohort (p = 0.014) (Figures 5C,E). We also conducted ROC
curve analyses to evaluate the predictive accuracy of our identified gene
signature. The AUC values at 1-, 3-, and 5 year were 0.859, 0.828, and
0.737 in the training cohort and 0.758, 0.610, and 0.623 in the
validation cohort (Figures 5D,F). Moreover, the distribution of the
risk scores, survival status, and expression profiles of the ten GRGs-
based signatures in two cohorts is shown in Figures 6A–F. To further
validate the prognostic efficacy of our risk model in another
independent HCC cohort, we analyzed the transcriptional data of
GSE14520 dataset and calculated the risk score of each patient.
Consistently, K-M survival analysis of the 221 patients with survival
information showed that patients with high-risk scores had poorer
overall survival (Supplementay Figure S5A). TheAUCvalues at 1-, 3-,
and 5 year were 0.573, 0.587, and 0.591 (Supplementary Figure S5B).

Risk Model as an Independent Prognostic
Indicator for Hepatocellular Carcinoma
Patients
We wondered if the prediction ability of the risk model could indicate
prognosis independently. The calculated risk score and clinical features

such as age, gender, tumor stage, and grade were enrolled for our Cox
regression analysis. We eventually chose 350 cases for analysis after
removing objects with missed clinical information. Univariate analysis
showed that the ten-gene risk score and stage were significantly
associated with shorter OS of HCC patients in both the training
cohort (p ≤ 0.001) and the validation cohort (p < 0.001) (Figures
7A,C). Next, we explored whether the ten-gene risk score could serve
as an independent indicator for the survival of HCC patients, so we
additionally performed multivariate Cox regression analyses. In the
training cohort, the risk score was independently correlated with
shorter overall survival as expected (HR = 1.135, 95% CI:
1.091–1.182, p < 0.001) (Figure 7B); similarly, the risk score could
also independently predict the prognostic status in the validation
cohort (HR = 1.033; 95% CI:1.005–1.062; p = 0.019) (Figure 7D).
Next, we assigned all patients into different subgroups according to age,
gender, grade, and tumor stage to test if the prediction ability of the risk
model could be applied to patients with different clinicopathologic
characteristics. As expected, patients with high-risk had significantly
worse overall survival than those with low-risk in all categories
(Figures 8A–H). These results suggested that our risk model could
serve as an independent prognostic indicator for HCC patients.

Effects of the Glycolysis-Related Risk
Model on Immune Cell Infiltration
To investigate if the glycolysis-related gene signature influences
immune cell infiltration, we further investigated the relationship

FIGURE 8 | Different overall survival of HCC patients between two groups are shown by classifying patients with age (A,B), gender (C,D), grade (E,F), and
stage (G,H).
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between the risk score and immune cell infiltration. As shown in
Figures 9A–I, higher abundance of B cells, mast cells, plasma
cells, monocyte cells, activated NK cells, memory CD4+ T cells,
and CD8+ T cells in the low-risk group was observed.
Consistently, infiltration of M0 macrophages and resting NK
cells was positively correlated with the risk score, which
confirmed the correlation of the risk model and the immune
microenvironment of HCC.

Signal Pathways and Cellular Processes
Related to the Prognostic Signature
To further study the effects of our prognostic risk model on
biological function, we compared the signaling pathways
differentially enriched between the high-risk and low-risk
groups by performing GSEA. We found six biological

processes/signal pathways were significantly activated in the
high-risk group, including GLYCOLYSIS, MYC_TARGETS,
HYPOXIA, DNA REPAIR, PI3K_AKT_MTOR, and
MITOTIC_SPINDLE (Figures 10A–F), almost all of which
were proved oncogenic previously.

External Database Validation of the
Prognostic Signature
With the purpose of understanding genomic characteristics of the
screened ten genes, their histological expression levels in HCC
and normal tissues were obtained from the HPA database
(Figure 11A). Differential protein expression of the ten genes
was observed between normal and tumor samples. Among them,
the protein expression of ABCB6, CENPA, DLAT, G6PD,
HOMER1, and ME1 was obviously upregulated in HCC

FIGURE 9 | Correlations between the prognostic risk score and immune cell infiltration. (A) B cells, (B) M0 macrophages, (C) activated mast cells, (D) monocyte
cells, (E) activated NK cells, (F) resting NK cells, (G) plasma cells, (H) resting CD4+ cells, and (I) CD8+ cells.
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tissues but negligible difference in ANKZF1 and STC2 expression
was observed. The expression levels of GOT2 and PHKA2 were
higher in normal tissues. Moreover, we searched the cBioPortal
database for mutation analysis, and mutation details of all the
genes are shown in Figure 11B. The results indicated that ME1
had the highest mutation rate (2.8%), while no mutation was
detected in DLAT and GOT2.

Knockdown of ME1 Inhibits Proliferation,
Migration, and Invasion of Hepatocellular
Carcinoma Cells
We chose genes that were used for risk model construction and
whose protein expressions were significantly upregulated in HCC
tissues for our experimental study. Since G6PD has been widely
reported in previous research, we did not explore it here. We
investigated that whether the expressions of ABCB6, DLAT, and
ME1 could influence the key enzymes in glycolysis. As shown in
Figures 12A,B, the mRNA expressions of HK2, PKM2, and
LDHA were obviously suppressed after either ABCB6, DLAT,
or ME1 was silenced. Consistently, decreased protein levels of
HK2 and PKM2 were observed when one of the aforementioned
three genes was knocked down (Figure 12C). Furthermore, we
wondered if the malignant activities of hepatocellular carcinoma
would be regulated by our screened genes. We found that genetic
inhibition of ME1 significantly suppressed colony numbers,
migration, and invasion of hepatocellular carcinoma cells
(Figures 12D,E).

DISCUSSION

Reprogrammed energy metabolism is indispensable in the
progression of human malignancy and has attracted increasing
attention. The Warburg effect describes that tumor cells prefer
aerobic glycolysis to support rapid biosynthesis even under
normal oxygen conditions (Hanahan and Weinberg, 2011).
Although aerobic glycolysis is inefficient to produce ATP
compared with oxidative phosphorylation, several reasons can
explain why aerobic glycolysis is able to meet the requirements of
tumor growth and survival. First of all, a molecule of glucose only
provides two molecules of NADPH and six molecules of carbon
(Opdenakker et al., 1993), while sufficient NADPH supplied by
the pentose phosphate pathway, a branch of glycolytic process, is
conducive to cell proliferation and can protect cancer cells from
oxidative stress (Pinthus et al., 2011). Second, proliferating tumor
cells utilize glycolytic process to induce lactic acid secretion, and
lactic acid helps to maintain cellular quiescence and protects
tumor cells from drug killing (Yeh and Ramaswamy, 2015),
which is one of the main causes of therapeutic resistance.
Third, proliferating cancer cells require a continuous supply of
macromolecules, and aerobic glycolysis is conducive to providing
abundant necessary substrates for macromolecules in a hypoxic,
low-sugar, and acidic tumor microenvironment (Shuch et al.,
2013; Jiang et al., 2021). Finally, glycolysis enhances cancer cell
proliferation with the help of a high ATP/ADP ratio (Christofk
et al., 2008; DeBerardinis et al., 2008). The Warburg effect was
first found in rat liver carcinoma in the 1920s, after then, growing

FIGURE 10 | Enrichment plots of the Gene Ontology annotation from GSEA. GSEA analysis showing (A) glycolysis, (B)Myc-targets, (C) hypoxia, (D) DNA repair,
and (E) PI3K-AKT-MTOR signaling. (F) Mitotic spindles were closely correlated with the high-risk phenotype.
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evidence indicated that glycolysis could facilitate malignant
transitions of HCC by producing the metabolites required for
cell proliferation and migration (Feng et al., 2020). Targeting the
glycolytic process may offer a therapeutic strategy to suppress
HCC progression. Thus, we tried to identify prognostic
biomarkers related to glycolysis during the treatment of
patients with HCC.

In this regard, bioinformatic approaches were used to identify
possible prognostic risk signature, we screened out 58 prognosis-
related GRGs through univariate Cox analysis and divided HCC
patients into two subtypes according to the GRGs expression. We
found that cluster 2 affected immune cell infiltration of HCC and
was closely associated with glycolytic process. We further
screened ten genes to construct the prognostic risk model
from 58 prognosis-related GRGs by performing LASSO
regression analyses, and the risk model is valid to distinguish

the HCC patients into high- and low-risk group in both the
training and validation cohorts. And the risk score could
distinctly distinguish overall survival despite clinicopathologic
characteristics. Moreover, the risk score model for HCC patients
could serve as an independent prognostic indicator.

The 10 prognostic risk genes identified in our study included
ABCB6,ANKZF1, CENPA,DLAT,G6PD,GOT2,HOMER1,ME1,
PHKA2, and STC2. Among these genes, the ABCB6 expression
was upregulated in HCC, and its high expression was correlated
with poor prognosis (Polireddy et al., 2011). Another
bioinformatic analysis identified CENPA as one of the
prognostic-related GRGs in clear cell renal cell carcinoma (Wu
et al., 2020). Additionally, HCC tissues displayed higher
expression of CENPA mRNA than adjacent normal tissues,
and a low level of CENPA was correlated with better OS
(Zhang et al., 2020). G6PD, an important rate-limiting enzyme

FIGURE 11 | Analysis of the protein expression and gene mutation of the genes in the risk signature. (A) Immunohistochemistry staining data in HCC tumor tissues
and normal tissues from The Human Protein Atlas. (B) Mutations of the 10 genes in HCC patients.
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of the pentose phosphate, was essential for tumor growth (Tang
et al., 2015). GOT2 was proven to be related to the metabolism of
tumor cells (Wang et al., 2021), low GOT2 expression was
detected in liver tumor tissues, and its downregulation was
correlated with worse prognosis (Liu et al., 2020). These
findings were in agreement with our established risk model in
this study. The ME1 expression could induce lactate production
with reduced oxygen consumption (Liao et al., 2018); its high
expression also indicated poor survival (Wen et al., 2015). Studies
showed that STC2 transcript was upregulated in HCC tissues, and
higher serum STC2 level was correlated with larger tumor size
and shorter OS and DFS of HCC patients (Wang et al., 2012;

Zhang et al., 2014). Moreover, STC2 could promote glycolytic
process in nasopharyngeal carcinoma (Li et al., 2021). Another
study identified ANKZF1 and DLAT as glycolysis-related genes to
predict the survival in colon adenocarcinoma patients (Chen
et al., 2020). However, the significance of HOMER1 and
PHKA2 in glycolysis and in evaluating the prognosis of
hepatocellular carcinoma patients remains unknown, and our
current study suggested a possible role of them in glycolysis and
HCC progression.

HCC is inflammation-associated, and its immune
microenvironment reflects the immune infiltration. An immune-
suppressive TME supports tumor progression and metastasis via

FIGURE 12 | Knockdown of ME1 suppressed the malignant phenotype of hepatocellular carcinoma cells. (A) Knockdown efficiency of siRNA was assessed by
qRT-PCR. (B) Relative mRNA expressions of HK2, PKM, and LDHA after knocking down ABCB6, DLAT, and ME1. (C) Protein expressions of HK2 and PKM2 after
knocking down ABCB6, DLAT, andME1. (D)Reduced colony numbers in ME1-silenced cells compared with control cells. (E)Different migration and invasion capacities
between ME1-silenced cells and control cells. *p < 0.05, **p < 0.01, and ***p < 0.001. The data are presented as means ± SD of three independent experiments.
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building a symbiotic relationship with tumor cells (Fu et al., 2019).
The influence of the tumor immune microenvironment by the
glycolytic process still remains undefined; our analysis revealed
that the infiltration of B cells, mast cells, monocytes, plasma cells,
activated NK cells, memory CD4+ T cells, and CD8+ T cells was
significantly increased in the low-risk group, while resting NK cell
infiltration was positively correlated with the risk score. B cells are
regarded as the main effector cells in humoral immune response; it
could promote tumor recession through secreting cytokines,
enhancing cytotoxic T cell response to directly kill cancer cells
(Tokunaga et al., 2019). Monocytes show dichotomous roles in
tumor development depending on its plasticity in response to
environmental stimuli; they could induce immune tolerance or
active antigen-presenting cells under specified conditions (Ugel
et al., 2021). Plasma cells are recognized as end-stage products of
B-cell differentiation, which both provide humoral immunity and
store immunological memory (Radbruch et al., 2006). Interestingly,
mast cells possess dual roles in tumor progression, and they have the
potential to induce tumor angiogenesis, metastasis, and invasion; on
the contrary, they are also capable of shaping adaptive immune
responses to tumors (Marichal et al., 2013). NK cells are innate
lymphocytes that are responsible for immune surveillance and
clearance of multiple nearby cells expressing malignant
transformation-related surface markers (Shimasaki et al., 2020).
Memory CD4+ T cells are likely to control and maintain
protective immune responses (Stockinger et al., 2006). CD8+

T cells could recognize and kill cancer cells directly, which are
the core ingredients for anti-tumor immunity (Iwahori, 2020). The
immune cell infiltration landscape indicated that the glycolysis-
related risk model could reflect the tumor immune
microenvironment; the low-risk group showed favorable immune
infiltrates, which is consistent with better overall survival.

Admittedly, there are several limitations to our study. First,
although we verified the prognostic risk model using half of the
samples in TCGA HCC cohort and in another independent
HCC cohort (GSE14520), a large-scale multicenter cohort
would allow for stronger validation. Second, further clinical

and in vivo experimental evidence is required to unravel the
molecular mechanisms of prognostic significance of our risk
predictive model. Third, the development and progression of
HCC are influenced by many other factors, so it may have an
inherent defect by using gene expression data to construct a
predictive model.
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