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Abstract
Meta-analysis is a widely used statistical technique. The simplicity of the calculations

required when performing conventional meta-analyses belies the parametric nature of

the assumptions that justify them. In particular, the normal distribution is extensively,

and often implicitly, assumed. Here, we review how the normal distribution is used in

meta-analysis. We discuss when the normal distribution is likely to be adequate and

also when it should be avoided. We discuss alternative and more advanced methods

that make less use of the normal distribution. We conclude that statistical methods

that make fewer normality assumptions should be considered more often in prac-

tice. In general, statisticians and applied analysts should understand the assumptions

made by their statistical analyses. They should also be able to defend these assump-

tions. Our hope is that this article will foster a greater appreciation of the extent to

which assumptions involving the normal distribution are made in statistical methods

for meta-analysis. We also hope that this article will stimulate further discussion and

methodological work.
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1 INTRODUCTION

Meta-analysis is commonly used in medical statistics, and other application areas, and now requires little introduction. Simple
statistical methods are typically used to perform meta-analyses, where pooled estimates are calculated as weighted averages.
The simplicity of the calculations involved in these methods conceals the distributional assumptions that justify them. Here, we
will focus on the normal distribution in order to examine how this distribution is extensively, and often implicitly, used in meta-
analysis. For the majority of the paper, we will focus on the standard methods for meta-analysis that we anticipate that many
readers will already be familiar with. For the less initiated reader, the textbook by Borenstein, Hedges, Higgins, and Rothstein
(2009) provides a particularly clear and accessible introduction to this type of methodology.

Let us begin by considering perhaps the simplest possible case. Here, we have a set of independent studies, each of which
provides an estimate of a particular treatment effect (or another quantity of interest). We will refer to the estimate from the 𝑖-th
study as 𝑌𝑖, 𝑖 = 1,… , 𝑘. The common-effect model (sometimes referred to as the fixed-effect model) assumes, to within-study
sampling error, that all studies independently estimate the same true effect 𝜇. Using 𝜖𝑖 to denote this statistical error from the
𝑖-th study, we can write the common-effect model as 𝑌𝑖 = 𝜇 + 𝜖𝑖, where E(𝜖𝑖) = 0 and Var(𝜖𝑖) = 𝜎2

𝑖
. The conventional pooled
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estimate is then 𝜇̂ =
∑

𝑤𝑖𝑌𝑖∕
∑

𝑤𝑖, where 𝑤𝑖 is the ‘weight’ of the 𝑖-th study. These study weights are the reciprocals of the
estimated variances of the 𝜖𝑖. We will denote these estimated within-study variances as 𝑠2

𝑖
, so that 𝑤𝑖 = 𝑠−2

𝑖
. Standard formulae

are available for calculating the 𝑠2
𝑖
, and so the weights 𝑤𝑖, for a wide range of effects and outcomes used in meta-analysis

(Borenstein et al., 2009). At this point, we ask the reader to stop and reflect on a question before reading further: ‘Have we
implicitly used the normal distribution yet?'

Although we have proceeded no further than presenting the pooled estimate under the common-effect model (standard errors,
confidence intervals and so on are conspicuous by their absence), it is not entirely clear whether or not the normal distribution
was used when presenting the common-effect pooled estimate. The answer to our question is subtle, and depends upon the
justification that was used to motivate this particular estimate. Ignoring, for now, the uncertainty in the within-study variances
𝑠2
𝑖
, and so the weights 𝑤𝑖 = 𝑠−2

𝑖
, the estimate 𝜇̂ =

∑
𝑤𝑖𝑌𝑖∕

∑
𝑤𝑖 could be justified on the grounds that, if we are to estimate

𝜇̂ using a linear combination of the 𝑌𝑖, then the use of any other set of weights that provide an unbiased estimate would result
in a pooled estimate of 𝜇 with greater variance under the common-effect model. Although some very weak assumptions are
required in this justification, such as assuming that the 𝑌𝑖 have finite variance, this argument for presenting 𝜇̂ =

∑
𝑤𝑖𝑌𝑖∕

∑
𝑤𝑖

does not require any particular distributional assumption. However, if we assume that the 𝜖𝑖, and so the 𝑌𝑖, are normally and
independently distributed, we can then write the common-effect model as 𝑌𝑖 ∼ 𝑁(𝜇, 𝜎2

𝑖
). Then the estimate 𝜇̂ =

∑
𝑤𝑖𝑌𝑖∕

∑
𝑤𝑖

can also be justified on the grounds that it is the maximum likelihood estimate. In the absence of normality, however, estimators
that are not weighted means may have better properties.

Matters are even more subtle under the random-effects model (Ades, Lu, & Higgins, 2005; DerSimonian & Laird, 1986, 2015;
Higgins, Thompson, & Spiegelhalter, 2009; Riley, Higgins, & Deeks, 2011). This model is a generalisation of the common-effect
model that allows for between-study heterogeneity in the true underlying study effects. For the moment avoiding making dis-
tributional assumptions, we can write the random effects model as 𝑌𝑖 = 𝜇𝑖 + 𝜖𝑖, where all 𝜇𝑖 and 𝜖𝑖 are independent. Here,
E(𝜇𝑖) = 𝜇 and Var(𝜇𝑖) = 𝜏2, where 𝜏2 is the between-study variance. If 𝜏2 = 0, so that all 𝜇𝑖 = 𝜇, the random effects model
collapses to the common-effect model. If we assume that both the 𝜇𝑖 and the 𝜖𝑖 are normally distributed, we can then write the
random-effects model as 𝑌𝑖 ∼ 𝑁(𝜇, 𝜎2

𝑖
+ 𝜏2). The normal random-effects model is often motivated by the hierarchical frame-

work 𝑌𝑖|𝜇𝑖 ∼ 𝑁(𝜇𝑖, 𝜎2𝑖 ) and 𝜇𝑖 ∼ 𝑁(𝜇, 𝜏2), where we refer to these two distributions as the within-study and the between-study
distributions, respectively. The standard approach for making approximate inferences for 𝜇 under the random effects model ini-
tially estimates 𝜏2 and then treats this parameter as if fixed and known, so that 𝑤𝑖 in the calculation above then becomes the
reciprocal of the total estimated (within-study plus the between-study) variances, 𝑤∗

𝑖
= 1∕(𝑠2

𝑖
+ 𝜏2). Questions relating to the

use of the normal distribution are now more complicated because many estimators of 𝜏2 are possible (Veroniki et al., 2016).
Some, but not all, of these estimators assume that the 𝜇𝑖 and 𝜖𝑖 are normally distributed. Hence, when presenting the random
effects model's estimate of 𝜇, the answer to the question ‘Have we used the normal distribution yet?’ depends on the type of
estimation method used for 𝜏2 and the justification for using the random effects weights 𝑤∗

𝑖
.

The main point from this introduction is that issues relating to the use, or avoidance, of the normal distribution in meta-
analysis are more immediate, and complicated, than is necessarily obvious. The overall aims of this paper are to explore how
the normal distribution is used in meta-analysis and to consider the case for using it less often. The rest of the paper is set out
as follows. In Section 2, we present two contrasting real examples that will motivate our discussion further. In Section 3, we
discuss the within-study distributional assumptions in the conventional ‘two-stage’ approach to meta-analysis. In Section 4,
we discuss the use of the normal distribution to describe the variation between studies and in Section 5, we discuss the use
of this distribution when making statistical inferences. In Section 6, we summarise eight main assumptions that are made by
conventional methods for meta-analysis and we postulate a ‘hierarchy of sensitivity’ for a variety of forms of statistical inferences
to normality assumptions. We examine the implications of alternative models, that make less use of the normal distribution, for
our examples in Section 7. We conclude with some discussion in Section 8.

2 TWO REAL EXAMPLES

In this section, we present two contrasting real examples that will be used to exemplify the issues. The first of these involves
individual-level comparative binary outcome data, which can be presented as a series of 2 × 2 tables. The second example
involves individual-level continuous outcome data that is highly skew and where the individual patient data are available. In this
section, we will perform standard ‘two-stage’ analyses that meta-analysts will be familiar with. See Section 5 for further details
concerning how the calculations in the second stage are performed, where we also discuss how the normal distribution can be
used to justify them. Later sections will also discuss the shortcomings of the conventional methods used in these two examples.
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T A B L E 1 Example 1: Inferences for 𝜇

Analysis Estimate 95% Confidence interval
REML (Section 2.1) 0.65 [0.25, 1.05]

DL (Section 2.1) 0.65 [0.25, 1.05]

PM (Section 2.1) 0.65 [0.25, 1.05]

Logistic regression (Section 7) 0.71 [0.32, 1.10]

DL and PM indicate that the DerSimonian and Laird, and Paule Mandel estimators of 𝜏2 have been used, respectively

2.1 Example one: Aversive smoking for smoking cessation
Our first example is taken from the Cochrane Review Aversive smoking for smoking cessation (Hajek & Stead, 2001). Here,
aversion therapy is intended to invoke an association between the stimulus of smoking with an unpleasant stimulus in order
to encourage trial participants to abstain from smoking. We examine the first meta-analysis from this review (Analysis 1.1).
This compares the effectiveness of rapid smoking as an unpleasant stimulus with ‘attention placebo’ control, where the control
is roughly matched for therapist contact (Hajek & Stead, 2001). The outcome of interest is the binary outcome ‘abstinence at
long-term follow-up’ and the odds ratio was used to measure the treatment effect. This example involves 12 studies that include a
total of 536 participants. The data exhibit little evidence of between-study heterogeneity (the Cochrane Review reports a 𝜒2 test
statistic for heterogeneity of 6.87 on 11 degrees of freedom, and so a P-value of 0.81, and 𝐼2 = 0%). An alternative common-
effect Mantel–Haenszel method was used in the Cochrane Review to estimate a pooled odds ratio of 2.01 (with a 95% confidence
interval from 1.36 to 2.95). An odds ratio that is greater than one indicates a treatment benefit and so we infer that rapid smoking
is more effective for this outcome than the control.

Here, we re-analyse these data using the random effects model and the conventional pooling method described in the intro-
duction. We use the R package metafor (Viechtbauer, 2010) to perform two-stage analyses of both example datasets. In the first
stage, we calculate the study-specific outcome data. Here, the 𝑌𝑖 are the estimated log odds ratios. We used the escalc func-
tion from the metafor package to compute these estimates and their within-study variances. One of the studies contains a zero
count and we used the defaults of escalc to deal with this, and so to avoid infinite log odds ratios: halves were added to all
counts in this particular study, but other studies were not modified in this way. Defining 𝐴𝑖 and 𝐵𝑖 to be the number of events
(abstinence) and nonevents in the treatment group of the 𝑖-th study, and 𝐶𝑖 and 𝐷𝑖 to be these same quantities in the correspond-
ing control group, in the first stage escalc uses the standard formulae (Borenstein et al., 2009) to calculate the outcome data
𝑌𝑖 = log((𝐴𝑖∕𝐵𝑖)∕(𝐶𝑖∕𝐷𝑖)) and 𝑠2

𝑖
= 1∕𝐴𝑖 + 1∕𝐵𝑖 + 1∕𝐶𝑖 + 1∕𝐷𝑖.

In the second stage, we take these outcome data and perform the pooling. The restricted maximum likelihood (REML), the
DerSimonian and Laird (1986) and the Paule and Mandel (1982) estimators all provide 𝜏2 = 0. Hence, all three of the resulting
random effects meta-analyses collapse to the same common-effect analysis. This common-effect analysis provides 𝜇̂ = 0.65,
where 𝜇 represents the population average log odds ratio, with standard error of 0.20. The corresponding 95% confidence
interval is [0.25, 1.05] and the results for this example are summarised in Table 1. Transforming the estimate and confidence
interval to the odds ratio scale gives a pooled odds-ratio of 1.92 (with a 95% confidence interval from 1.29 to 2.85). These results
are in broad agreement with those from the Cochrane Review.

Although all three point estimates of 𝜏2 are zero, the uncertainty in this estimate is usually considerable in practice. A 95%
confidence interval for 𝜏2, using the 𝑄 profile method (Knapp, Biggerstaff, & Hartung, 2006; Viechtbauer, 2007), is [0, 0.90].
This confidence interval indicates that 𝜏2 is quite imprecisely estimated. The point estimate of 𝜏2 lies at the lower bound of the
confidence interval because it is zero and negative values for this parameter are not allowed. The test for heterogeneity provides
a P-value of 0.81, which is in agreement with the Cochrane Review. A forest plot, on the log-odds scale, is shown in Figure 1.

2.2 Example two: The association between smoking and C-reactive protein level
Our second example is also related to smoking, but this time we are interested in how participants’ smoking status may influence
their blood concentration of C-reactive protein (CRP). These data were provided by the Emerging Risk Factors Collaboration
(2007). In our dataset, we have individual participant data from 40 studies and a total of 170,201 participants. Our interest lies
in the association between participants' smoking status and CRP level, adjusted for age and sex. In the first stage, we perform
standard linear regressions to estimate study-specific adjusted associations of smoking status with CRP level and so calculate
the outcome data for the meta-analysis. However, the participants' CRP levels were found to be highly skewed, and so it was not
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RE Model

−2 0 2 4 6

Log Odds Ratio

Tongas 1979 (N=35)

Lichtenstein 1973 (N=20)

Lando 1978 (N=83)

Lando 1976 (N=25)

Lando 1975 (N=32)

Hall 1984 (N=135)

Flaxman 1978 (N=64)

Erickson 1983 (N=17)

Elliot 1978 (N=37)

Curtis 1976 (N=26)

Brandon 1987 (N=38)

Barkley 1977 (N=24)

1.42 [−0.95, 3.80]

1.25 [−0.60, 3.10]

0.58 [−0.40, 1.55]

0.69 [−1.00, 2.39]

0.15 [−1.62, 1.93]

0.37 [−0.34, 1.09]

0.89 [−0.20, 1.99]

2.64 [ 0.13, 5.15]

0.41 [−1.51, 2.32]

0.18 [−1.95, 2.31]

0.41 [−0.88, 1.69]

2.91 [−0.12, 5.94]

0.65 [ 0.25, 1.05]

F I G U R E 1 Forest plot for example one: Aversive smoking for smoking cessation. The results are presented as being from the random effects

model, but this collapses to a common-effect model for all three estimators of 𝜏2. The number of participants in each study is indicated by 𝑁

surprising that residual plots of linear regressions of CRP level on smoking status, age, and sex indicated very poor model fits.
Hence, the CRP levels were log-transformed prior to analysis and so we fitted 40 study-specific linear models of the form:

log(CRP𝑗) = 𝛼0 + 𝛼1age𝑗 + 𝛼2sex𝑗 + 𝛽smoke𝑗 + 𝜖𝑗 (1)

for 𝑗 = 1, 2,… 𝑛, where 𝑛 is the number of participants in the study in question, age𝑗 is the 𝑗-th participant's age and sex𝑗 and
smoke𝑗 are indicators for sex (1 for female; 0 for male) and current smoking status (1 for a current smoker; 0 otherwise). In this
model, 𝛽 is the parameter of primary interest, where exp(𝛽) measures the proportional increase in CRP level that is associated
with smoking, controlling for age and sex. In studies where all participants are the same sex, controlling for sex is inherent in
the design and neither required nor possible in the analysis, so in these studies, the term 𝛼2sex𝑗 was omitted from model (1).

In this meta-analysis, the 40 study-specific estimates of 𝛽 provide the outcome data 𝑌𝑖 for the meta-analysis, and their within-
study variances 𝑠2

𝑖
are obtained when fitting the standard linear regressions shown in (1). A common practical difficulty when

fitting study-specific regression models such as (1) occurs when studies collect different sets of covariates, but this is not an
issue here.

In the second stage, these outcome data were pooled in random effects meta-analyses. The REML, the DerSimonian and
Laird (1986) and the Paule and Mandel (1982) estimators are very similar (𝜏2 =0.021, 0.019 and 0.021 to three decimal places,
respectively). The REML analysis provides 𝜇̂ = 0.29, where 𝜇 represents the population average regression coefficient 𝛽, with
standard error of 0.025. The corresponding 95% confidence interval is [0.24, 0.34]. Exponentiating this pooled estimate and
its confidence interval, to make inferences about the pooled proportional increase in CRP level associated with smoking status,
provides a point estimate for exp𝜇 of 1.33 with 95% confidence interval (1.27, 1.40) and the results for this example are sum-
marised in Table 2. This analysis suggests that, on average, smoking is associated with an increase in CRP level of about one
third. A 95% confidence interval for 𝜏2, using the Q profile method (Knapp et al., 2006; Viechtbauer, 2007), is [0.013, 0.037].
The test for heterogeneity provides a P-value of less than 0.0001, which indicates that there is strong evidence of between-study
heterogeneity. This is reflected in the 𝐼2 = 93% statistic reported by metafor in the REML analysis. A forest plot from the REML
analysis is shown in Figure 2.

These two examples will serve to illustrate a wide variety of issues that provide the focus of the rest of the paper. We will begin
by discussing the within-study distributional assumptions. Although the same types of conventional within-study assumptions
were made when analysing both examples, our concerns about these assumptions are different in these two applications because
of their contrasting nature.
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T A B L E 2 Example 2: Inferences for 𝜇

Analysis Estimate 95% Confidence interval
REML (Section 2.2) 0.29 [0.24, 0.34]

DL (Section 2.2) 0.29 [0.24, 0.33]

PM (Section 2.2) 0.29 [0.24, 0.34]

T distribution (Section 7) 0.29 [0.24, 0.34]

Mixture distribution (Section 7) 0.29 [0.23, 0.33]

DL and PM indicate that the DerSimonian and Laird and Paule Mandel estimators of 𝜏2 have been used, respectively

RE Model

−0.4 −0.2 0 0.2 0.4 0.6 0.8

Beta

Study 40 (N=5,452)
Study 39 (N=23,287)
Study 38 (N=7,326)
Study 37 (N=3,808)
Study 36 (N=10,715)
Study 35 (N=926)
Study 34 (N=1,673)
Study 33 (N=1,996)
Study 32 (N=4,437)
Study 31 (N=14,929)
Study 30 (N=1,410)
Study 29 (N=1,219)
Study 28 (N=3,180)
Study 27 (N=5,819)
Study 26 (N=1,324)
Study 25 (N=2,359)
Study 24 (N=740)
Study 23 (N=3,150)
Study 22 (N=1,265)
Study 21 (N=873)
Study 20 (N=6,722)
Study 19 (N=437)
Study 18 (N=2,020)
Study 17 (N=525)
Study 16 (N=2,577)
Study 15 (N=559)
Study 14 (N=2,713)
Study 13 (N=1,150)
Study 12 (N=4,738)
Study 11 (N=15,902)
Study 10 (N=741)
Study 9 (N=7,772)
Study 8 (N=4,211)
Study 7 (N=816)
Study 6 (N=2,652)
Study 5 (N=817)
Study 4 (N=3,490)
Study 3 (N=1,532)
Study 2 (N=9,326)
Study 1 (N=5,613)

 0.59 [ 0.53, 0.64]
 0.17 [ 0.12, 0.22]
 0.39 [ 0.32, 0.46]
 0.22 [ 0.11, 0.32]
 0.53 [ 0.44, 0.63]
 0.24 [ 0.08, 0.40]

 0.18 [−0.11, 0.48]
 0.07 [−0.02, 0.16]
 0.32 [ 0.25, 0.40]
 0.35 [ 0.32, 0.39]
 0.25 [ 0.10, 0.41]
 0.26 [ 0.13, 0.39]
 0.09 [ 0.01, 0.18]
 0.40 [ 0.34, 0.46]

 0.12 [−0.04, 0.28]
 0.07 [ 0.00, 0.13]
 0.21 [ 0.01, 0.41]
 0.31 [ 0.22, 0.40]
 0.63 [ 0.49, 0.76]
 0.62 [ 0.46, 0.77]
 0.26 [ 0.18, 0.33]

 0.09 [−0.09, 0.28]
 0.45 [ 0.36, 0.54]

 0.18 [−0.07, 0.42]
−0.11 [−0.26, 0.04]

 0.38 [ 0.10, 0.67]
 0.23 [ 0.10, 0.36]
 0.28 [ 0.13, 0.43]
 0.30 [ 0.21, 0.38]
 0.34 [ 0.28, 0.39]
 0.40 [ 0.22, 0.58]
 0.17 [ 0.14, 0.20]
 0.30 [ 0.21, 0.39]
 0.40 [ 0.26, 0.55]
 0.31 [ 0.17, 0.44]

 0.11 [−0.04, 0.26]
 0.30 [ 0.18, 0.42]
 0.17 [ 0.06, 0.28]
 0.24 [ 0.18, 0.30]
 0.49 [ 0.41, 0.57]

 0.29 [ 0.24, 0.34]

F I G U R E 2 Forest plot for example two: The association between smoking and C-reactive protein level. The results are from the

random-effects model where 𝜏2 is estimated using REML. The numbers of participants in each study are indicated by 𝑁

3 WITHIN-STUDY DISTRIBUTIONAL ASSUMPTIONS

As illustrated by our two examples above, in the first stage of conventional meta-analyses we compute 𝑌𝑖 and their within-
study variances 𝑠2

𝑖
. In this section, we will discuss the implications of making within-study distributional assumptions, that is,

assumptions about the distributions 𝑌𝑖|𝜇𝑖, and we will also discuss ways to avoid these assumptions. From the description of the
random-effects model in the introduction, if we refrain from assuming within-study normality under this model, we can write
this conditional distribution as 𝑌𝑖 = 𝜇𝑖 + 𝜖𝑖, where 𝜇𝑖 is treated as fixed, E(𝜖𝑖) = 0 and Var(𝜖𝑖) = 𝜎2

𝑖
; otherwise the distributional

form of 𝜖𝑖 is unspecified. If we further assume within-study normality, then we have 𝜖𝑖 ∼ 𝑁(0, 𝜎2
𝑖
), so that 𝑌𝑖|𝜇𝑖 ∼ 𝑁(𝜇𝑖, 𝜎2𝑖 ).

Under the common-effect model, we have the stronger statements that 𝑌𝑖 = 𝜇 + 𝜖𝑖 and 𝑌𝑖 ∼ 𝑁(𝜇, 𝜎2
𝑖
).
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Within-study assumptions are therefore similar under both the common-effect and the random-effects models, the only
difference being whether or not we assume that all 𝜇𝑖 are the same. Approximating the 𝜎2

𝑖
with the within-study variances,

𝑠2
𝑖

is standard practice in both common-effect and random-effects meta-analysis. However, we will see below that ignoring
the uncertainty in the 𝑠2

𝑖
can have serious implications for the accuracy of the resulting statistical inference. The within-study

assumptions made in conventional meta-analysis make three ‘hidden assumptions’. The first two of these hidden assumptions
are not intrinsically related to within-study normality, but all three assumptions are implied by the conventional within-study
approximations used in the analyses in Section 2.

3.1 Hidden assumption one: The estimates are unbiased
Perhaps the most basic assumption is that every 𝑌𝑖 provides an unbiased estimate of the corresponding 𝜇𝑖. This is because
our assumptions imply E(𝑌𝑖|𝜇𝑖) = 𝜇𝑖, where 𝜇𝑖 = 𝜇 in the common-effect model. Even in the already idealised situation where
publication biases or other types of internal biases are assumed to be absent (these types of bias are beyond the scope of this
paper), this assumption is often patently false. For example, in Section 2.1 we are likely to be willing to assume that the studies
provide approximately unbiased estimates of the probabilities of an event in the two treatment groups. However, even then the
𝑌𝑖 will be biased because of what we will refer to as ‘transformation bias’. This is because the logit transformation is non-linear.
This type of bias is completely ignored in the analysis presented in Section 2.1 and may be serious in small studies.

3.2 Hidden assumption two: The within-study variances are known
As explained above, standard methodologies ignore the uncertainty in the within-study variances and so take 𝜎2

𝑖
to be 𝑠2

𝑖
when

modelling 𝑌𝑖|𝜇𝑖. This approximation is acceptable in large studies and we would hope that it is generally appreciated that this
approximation is used. It is also worth noting that for most outcomes, the formulae for the within-study variances are themselves
merely an approximation, for example the within-study variances of the log odds ratios in our first example are based on a first-
order Taylor series expansion and hence are asymptotically correct.

Jackson (2008) discusses the formal justification for approximating the 𝜎2
𝑖

with their estimates 𝑠2
𝑖

when using normal within-
study approximations. Briefly, assuming that the studies are sufficiently large, the central limit theorem (CLT) is used to justify
the use of the normal distributions and then a further approximation is used to take the variances as known.

There is also a more subtle hidden assumption made in conventional meta-analysis methodologies: the correlation between
the 𝑌𝑖 and their within-study variances 𝑠2

𝑖
is ignored. This is because, as explained above, the uncertainty in the 𝑠2

𝑖
is completely

ignored. For some forms of outcome data, such as an unadjusted sample mean, under the assumption that the raw data are
normally distributed, this association can be safely neglected. However, this type of assumption will only ever be approximately
true in practice. This concern is potentially serious in our first example in Section 2.1 because the studies are small and the 𝑌𝑖 and
𝑠2
𝑖

are correlated because they are calculated from the same data and there is no statistical theory that ensures their independence.
For example, from the formulae 𝑌𝑖 = log((𝐴𝑖∕𝐵𝑖)∕(𝐶𝑖∕𝐷𝑖)) and 𝑠2

𝑖
= 1∕𝐴𝑖 + 1∕𝐵𝑖 + 1∕𝐶𝑖 + 1∕𝐷𝑖, an unusually low value of

𝐵𝑖 yields large values of both 𝑌𝑖 and 𝑠2
𝑖
.

3.3 Hidden assumption three: The shape of the normal distribution is assumed, not just the first
two moments
A further hidden assumption is that, when assuming within-study normality, we further make a statement about the shape of
the within-study distribution. For example, the common-effect pooled estimate is the maximum likelihood estimate as a direct
consequence of the normality assumptions, and other maximum likelihood estimates would in general be obtained if different
distributional assumptions were made. Our first example raises obvious concerns about this assumption, because the studies
are too small for the within-study normal approximations to be anything other than crude. A further consequence of assuming
within-study normality is that we can then justify presenting the study-specific confidence intervals shown in Figures 1 and 2.

The use of the 𝑠2
𝑖

as if they are the 𝜎2
𝑖

(hidden assumption two) raises concerns about this final hidden assumption. This
is because if we assume 𝑌𝑖|𝜇𝑖 ∼ 𝑁(𝜇𝑖, 𝜎2𝑖 ), as in both the common-effect and random-effects models, then we do not have
𝑌𝑖|𝜇𝑖 ∼ 𝑁(𝜇𝑖, 𝑠2𝑖 ); even in the simplest possible situation where the 𝑌𝑖 are sample means of normally distributed observations
then, from standard textbook theory, the t distribution is required to make inferences for 𝜇𝑖 in situations where the population
variance is unknown. However, we suggest that in practice the assumptions 𝑌𝑖|𝜇𝑖 ∼ 𝑁(𝜇𝑖, 𝜎2𝑖 ) and 𝑌𝑖|𝜇𝑖 ∼ 𝑁(𝜇𝑖, 𝑠2𝑖 ) should be
both regarded as statistical approximations, where the second assumption is slightly cruder than the first. If the 𝜎2

𝑖
were truly

known, then the second hidden assumption would be true but standard methods could still be criticised because of concerns
relating to the other two hidden assumptions.
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The widespread use of within-study approximations is perhaps one of the biggest concerns about the current standard practice
in meta-analysis. See Stijnen, Hamza, and Özdemir (2010) for a good discussion of why approximate within-study normal
approximations ‘might not always be appropriate’. Critiques of the within-study modelling in conventional two-stage meta-
analyses can be found. Hoaglin (2015) argues that this is an ‘incorrect (but convenient) assumption’. Shuster and Walker (2016)
more directly identify one of the concerns that we have described and they state that the ‘variance estimate for an individual-
study-level log of the relative risk is associated with the direction of the sampling error, inducing bias’.

3.4 Methods that explicitly address the hidden assumptions
There have been various attempts to ‘fix-up’ particular aspects of the two-stage approach by better allowing for the nature
of the 𝑌𝑖 and their within-study variances 𝑠2

𝑖
. For example, Chang, Waternaux, and Lipsitz (2001) and Emerson, Hoaglin, and

Mosteller (1993) consider using weighted average proportions of events, rather than study-specific proportions, when computing
the within-study variances. This modification of the conventional methodology directly addresses the concern that the 𝑌𝑖 and 𝑠2

𝑖

are correlated when the individual-level data are binary (see Section 3.2).
Böhning et al. (2002) and Malzahn, Böhning, and Holling (2000) develop methodologies for estimating the between-study

variance that acknowledge that the within-study variances depend on unknown parameters. This type of methodology is there-
fore directly motivated by the second hidden assumption (Section 3.2). Kulinskaya, Dollinger, and Bjørkestøl (2011a, 2011b);
Kulinskaya and Dollinger (2015) develop methods for testing for the presence of heterogeneity (see also Section 5) that avoid
making idealised assumptions about the 𝑌𝑖 and 𝑠2

𝑖
. Briefly, Kulinskaya et al. (2011a, 2011b); Kulinskaya and Dollinger (2015)

use gamma approximations for the distribution of the conventional 𝑄 statistic (see Section 5.3), under the null hypothesis that
𝜏2 = 0, where the parameters of this gamma approximation are calculated using more accurate and realistic distributions. These
methods are therefore motivated by all three hidden assumptions (Sections 3.1–3.3). A closely related idea is to use non-normal
within-study distributions that better describe the nature of the study outcome data in likelihood-based analyses. Iyengar and
Greenhouse (1988) assume within-study t distributions in their two-stage common-effect meta-analyses (and include models for
publication bias but do not allow for between-study heterogeneity).

Stijnen et al. (2010) suggest using the non-central hypergeometric distribution in one-stage random-effects analyses, to
describe two by two tables where the odds ratio is the outcome measure used, as in our first example. These methods explicitly
avoid using the normal distribution and so are perhaps most directly motivated by the third hidden assumption (Section 3.3),
but these methods also address the other two hidden assumptions. Generalised linear mixed models (GLMMs), that facilitate
a one-stage approach (Böhning, Mylona, & Kimber, 2015; Simmonds & Higgins, 2016; Stijnen, Hamza, and Özdemir, 2010),
appear to be the primary proposal for avoiding within-study approximations when performing random-effects meta-analyses.
Generalised linear models (such as logistic regressions) can be used to fit the corresponding common-effect analyses. However,
the most appropriate types of GLMM to use in applied work remains an open question. For example, for comparative binary
outcome data (as in our first example in Section 2.1), Simmonds and Higgins (2016) suggest fitting the GLMM

𝑔(𝜋𝑖𝑗) = 𝜙𝑖 + 𝜇𝑖𝑥𝑖𝑗 , (2)

where 𝜋𝑖𝑗 is the probability of an event in the 𝑗-th treatment group (𝑗 = 1: treatment; 𝑗 = 0 control) in the 𝑖-th study, 𝜙𝑖 is
the baseline risk of the event in the 𝑖-th study, 𝜇𝑖 ∼ 𝑁(𝜇, 𝜏2), 𝑥𝑖𝑗 is an indicator for the treatment group and 𝑔(⋅) is the link
function. For example, by taking 𝑔(⋅) to be the logit function, 𝜇 and 𝜏2 then represent the average log-odds ratio and the cor-
responding between-study variance, so that these two parameters represent the same quantities estimated in Section 2.1 using
more conventional methodology. An issue with model (2) is that, because there is a separate fixed effect 𝜙𝑖 for every study,
the number of parameters increases at the same rate as the number of studies. Hence, the usual asymptotic theory of maximum
likelihood does not apply (Jackson, Law, Stijnen, Viechtbauer, & White, 2018). One way to avoid this difficulty is to assume that
𝜙𝑖 ∼ 𝑁(𝜙, 𝜎2), but this is equivalent to a reduced form of the joint bivariate model for the control and treatment event probabil-
ities (van Houwelingen, Arends, & Stijnen, 2002), which allows the recovery of inter-trial information (Senn, 2010) which can
lead to bias (Jackson et al., 2018). See Jackson et al. (2018) for some examples with substantial between-study heterogeneity
that illustrate the options available to the analyst.

3.5 Current practice
Although methodologies that avoid using normal approximations within studies have been proposed, these more sophisticated
methods are rarely seen in application. There are however two main exceptions to this. Firstly, individual patient data
meta-analyses can be performed as both one- and two-stage analyses, where one-stage analyses avoid the use of within-study
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approximations. It is perhaps for this reason that one-stage analyses of Individual Patient Data (IPD) are frequently used,
although other motivations include the desire to examine covariate effects and non-linear associations. One-stage meta-analyses
of IPD have been suggested for a variety of outcomes (e.g. Tudur Smith, Williamson, & Marson, 2005; Turner, Omar, Yang,
Goldstein, & Thompson, 2000; Whitehead et al., 2001). Section 2.2 provides an example of a two-stage IPD meta-analysis.

Secondly, the analysis of diagnostic test studies is often performed using the bivariate framework described by Harbord and
Whiting (2009). In its simplest form, this methodology uses intercept only logistic regressions for the within-study models (and
so uses a GLMM) that avoid the use of within-study approximations. This methodology has proved popular because diagnostic
test studies are often small and the sensitivities and specificities that are described by this type of model are often close to one,
so that within-study normal approximations would then be especially crude.

These two types of application provide concrete examples of the fact that meta-analysts are willing to adopt methods that avoid
the use of within-study normal approximations. Random-effects implementations further require distributional assumptions
between studies, and we discuss this issue next.

4 BETWEEN-STUDY DISTRIBUTIONAL ASSUMPTIONS

We now turn our attention to distributional assumptions made between studies, that is the distribution of the 𝜇𝑖. The situation is
trivial, and so made entirely clear, under the common-effect model. This model makes the strong, and usually difficult to defend,
assumption that all 𝜇𝑖 = 𝜇. Hence, we will restrict our discussion to random-effects models.

As explained above, whilst refraining from making a distributional assumption, we assume that E(𝜇𝑖) = 𝜇 and Var(𝜇𝑖) = 𝜏2.
Upon further assuming between-study normality, we have 𝜇𝑖 ∼ 𝑁(𝜇, 𝜏2). Hence important, and perhaps sometimes overlooked,
between-study distributional assumptions are made in random-effects meta-analyses. Even in situations where between-study
normality assumptions can be avoided (e.g. as Higgins et al. (2009) point out, the usual confidence interval for 𝜇 from the
DerSimonian and Laird, 1986, method ‘will be valid approximately in a distribution-free context when there are many studies'),
the assumption that all 𝜇𝑖 share a common mean is required. However, many implementations of the random-effects model
further require the assumption that the 𝜇𝑖 are normally distributed, for example estimators of 𝜏2 that make this assumption may
be used. In many respects, the implications of the conventional between-study distributional assumption, 𝜇𝑖 ∼ 𝑁(𝜇, 𝜏2), are
similar to those discussed in the context of the three hidden within-study assumptions. For example, we assume that E(𝜇𝑖) = 𝜇

to avoid bias (see also Section 3.1) and we assume the shape of the normal distribution (see also Section 3.3).
The issues surrounding between-study normality assumptions are however somewhat different to those within-studies. This

is emphasised by Baker and Jackson (2008) who note that, the CLT ‘does not really imply anything for the distribution of the
random effect. We can only appeal to the CLT here with the vague idea that the unknown source of variation between studies
might be the sum of several factors’. Hardy and Thompson (1998) suggest some practical strategies for assessing this assumption,
but to perform well these methods require more studies than are usually available. These strategies include informal inspections
of normal probability plots and more formal hypothesis testing procedures.

4.1 Methods that explicitly avoid making between-study normality assumptions
Likelihood based methods (including Bayesian analyses) that assume non-normal random-effects distributions have been sug-
gested (Baker and Jackson, 2008; Baker & Jackson, 2016; Beath, 2014; Lee & Thompson, 2008). These alternative random-
effects distributions are usually motivated by the presence of outliers or other unusual sets of study results. When outliers are
present, skew or heavy tailed random-effects distributions down-weight them and can produce results that are more robust.
However, a difficulty is that sophisticated models for the random-effects are hard to identify. A related idea is presented by
Gumedze and Jackson (2011), who remain in the framework of assuming normally distributed random-effects, but allow some
observations to possess more variance so that they are down-weighted.

Our second example raises some legitimate concerns about the between-study distributional assumptions made in conven-
tional random-effects meta-analyses. Here there is considerable between-study heterogeneity, where from Figure 2 it is evident
that studies in this population provide markedly different findings. There would therefore seem to be some potential for alterna-
tive random-effects distributions to provide substantively different conclusions.

To summarise this discussion, the between-study normality assumption has occasionally been challenged and alternative
random-effects distributions have been proposed. However, this issue has not received as much attention as normality assump-
tions within-studies has (see Section 3).
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5 NORMAL ASSUMPTIONS WHEN MAKING INFERENCES

The previous two sections have addressed the assumptions made in the statistical modelling. We will now focus on the use of
the normal distribution when making inferences.

5.1 Inferences for 𝝁

When discussing the implications of the conventional within-study distributional assumptions, we focused on bias (Section 3.1),
treating the within-study variances as known (Section 3.2) and the shape of the normal distribution (Section 3.3). The implica-
tions of the distributional assumptions for 𝜇̂ when making inferences for 𝜇 are similar but these three assumptions now apply
to the pooled effect. As in Section 3, we will examine each of these assumptions in turn. The hidden within-study assumptions
described in Sections 3.1–3.3 all impact on the plausibility of the hidden assumptions for 𝜇̂ that follow: if the hidden within-
study assumptions described above are correct or, more realistically, are approximately true then the hidden assumptions for 𝜇̂
are more likely to be reasonable.

5.1.1 Hidden assumption one: The pooled estimate is unbiased
We have already explained that the pooled estimates are 𝜇̂ =

∑
𝑤𝑖𝑌𝑖∕

∑
𝑤𝑖 and 𝜇̂ =

∑
𝑤∗

𝑖
𝑌𝑖∕

∑
𝑤∗

𝑖
under the common-effect

and random-effects models, respectively. Conventional methods assume that these pooled estimates are unbiased. This assump-
tion will raise concerns in situations where the 𝑌𝑖 are biased (see Section 3.1) and/or where the 𝑌𝑖 and 𝑠2

𝑖
are correlated (see

Section 3.2). Correlation between the outcome data 𝑌𝑖 and the within-study variances 𝑠2
𝑖

is a particular source of concern under
the common-effect model because it will directly cause correlation between 𝑌𝑖 and the study weights 𝑤𝑖. This correlation could
result in notable bias in 𝜇̂, even in situations where the 𝑌𝑖 are themselves unbiased. Correlation between the 𝑌𝑖 and the study
weights 𝑤∗

𝑖
is also a concern under the random-effects model. However as 𝜏2 becomes larger, the weights 𝑤∗

𝑖
become more

similar, so that any association between the 𝑌𝑖 and 𝑤∗
𝑖

becomes increasingly diluted. However, the assumption that the pooled
estimate is unbiased is a potential cause for concern in all conventional meta-analyses.

5.1.2 Hidden assumption two: The variance of the pooled estimate is known
Standard methods for common-effect and random-effects meta-analysis assume that the variance of the pooled estimates is
known. This is because the conventional methodologies ignore the uncertainty in the 𝑠2

𝑖
and random-effects analyses further

ignore the uncertainty in 𝜏2. Hence in the second stage of analysis when pooling the 𝑌𝑖, we approximate 𝜎2
𝑖

with 𝑠2
𝑖

and, in
random-effects meta-analyses, 𝜏2 with 𝜏2. These approximations greatly simplify the analysis: the standard error of 𝜇̂ can then

be shown to be SE(𝜇̂) = 1∕
√∑

𝑤𝑖 and SE(𝜇̂) = 1∕
√∑

𝑤∗
𝑖

under the common-effect and random-effects models, respectively.

These approximate standard errors can be justified without resorting to using normal distributions provided that, under the
random-effects model, estimates of 𝜏2 are not motivated in this way. However, these standard errors are not truly known, and
the accuracy of the statistical approximations that take them to be known depends on the precision of the estimated variance
components that are used to calculate them. For accurate inference, we therefore require reasonably large studies so that the
𝑠2
𝑖

are precisely estimated in both common-effect and random-effects meta-analyses. In random-effects meta-analyses, we also
require a reasonably large number of studies in order to estimate 𝜏2 with acceptable precision. In practice, the number of studies
is often small and so this hidden assumption is likely to be a greater concern in random-effects meta-analyses.

5.1.3 Hidden assumption three: The shape of the normal distribution is assumed for the pooled
estimate, not just the first two moments
If we make all three hidden assumptions, then confidence intervals and hypothesis tests for 𝜇 immediately follow from very
simple calculations using the properties of the normal distribution. Defining 𝑍 to be an appropriate critical value of the standard
normal distribution, we calculate confidence intervals as 𝜇̂ ±𝑍 × SE(𝜇̂). In Section 2, we took 𝑍 = 1.96 to compute 95%
confidence intervals. The reader may note that this is the first time that we have not allowed any room for avoiding a statement
that involves the normal distribution when using conventional methods.

In order to attempt to account for the uncertainty in 𝜏2 in random-effects meta-analyses, Higgins et al. (2009) argue that a ‘t
distribution should provide a better basis than a normal distribution’. However, as they point out, determining effective degrees
of freedom is difficult. This is because, the random-effects model deviates from the usual textbook situations where the use of
the t distribution can be properly justified. Furthermore, this standard theory requires normality assumptions and so we suspect
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that any rigorous justification of the use of the t distribution for this purpose is likely to make some form of normality assumption
for 𝜇̂.

Although the implications of all three hidden assumptions for 𝜇̂ are a potential cause of concern when performing common-
effect and random-effects meta-analyses, the use of the normal distribution when calculating confidence intervals and performing
hypothesis tests under the random-effects model has received considerable attention. We therefore address this issue in the section
immediately below. The concerns that we will describe when calculating confidence intervals also apply when performing
hypothesis tests. For example, actual coverage probabilities of 95% confidence intervals that are less than the nominal level also
manifest themselves as hypothesis tests at the 5% significance level that are anti-conservative.

5.2 Concerns about the use of the normal distribution when calculating confidence intervals for 𝝁
Matters are simple under the common-effect model, where normal within-study distributional assumptions imply that 𝜇̂ is also
normally distributed. However, the standard result that justifies this (that a linear combination of independent normals is also
normally distributed) requires that the coefficients in the linear combination are constants, whereas the common-effect weights,
𝑤𝑖 = 𝑠−2

𝑖
, are estimates. This is ignored in the conventional modelling (see Section 3). Hence, even under the common-effect

model, the assumption that 𝜇̂ is normally distributed is more objectionable than is necessarily immediately obvious. Hence,
there is the concern that confidence intervals may also be inaccurate under the common-effect model.

Many concerns have been expressed that relate directly to the accuracy of the usual random-effects approach for calculating
confidence intervals for 𝜇 and/or the corresponding hypothesis tests (e.g. Brockwell & Gordon, 2001; Follmann & Proschan,
1999; Guolo & Varin, 2017; IntHout, Ioannidis, & Borm, 2014). This has resulted in a variety of alternative methodologies (e.g.
Bellio & Guolo, 2016; Biggerstaff & Tweedie, 1997; Böhning et al., 2002; Guolo, 2012; Hardy & Thompson, 1996; Hartung,
1999; Hartung & Knapp, 2001a, and Hartung & Knapp, 2001b; Malzahn et al., 2000; Noma, 2011; Sidik & Jonkman, 2002).
Of these suggestions, the Hartung and Knapp modification, which was also independently suggested by Sidik and Jonkman, is
probably the best known and simplest idea, and this particular method has been advocated for widespread use (IntHout et al.,
2014). However, concerns about this alternative methodology have also been raised (Jackson, Law, Rücker, & Schwarzer, 2017;
Wiksten, Rücker, & Schwarzer 2016), mainly on the grounds that this modification can result in analyses that are not conservative
compared to a common-effect analysis. The main source of concern about using the usual random-effects methodology appears
to be that there are often too few studies to estimate 𝜏2 with reasonable precision. Bayesian analyses with informative priors
(e.g. Pullenayegum, 2011; Rhodes, Turner, & Higgins, 2015) have been proposed as a way of resolving this difficulty, but come
at the price of making additional assumptions via these evidence-based priors.

In order to analytically explore the accuracy of conventional confidence intervals for 𝜇 under the random-effects model,
Jackson and Bowden (2009) derive the distribution of a standardised version of 𝜇̂ under the very idealised setting where all
within-study variances are not only known exactly, but are also identical. By deriving a distribution of 𝜇̂ under the random-
effects model, their investigation acknowledges that 𝜇̂ is not truly normally distributed with known variance. This is clearly an
artificial scenario, but it is sufficient to show that the conventional normal approximation for 𝜇̂ under this model is not very
accurate unless the number of studies is large (Jackson and Bowden suggest that ten studies is adequate). Jackson and Bowden
(2009) assume that the DerSimonian and Laird (1986) estimator of 𝜏2 is used in their analysis, but Jackson et al. (2017) have
subsequently shown that this estimator is equivalent to both the REML and Paule-Mandel estimators in this setting. Zeng and
Lin (2015) also assume that the DerSimonian and Laird estimator is used and established, for finite 𝑘, that 𝜇̂ does not tend
towards normality under the random-effects model as the study sizes become large. One reason for assuming normality within
(see Section 3) and between (see Section 4) studies might be to justify using the usual normal approximation for 𝜇̂ with small
𝑘, with the intuition that we are then likely to require fewer studies to assume that 𝜇̂ is approximately normally distributed.
However, the analyses presented by Jackson and Bowden (2009) and Zeng and Lin (2015) are sufficient to establish that, even
in idealised situations where the random-effects model is true, we require sufficiently large numbers of studies to take 𝜇̂ to be
approximately normally distributed under the random-effects model.

5.3 Inferences for 𝝉
𝟐

Point estimates of 𝜏2 can be obtained under the random-effects model using a variety of estimators and three of these were used
in Section 2. See Veroniki et al. (2016) for full details of these estimators that can be broadly split into two categories: moment
based or likelihood based (where the Bayesian approaches are placed in the second category). Subject to the issues and concerns
raised about the within-study modelling described in the previous section, moment-based estimators of 𝜏2 are valid without the
necessity to make normality assumptions. However, the moment-based estimators possess no optimality properties and all the
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estimators described by Veroniki et al. (2016) make the first and second hidden assumptions (Sections 3.1 and 3.2). By assuming
within- and between-study normality, the more statistically principled, and in some senses optimal, likelihood-based methods
described by Veroniki et al. (2016) can then be properly justified. Returning to the analyses in Section 2, this means that, strictly
speaking, the REML analyses required normality assumptions both within- and between-studies, whereas the DerSimonian and
Laird (1986) and the Paule and Mandel (1982) analyses did not. However Kontopantelis and Reeves (2012a, 2012b) show that
likelihood-based analyses are robust to departures from normality. Hence, the REML analysis could be justified on the grounds
that it is the preferred estimator of 𝜏2 if the normality assumptions are true, and is also approximately valid if these assumptions
are false.

Further inferences for 𝜏2 were also provided in Section 2, specifically hypothesis tests for the presence of heterogeneity were
performed, confidence interval for 𝜏2 were computed and 𝐼2 statistics were quoted. All of these inferences can be derived from
‘𝑄 statistics or pivots’. We define

𝑄(𝜏2) =
∑

𝑤𝑖(𝜏2)(𝑌𝑖 − 𝜇̂(𝜏2))2, (3)

where 𝑤𝑖(𝜏2) = 1∕(𝑠2
𝑖
+ 𝜏2) and 𝜇̂(𝜏2) =

∑
𝑤𝑖(𝜏2)𝑌𝑖∕

∑
𝑤𝑖(𝜏2); this notation emphasises the dependence of the calculations

on 𝜏2. The conventional 𝑄 statistic is then given as 𝑄 = 𝑄(0). The standard test for heterogeneity computes 𝑄 and compares
this to a critical value of a 𝜒2

𝑘−1 distribution; if 𝑄 is large in relation to the 𝜒2
𝑘−1 distribution, then the test is taken to mean

that there is evidence of between-study heterogeneity. This test requires the usual within-study normality assumptions and so
all three hidden assumptions in Sections 3.1–3.3 are a cause of concern when performing this test. Confidence intervals for 𝜏2

from the 𝑄 profile method (Knapp et al., 2006; Viechtbauer, 2007) contain all values of 𝜏2 such that 𝑄(𝜏2) lies between critical
values from the 𝜒2

𝑘−1 distribution. In Section 2, equal-tailed 95% confidence intervals for 𝜏2 were provided, so that the 0.025

and 0.975 quantiles were used. If no 𝜏2 provides 𝑄(𝜏2) in this range, then this is because the data are very homogeneous (Knapp
et al., 2006; Viechtbauer, 2007) and either a null confidence set or the interval (0, 0) = {0} is usually given. This is because the
study results are even more homogeneous than expected under the assumption that 𝜏2 = 0.

Finally, the 𝐼2 statistic (Higgins and Thompson, 2002), loosely speaking, describes the proportion of the variation in the out-
come data that is attributed to between-study heterogeneity. This statistic can be expressed as 𝐼2 = 𝜏2∕(𝑠2 + 𝜏2), and expressed
as a percentage, where 𝑠2 is a ‘typical’ or ‘representative’ within-study variance (Higgins and Thompson, 2002). If the DerSi-
monian and Laird estimator of 𝜏2 is used, then we have 𝐼2 = (𝑄 − (𝑘 − 1))∕𝑄, where negative 𝐼2 are truncated to zero. The 𝐼2

statistic is also subject to some of the issues that we discuss, in particular the within-study variances are used in computation
and taken as fixed and known when interpreting the magnitude of this statistic. However, the 𝐼2 statistic does not introduce any
new normality assumptions.

These methods for making inferences for 𝜏2 under the random-effects model have been criticised on the grounds that the
assumptions required by them may not be sufficiently accurate. Hoaglin (2016a) and Kulinskaya et al. (2011a, 2011b); Kulin-
skaya and Dollinger (2015) clarify that the usual distributional assumptions for the 𝑄 statistic described above rely on idealised
normality assumptions where, in particular, the within-study distributions are treated as if known. As Hoaglin (2016a, 2017)
point out, the approximate nature of our distributional assumptions when computing 𝑄 can also have unfortunate implications
for the DerSimonian and Laird (1986) estimator and the 𝐼2 statistic. The 𝑄 profile method used for our examples requires the
assumption that 𝑌𝑖 ∼ 𝑁(𝜇, 𝜎2

𝑖
+ 𝜏2), where the 𝜎2

𝑖
are approximated by their estimates 𝑠2

𝑖
. This is so that, from equation (3), the

distributional assumption 𝑄(𝜏2) ∼ 𝜒2
𝑘−1 is correct. These comments also apply to closely related methods based on alternative

𝑄 statistics (Jackson, 2013; Jackson, Turner, Rhodes, & Viechtbauer, 2014) and also an approximate version of this methodol-
ogy (Jackson, Bowden, & Baker, 2015) that has been criticised for this and other reasons (Hoaglin, 2016b). Likelihood-based
methods for computing confidence intervals for 𝜏2 (Biggerstaff & Tweedie, 1997) also make these assumptions. The overall
impression therefore is that methods for making further inferences for the magnitude of the between-study variance, such as
computing 𝐼2 statistics and confidence intervals for 𝜏2, can be anticipated to be especially sensitive to departures from the
assumptions typically made in meta-analyses.

5.4 The prediction interval for the true effect in a new study
A further type of statistical inference, that has become advocated for routine use and so we include it in our discussion, is a
prediction interval for the true effect in a new study, 𝜇new, from a random-effects meta-analysis. Higgins et al. (2009) and Riley
et al. (2011) suggest the prediction interval

𝜇̂ ± 𝑡𝑘−2
√
𝜏2 + SE(𝜇̂)2, (4)
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T A B L E 3 Eight main assumptions made by conventional methods for meta-analysis

Assumption Most serious implication for 𝝁 if false Especially dubious when
1. 𝑌𝑖 unbiased for 𝜇𝑖 (Section 3.1) Biased pooled estimate Sparse non-continuous data

2. Variances 𝑠2
𝑖

known (Section 3.2) Inaccurate variance for 𝜇̂ Small studies, sparse or skew data

3. 𝑌𝑖|𝜇𝑖 normal (Section 3.3) Inaccurate likelihood-based inference Small studies, sparse or skew data

4. 𝜇𝑖 normal (Section 4) Inaccurate likelihood-based inference Outlying studies are present

5. 𝜇̂ unbiased for 𝜇 (Section 5.1.1) Biased pooled estimate 𝑌𝑖 biased for 𝜇𝑖

6. Variance of 𝜇̂ known (Section 5.1.2) Inaccurate confidence interval Few studies present; imprecise 𝑠2
𝑖

7. 𝜇̂ normal (Section 5.1.3) Inaccurate confidence interval Few studies present

8. 𝜇new normal (Section 5.4) Inaccurate prediction interval Outlying studies are present

where 𝜇̂ is the estimate under the random-effects model, SE(𝜇̂) is the corresponding standard error under this model and 𝑡𝑘−2 is
a critical value from a 𝑡 distribution with (𝑘 − 2) degrees of freedom; for a 95% prediction, interval 𝑡𝑘−2 is taken to be the 0.975
quantile.

If 𝜏2 and the 𝑠2
𝑖

are treated as known, then the prediction interval in (4) can be motivated by assuming that 𝜇new − 𝜇̂ ∼
𝑁(0, 𝜏2 + SE(𝜇̂)2), where 𝜇̂ and SE(𝜇̂) are calculated under the random-effects model using weights of 1∕(𝑠2

𝑖
+ 𝜏2). As explained

by Higgins et al. (2009), this follows from assuming that 𝜇new ∼ 𝑁(𝜇, 𝜏2), where 𝜇new is independent of 𝜇̂. Under these

assumptions, the appropriate prediction interval is therefore 𝜇̂ ±𝑍
√
𝜏2 + SE(𝜇̂)2. Higgins et al. (2009) and Riley et al. (2011)

proposed the ad hoc modification of using a 𝑡𝑘−2 distribution to allow for the uncertainty in 𝜏2, which gives rise to (4). This
prediction interval is therefore motivated by normality assumptions, but is not fully justified by them. Partlett and Riley (2017)
show that the prediction interval (4) has some poor properties even when the random-effects model is true. More pertinent to our
discussion is that Lee and Thompson (2008) conclude that predictive distributions are sensitive to the distributional assumptions
for the random effects. We can therefore anticipate that criticisms of the prediction interval (4), on the grounds that it is sensitive
to the normality assumptions that motivate it, are likely to arise in the future.

The key additional distributional assumption required by the prediction interval in (4) is 𝜇new ∼ 𝑁(𝜇, 𝜏2). This assumption
relates to the true effect in a hypothetical new study and so is not testable. Some form of distributional assumption for 𝜇new
is needed to compute a prediction interval and it is, at best, very difficult to motivate the use of any other distribution for this
purpose. Despite this, meta-analysts should be clear that this additional assumption is made when computing prediction intervals.

6 A SUMMARY OF EIGHT MAIN ASSUMPTIONS MADE BY
CONVENTIONAL METHODS FOR META-ANALYSIS

Our discussion has identified eight main assumptions that are made by conventional methods for meta-analysis. We summarise
these assumptions in Table 3. Here, we focus on the assumptions required to make inferences about the average effect (including
the prediction interval for the true effect in a new study) rather than those required to make further inferences for 𝜏2. This is
because, the inferences for 𝜇 are of primary interest and the types of further inferences for 𝜏2 described in Section 5.3 are often
not used in application.

The first three assumptions in Table 3 can be avoided using one-stage analyses and we return to this issue below. These are
the hidden within-study assumptions described in Section 3. The fourth assumption is the between-study normality assumption
described in Section 4. Assumptions 5, 6 and 7 are the three hidden assumptions made for the pooled estimate 𝜇̂ described in
Section 5.1. Assumption 8 is the assumption made for the true effect in a new study that is made when computing a prediction
interval described in Section 5.4. Assumptions 1 and 2 are important because they have direct implications for the assumptions
made about the pooled estimate. Assumptions 3 and 4 are important because together they imply that the 𝑌𝑖 are normally dis-
tributed and so, for example are made in likelihood-based analyses. The main consequence of assumptions 1–4 is that they have
direct implications for the accuracy of assumptions 5, 6 and 7 that are required when making inferences about 𝜇. The plausibility
of the assumptions in Table 3 therefore cannot be considered in isolation of each other. The extent to which assumptions 4 and 8
are a source of concern is likely to depend on the context of the studies. This is because in Section 4, we found that alternatives
to assuming between-study normality have usually been motivated by the presence of outliers; in Table 3, we have indicated
that this assumption is especially dubious when they are present. Hence, subject-specific knowledge relating to the potential for
unusual study results in the application area may inform the extent of concerns relating to these two assumptions.
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Table 3 is intended to serve as a pertinent reminder of the key assumptions required in standard meta-analyses and we encour-
age applied analysts to consider how appropriate these assumptions are in their applications. The risk of bias tool (Higgins &
Green, 2011) has become a popular approach for assessing the potential for bias due to the nature of the included studies in
systematic reviews. Table 3 could be used to form the basis of an analogous ‘risk of compromised statistical inference tool’.
As in the usual risk of bias tool, green, yellow and red symbols could be used for each assumption to identify whether or not
it is a serious source of concern. For example, in random-effects meta-analyses with two or three very large studies, the first
three assumptions (that relate to within-study approximations) are unlikely to be a serious source of concern, but assumption 7
will be.

6.1 A postulated hierarchy of sensitivity to normality assumptions
We have examined how several different forms of statistical inference may be sensitive to normality assumptions. In this section,
we postulate a hierarchy of sensitivity to these assumptions in order to indicate which of these inferences can be anticipated to
be the most, and least, sensitive. Our hope is that this will enable applied analysts to focus on the most serious concerns.

In terms of making inferences for 𝜇, which are of primary interest, we propose the following hierarchy of statistical inferences
that goes from the least, to the most, sensitive to departures from normality assumptions. As explained above, for both the
common-effect and random-effects models, the point estimate 𝜇̂ is simply a weighted average of the 𝑌𝑖. We suggest that this
is likely to be the least sensitive type of inference to departures from normality assumptions. The standard error of 𝜇̂ can, in
many instances, be entirely motivated without making distributional assumptions and so we suggest that this is also likely to be
insensitive in this way.

Conventional confidence intervals for 𝜇 rely on the assumption that 𝜇̂ is normally distributed. We can therefore anticipate
that confidence intervals for 𝜇 will be more sensitive to departures from normality assumptions than the corresponding point
estimates and standard errors. Prediction intervals will clearly be sensitive to the assumed distribution for the random-effects
when notable heterogeneity is present. This is because different probability distributions, despite having the same variance, can
provide substantially different critical values. Hence, we anticipate that prediction intervals will in general be the most sensitive
form of inference to departures from normality assumptions.

7 ILLUSTRATION AND DISCUSSION OF ALTERNATIVE METHODOLOGIES

Our first example nicely illustrates a situation where normal within-study approximations, and in particular the first two hidden
assumptions (Sections 3.1 and 3.2) made in conventional meta-analysis methodologies, are best avoided. This is because the
studies are small and the outcome is binary so that conventional within-study approximations for the empirical log-odds ratios
cannot be expected to be very accurate.

As explained in Section 3.4, GLMMs are the primary proposal for avoiding the use of within-study approximations when
fitting random-effects models. For comparative binary data this class of models includes (2) and a variety of other possibilities
(Böhning et al., 2015; Jackson et al., 2018; Stijnen et al., 2010; Turner et al., 2000). However, as also explained in Section 3.4,
determining which particular GLMM is most suitable in practice remains an open question. Fortunately for illustrative purposes,
matters are less complicated for our first example, in the sense that all three fitted conventional random-effects models analyses in
Section 2.1 collapse to a common-effect meta-analysis. Hence, an obvious way to avoid the use of within-study approximations
when analysing our first example is to fit a common-effect version of model (2) where 𝜏2 = 0, or equivalently where 𝜇𝑖 = 𝜇

for all 𝑖. This standard logistic regression provides 𝜇̂ = 0.71 with a standard error of 0.20. The corresponding 95% confidence
interval is (0.32, 1.10) and the results for this example are summarised in Table 1. Transforming the estimate and confidence
interval to the odds ratio scale gives a pooled odds ratio of 2.04 (with a 95% confidence interval from 1.38 to 3.01).

Comparing these results to those in Section 2.1 (𝜇̂ = 0.65 with standard error 0.20), this analysis is in reasonable agreement
with the conventional analysis presented above. Given the small study sizes, and so the crudeness of the conventional methods, it
is perhaps surprising that the inferences from the logistic regression are so similar. However, a slightly larger estimate of treatment
effect is obtained from the logistic regression, indicating that the within-study approximations used in conventional methods have
diluted the estimated treatment effect. The alternative common-effect Mantel-Haenszel method used in the Cochrane Review
has also slightly, but to a lesser extent, diluted the estimated treatment effect.

One challenge when using more advanced methodologies, such as GLMMs, for comparative binary data is that inferences on
the risk difference scale might be desired where models or computational algorithms have not implemented the identity link.
In such instances, we suggest fitting a model using a logistic link and then choosing a representative baseline probability for
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the control group (such as the sample mean). Inferences for the risk difference, using this baseline control group probability,
can then be made using the output from the fitted logistic model. Some statistical expertise is needed when adopting such an
approach.

Our second example illustrates a situation where the within-study approximations made by the standard analyses in Section 2.2
are of much less concern. Here, the studies are large and the (transformed) individual outcome data appear to be approximately
normally distributed. Hence, within-study normal approximations are acceptable. There are 40 studies so that 𝜇̂ can perfectly
reasonably be taken to be approximately normally distributed. Furthermore 𝜏2 is well identified, so that taking the standard
error of 𝜇̂ as known is a reasonable approximation. One-stage analyses of the IPD described in Section 2.2 may be considered
desirable for a variety of reasons (Riley, Lambert, & Abo-Zaid, 2010; their box 1), but the within-study assumptions made by
the conventional meta-analyses of our second example are reasonable.

However, as noted in Section 4, there is the concern that highly heterogeneous meta-analysis datasets like our second example
may be sensitive to the distributional assumptions made for the random-effects. This was assessed using the R package metaplus.
This package can fit the conventional random-effects model and also two alternative random-effects models. In the first of these
alternative models, it is assumed that the random-effects follow a t distribution (Baker & Jackson, 2008), and in the second a
mixture of normals is instead assumed (Beath, 2014). The metaplus package fits these three models using maximum likelihood
and computes confidence intervals for 𝜇 using the profile likelihood (Hardy & Thompson, 1996). For all three random-effects
models (the conventional one and both alternative models), the inferences were however very similar to those in Section 2.2
(Table 2). Our second example does not appear to be sensitive to the assumed distributional form of the random effects. This
further strengthens the case for the acceptability of our analyses in Section 2.2. See Böhning, Dietz, and Schlattmann (1998) for
a discussion of further models and methods where mixture distributions are used, both in the context of meta-analysis and in
other application areas.

In application, it is common that aggregate-level continuous data, rather than IPD, are available in situations where interest
lies in means or mean differences. Here, the observation that the outcome data at the individual level are highly skew in some
studies may discourage analysts from including these data when using standard methodologies. This is because the within-study
approximations used in these methods might then be thought to be inappropriate. However, in many instances this concern
may not be warranted, because conventional meta-analysis models assume that the 𝑌𝑖, not the individual-specific responses, is
normally distributed. The CLT can often be used to motivate normal approximations for the 𝑌𝑖 in situations where the individual-
level data are skew. It should however be noted that larger samples are generally needed to invoke the CLT when data are skew,
so we would not wish to encourage a blasé attitude to this issue. Extending this theme a little further, in our study-specific linear
regressions shown in (1), we log-transformed the outcome data so that these models better describe our data. However least
squares estimates, and their standard errors, are valid without making normality assumptions. If interest lies in mean differences
between CRP levels, then linear models as shown in (1), but using untransformed CRP𝑗 as outcome data, could therefore be
fitted and the resulting estimates and within-study variances used in the second stage of conventional meta-analyses. However,
there are two important caveats. First, substantial efficiency could be gained by using a skew error distribution in the study-
specific linear regressions for the untransformed CRP levels. Secondly, we would not advocate one-stage analyses that involve
fitting GLMMs that assume normality to highly skew data. This is because fitting a such a mis-specified model has the potential
to result in unreliable estimates of the random-effects distribution and hence misleading inference. Further research is needed
to determine the problems associated with fitting mis-specified random-effects models in one-stage IPD meta-analyses. An
alternative strategy is to proceed in a similar manner as for binary outcome data described above, where the analysis is performed
using log-transformed data and inferences on the untransformed scale are made by using a representative baseline value.

8 DISCUSSION

We began by asking ‘When should meta-analysis avoid making hidden normality assumptions?’ To fully understand the issues
relating to this question most of our energies have however gone into describing how this distribution is extensively used. A
vague answer to our question, that we suspect that most readers will be able to agree with, is ‘Meta-analysis should avoid
using the normal distribution more often than it currently does’. In particular, it would seem reasonable to conclude that the
conventional within-study assumptions are often especially crude and should be more often explicitly avoided. However, more
research is needed to understand the situations where the current conventional approach is inadequate and the implications of
using alternative methodologies. Our work leaves many important issues unresolved and there are important questions that we
do not claim to have the answers to. For example, in some meta-analyses many or even most studies may be large enough for the
three hidden assumptions in Section 3 to be regarded as of little concern. However, it will also often be the case that some studies
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are much smaller than this, and hence there is the obvious question of ‘Does it matter if just a few of the studies are too small
to imply accurate within-study normal approximations?’ This may be of particular concern in random-effects meta-analyses,
because small studies will in general contribute more relative weight in these analyses than in common-effect analyses. Until
issues such as these are better understood, one practical use of the methodologies described in Section 7 is that they could be
used as sensitivity analyses that assess how robust standard analyses are to the normality assumptions that they make.

We have two main suggestions for how current practice might improve. First, one-stage analyses, that assume GLMMs, avoid
making often crude approximations within studies and are a feasible alternative that should be considered more often. Methods
based on the profile likelihood (Böhning, Kuhnert, & Rattanasiri, 2008) should also be considered more often in application. In
principle, more sophisticated and alternative methods such as these are preferable, especially in situations where some, many or
all studies are small, or the event of interest is rare (Böhning et al., 2015). However, GLMMs do not avoid all uses of the normal
distribution and they also present alternative issues and difficulties (Jackson et al., 2018). Second, we suggest that a standard
framework for communicating concerns about the statistical methods used in meta-analyses would be a useful next step. The
expectation that systematic reviewers will attempt some form of study quality or risk of bias assessment is now widely accepted,
but meta-analyses are usually presented with scant explanation of the extent to which the approximations and assumptions
made by them are accurate and reasonable. We suspect that if consumers of systematic reviews were better informed about the
accuracy of the approximations used in statistical methods for meta-analysis, then the demand for more sophisticated statistical
methods would increase. Table 3 could provide a basis for communicating these issues, but we accept that this just provides a
starting point for discussion rather than a concrete recommendation for a ‘risk of compromised statistical inference tool’ (RoCSI
tool). Such a tool may provide a useful framework for statisticians and consumers to better understand the assumptions made
by meta-analyses and so facilitate a stronger defence of these assumptions in situations where conventional meta-analyses are
appropriate.

There are many practical issues when performing meta-analyses, including the determination of appropriate inclusion criterion
and extracting suitable outcome data. These issues will in many instances be far more important than the subtle statistical
nuances of the modelling that provide our focus. In applications it may well often be that concerns about inaccuracy of normal
approximations are simply ‘the least of our problems’. Despite this, a better understanding of the assumptions made in meta-
analyses, when these assumptions are acceptable and what might be done when they are not, would be beneficial for many
involved in performing systematic reviews.

We have focused on the simplest methods for meta-analysis. Matters are even more complicated in multivariate meta-analyses
(Jackson, Riley, & White, 2011; van Houwelingen et al., 2002) and network meta-analyses (Salanti, 2012) because then outcome
data in the second stage of meta-analyses can be correlated. Multivariate normal distributions are then used in the conventional
methodologies for multivariate and network meta-analysis, making additional assumptions. More sophisticated methods for
modelling random effects (e.g. Kuss, Hoyer, & Solms, 2014; Nikoloulopoulos, 2015) are possible in the multivariate setting, so
that the issues discussed in Section 4 become more pressing. Despite this, simplified models where all between-study correlations
are taken to be a half are typically used in network meta-analyses, but there is also a case for considering more general models for
the variance structure (Lu & Ades, 2009; White, Barrett, Jackson, & Higgins, 2012) in situations where they can be adequately
identified.

To summarise, we have seen that the normal distribution is extensively used in conventional meta-analysis methodologies.
We suspect that the relatively simple and direct nature of the calculations used in meta-analysis conceals this, but we hope that
our discussion is illuminating. It is perhaps easy to criticise standard methods for meta-analysis on the grounds that implausible
normality assumptions are sometimes required, but any alternatives that avoid them should be carefully assessed before we
consider them for routine use. Our suspicion is that more advanced methodologies such as GLMMs will become more common
in the future, but also that these methods will ‘live alongside’ the current approach. If so, this would be in much the same way as
𝜒2 tests, Fisher's exact test and tests from fitting log-linear models co-exist in the context of testing for an association in a single
2 × 2 table. These different statistical methods, that have the same purpose, possess different types of advantages. Important
criteria for assessing statistical methods include optimality, transparency, ease of computation and intuitive appeal. For similar
reasons as the 𝜒2 test has endured in applied work, we suggest that the conventional methods for meta-analysis will be continue
to be adopted whilst also giving ground to alternatives that have better statistical properties in some, or possibly many, situations.
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