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Beat to beat variability of cardiac tissue or isolated cells is frequently investigated by

determining time intervals from electrode measurements in order to compute scale

dependent or scale independent parameters. In this study, we utilize high-speed video

camera recordings to investigate the variability of intervals as well as mechanical

contraction strengths and relative contraction strengths with nonlinear analyses.

Additionally, the video setup allowed us simultaneous electrode registrations of

extracellular potentials. Sinoatrial node tissue under control and acetylcholine treated

conditions was used to perform variability analyses by computing sample entropies and

Higuchi dimensions. Beat to beat interval variabilities measured by the two recording

techniques correlated very well, and therefore, validated the video analyses for this

purpose. Acetylcholine treatment induced a reduction of beating rate and contraction

strength, but the impact on interval variability was negligible. Nevertheless, the variability

analyses of contraction strengths revealed significant differences in sample entropies

and Higuchi dimensions between control and acetylcholine treated tissue. Therefore, the

proposed high-speed video camera technique might represent a non-invasive tool that

allows long-lasting recordings for detecting variations in beating behavior over a large

range of scales.

Keywords: heart rate variability, beat to beat variability, video motion analysis, sinoatrial node, acetylcholine,

sample entropy, Higuchi dimension

INTRODUCTION

Heart rate variability (HRV) refers to variations in the time intervals between two consecutive heart
beats and serves as a diagnostic and prognostic tool for cardiac as well as non-cardiac diseases,
e.g., heart failure, aging, Parkinson’s disease, diabetes, and sepsis (Goldberger et al., 2002; Devos
et al., 2003; Kudat et al., 2016; de Castilho et al., 2017; Elstad et al., 2018; Sessa et al., 2018). These
variations are mainly attributed to dynamic changes of neuroendocrine inputs on ion channel
activity in the sinoatrial node SAN, but a certain degree of beat to beat variability is inherently
present at the level of the isolated heart, within the isolated SAN and also at the level of single
sinoatrial pacemaker cells (Lombardi and Stein, 2011; Papaioannou et al., 2013; Yaniv et al., 2014a;
Zaniboni et al., 2014).
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There is a large number of quantitative algorithms to
investigate these interval variations in autorhythmic cardiac
tissue, cell clusters, or single cells, including spectral, linear, and
nonlinear methods. Power-law behavior of beat to beat intervals
BBIs analyzed by the power spectral method has been shown for
neonatal rat cardiomyocytes in cultured tissue layers measured
by microelectrode arrays (Ponard et al., 2007). Long-range
correlations were also detected in extracellular electrograms of
human embryonic stem cell-derived cardiomyocyte clusters by
using again spectral methods (Mandel et al., 2012). Furthermore,
fractal-like behavior has been reported for rabbit sinoatrial node
tissue and for a small percentage of single sinoatrial node
cells by using power law and detrended fluctuation analysis
(Yaniv et al., 2014a) and in small clusters of chick embryonic
cardiomyocytes (Ahammer et al., 2013). So far, investigations
have focused on variabilities in the time domain of both, electrical
and contraction signals. The underlying processes are tightly
linked via the excitation-contraction-coupling (Eisner et al.,
2017) and hence, the time structure of the electrical process
substantially shapes not only the frequency of contraction but
also its magnitude. Thus, it is reasonable to assume that also
the variability of the contraction strength shows long-term
correlations.

Therefore, in this study we propose the investigation of
contraction strengths and their variabilities additionally to
interval variabilities in SAN tissue. In detail, we evaluated
beat to beat interval variabilities and beat to beat contraction
strength CS variabilities of murine atrial preparations that
contained the SAN region by means of high-speed camera video
recordings. Each image of a video represented a time stamp
and contractions of the tissue were recorded as changes in
average gray values. Simultaneous measurements of extracellular
potentials using a cardiac-near-field electrode validated beat
to beat intervals of video recordings. Measurements of
the spontaneous activity of tissue samples were performed
before and after the administration of acetylcholine ACh, the
predominant transmitter of the parasympathetic nervous system.
Its effects on atrial tissue are already well investigated and
include a decrease in beating rate and force of contraction
(Kitazawa et al., 2009).

Our main objectives were to determine the suitability of
video recordings to register BBIs and CSs and to analyze
changes of nonlinear measures in the variabilities of these two
parameters due to ACh treatment. Sample entropy and Higuchi
dimension are popular estimators capturing intrinsic nonlinear
patterns in time series of measured signals (Higuchi, 1988;
Richman and Moorman, 2000). We hypothesized that ACh
significantly affects sample entropies and Higuchi dimensions
of BBI and CS variabilities. To distinguish actual values
from white noise, surrogate data series were constructed and
analyzed.

In summary, this high-speed camera video recording-
technique provides a promising tool to thoroughly investigate
beat to beat behavior regarding absolute values of beating rate and
contraction strength as well as their variabilities in autorhythmic
tissue.

METHODS

Tissue Preparation
Hearts from 22 C57/BL6 wildtype mice (aged 12–20 weeks)
of both sexes in equal number were used for this study. The
preparation of atria including the intact SAN region was carried
out as previously described (Torrente et al., 2015). Briefly, mice
were heparinized and anesthetized with ketamine (100 mg/kg)
and xylazine (10 mg/kg) and the hearts were quickly removed.
The atria including the intact SAN region were dissected from
the ventricles and fixed with needles on a silicone ground of an
experimental chamber. For this study, an extracted SAN tissue
of one mouse represented a single experiment. Therefore, the
number of experiments corresponds to the number of mice.

The experimental procedure and number of used animals
were approved by the ethics committee of the Federal Ministry
of Science, Research and Economy of the Republic of Austria
(BMWFW-66.010/0101-WF/V/3b/2016). The experiments were
conducted according to the Directive of the European Parliament
and of the Council of September 22, 2010 (2010/63/EU).

Video Acquisition
The experimental chamber containing the intact SAN tissue
was mounted on the stage of an upright microscope (Olympus,
BX51W1, 4x objective, light source TH4-200) and the tissue
was superfused with oxygenated standard external solution
(containing in mM: NaCl 137, KCl 5.4, CaCl2 1.8, MgCl2 1.1,
NaHCO3 2.2, NaH2PO4 0.4, HEPES/Na+ 10, D(+)-glucose 5.6,
pH 7.4 adjusted with NaOH) which was kept at a constant
temperature of 23◦C. Recordings were started 20min after the
onset of superfusion in order to allow the tissue to establish
and maintain a stable beating rhythm. Close to the primary
pacemaking site of the tissue, a small image region of interest ROI
showing distinct contractions was selected for recording. After
recording of the first video (Con), acetylcholine (ACh, 3 µmol/L)
was added to the perfusion solution and after 5min superfusion
time the second video was recorded. A number of nine tissue
samples yielded 18 videos.

Tissue samples under investigation showed a beat to beat
interval of about 500ms (∼2Hz). In order to measure such
intervals, it is necessary to sample the temporal course of the
beating with enough data samples per second. The Nyquist-
Shannon sampling theorem with a sample rate that is the twofold
of the highest frequency in the signal is not applicable, because
the content of harmonic frequencies are not of interest. More
important is, that the sample rate determines a minimal jitter
between consecutive time stamps. This jitter must be small,
because it influences the nonlinear analysis including variability
measures. For an accuracy of e.g., 1%, a number of 100 data
samples is needed between two succeeding beats. Particularly,
this would yield a sample rate of 200Hz. Please note that video
acquisitions using standard frame rates of 30Hz would yield an
accuracy of only∼6.67% for a beating rate of∼2Hz. We decided
to set the accuracy to 0.2% and consequently a sample rate of
1 kHz was used.
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Video recordings of beating tissue samples were taken by
using a high-speed camera system (MotionBlitz, GMCLTR1.3CL-
SSL, Mikrotron, Germany) and a video camera (EoSens CL,
MC1362, Mikrotron). This system implemented a hardware
recording unit and therefore, avoided erroneous jitter effects of
software trigger events such as e.g., USB camera solutions do
usually show. The resolution of the camera was set to 1,280 ×

1,024 pixels. A ROI with a pixel size of 160 × 160 was selected
to get maximal gray level changes during beating of the tissue.
Figure 1A shows a sample image.

The size of the ROI was empirically optimized by inspections
of the temporal signals gained. Larger ROIs yielded too large
and inconvenient video files and smaller ROIs yielded too low
signal to noise ratios. Regions with thick tissue layers (trabeculae,
crista terminalis) moving into the ROI turned out to yield the
highest signal to noise ratios. With a sample rate of 1,000 fps
and a recording duration of 5min, a number of 300,000 single
uncompressed images (each of them with 160 × 160 = 25,600
pixels) where taken and stored on hard disk in an avi container
format. One avi file needed 21 GB of memory. The Mikrotron
system saved the individual images in RGB format although
the used camera was a gray value camera. Gray value cameras
usually give higher signal to noise ratios than color cameras
which is important for high-speed acquisitions with very small
exposure times. Thus, images were converted in a first step
to 8 bit, lowering the memory demand to 7, 6 GB per video.
The whole measuring setup was tested against electrical and
optical inferences coming from ambient light sources such as
the laboratory light or the microscope light source itself. Fourier
analyses of videos capturing a static scene revealed no residual
frequency components of power supply frequencies or other
additional noise components.

Electrical Recordings
For comparison of video and electrical measurements we carried
out 13 separate control experiments in order to simultaneously
record video as well as extracellular electrical signals. After
positioning of the microscope’s objective and choosing a ROI, a
cardiac-near-field CNF electrode (Hofer et al., 2006) was placed
close to the ROI (Figure 1A). This ensured that the electrical and
optical measurement sites corresponded in the spatial domain.
For evaluation of beat to beat intervals, only one of the four CNF
channels was used. Electrical signals were amplified (gain 100),
anti aliasing lowpass filtered (4th order Bessel, cutoff frequency
20 kHz) and recorded with custom software (LabVIEW, National
Instruments, Austin, Texas) at a sampling rate of 100 kHz
(NI USB-6210, National Instruments, Austin, Texas). Signals
were digitally filtered (Butterworth lowpass, 4th order, cutoff
frequency 1.5 kHz and Butterworth highpass, 4th order, cutoff
frequency 1.5Hz). A sample electrical recording can be seen
in Figure 1B. Subsequent time stamps of individual beats were
computed by setting a threshold well above the noise level to
the decreasing slopes of the signal (denoted by red plus signs in
Figure 1B). For signals with lower signal to noise ratio the same
threshold criterion was used in the first temporal derivative of the
signal where the steep downslope during electrical activation was
more pronounced.

Time Signal Generation From Videos
Time signals of the beating tissues were reconstructed by
computing the average gray value Gi of each image i of a video
which can be seen in Figure 1C.

Gi =
1

NP

∑NP

p= 1
gi,p, (1)

with gi,p the gray value in the range [0, 255] of pixel p in the
image i, i = 1, 2, 3, . . . ,NI , NI the number images in a video
(NI = 300, 000), and p = 1, 2, 3, . . . ,NP,NP the number of pixels
in an image (NP = 25, 600).

This yielded a temporal time signal comprising 300,000 data
points with a data compression of (25,600 to 1). The algorithm
for finding the time stamps of contractions was designed around
finding subsequent local minima (denoted by red plus signs
in Figure 1C). The original signal was slightly smoothed by
applying a moving average filter with 25 data points to improve
the shape of the minima and to ensure that minima are right
between the adjacent declining and rising slopes. A threshold
was set between the doubled noise value of the baseline and
the smallest minimum in the video. Further on, only values
smaller than that threshold were investigated. Then, a minimum
was computed by simply looking for the smallest value between
two threshold points. Very rarely a minimum consisted of two
neighboring points with exactly the same value in which case the
second value was taken as the minimum. Finally, a beat to beat
interval BBI was defined as the temporal interval between two
succeeding minima (beats).

BBIb = tb − tb−1, (2)

with tb, the absolute time of the beat b (minimum) in a video,
b = 2, 3, . . . ,NB, and NB the number of beats in a video. This
algorithm (named PointFinder) was implemented in the software
IQM (Kainz et al., 2015) and is available from the authors or from
the IQM project page (https://sourceforge.net/projects/iqm/). A
sample result of BBIs is shown in Figure 2A.

The number of data points in such a graph was equal to the
number of beats NB − 1 during the recording interval of 5min
and therefore, was not constant from video to video. The sample
graph in Figure 2A consists of actually 660 data points because
the specific tissue sample contracted 661 times in 5min. Roughly,
this reflects another data compression of 450 to 1. Overall the
method has a compression rate of about 11.6 million to 1.

On further inspection of Figure 1C, it is obvious that not only
interbeat intervals can be computed from these local minima.
Additionally, the height of a minimum measured from the
baseline, which is the horizontal line containing the points of
relaxed tissue only, can be computed. Such a height reflects
the mechanical contraction strength CS of the tissue. Stronger
contraction of cells in the tissue yielded a higher light absorption
and hence darker images in the video and consequently lower
minima in the average graphs such as in Figure 1C. We
created correlation plots of subsequent height changes vs.
subsequent interbeat intervals (actual plots are described in
section Correlation of Contraction Strengths and Beat to Beat
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FIGURE 1 | Microscopic sample image and sample recordings. (A) Sample image of a tissue preparation including the intact atria and the region of the sinoatrial node

SAN. The left atrium cannot be seen in the image. RA, right atrium; CT, crista terminalis; IAS, interatrial septum; IVC, inferior vena cava; SVC, superior vena cava; CNF,

cardiac-near-field electrode. The region of interest ROI (red rectangle) with a size of 160 × 160 pixels was set to a region yielding high changes of average gray values.

This was usually the case when regions of a thick tissue layer (e.g., trabeculae) moved into the ROI during contractions. (B) Sample electrical recording lasting about

4 s (down-sampled to 5 kHz for the graphical representation). Four subsequent beats are depicted and the red plus symbols indicate data points for computing beat

to beat intervals BBIs. A single beat is zoomed out. (C) Sample average gray values G according to Equation (1) from about 2,000 (out of 300,000) images. Red plus

symbols mark data points that defined the BBIs and in addition with the baseline points (red dots) the contraction strengths CSs. Interval as well as contraction

strength variations are clearly visible for these four contractions. (D) Finding correct baseline points is crucial for the determination of the CSs. This signal sample

shows some beats (red plus symbols) and baseline points (red dots). The first two baseline points were found very well, in contrast to the last two baseline points.

Accordingly, CSs for these two points cannot be accurately computed.

Intervals). A correlation between these two variables was given
in most cases, which is in accordance with previously published
data (Torres and Janssen, 2011). Nevertheless, correlations were
not perfect and some experiments showed only weak or negative
correlations. Consequently, we decided to additionally evaluate
variations of contraction strengths.

First, in order to obtain the CS, it was necessary to determine
the baseline, although it drifted during the time course of 5min.
To avoid drifting and offset errors we computed a separate
baseline value for each minimum. The actual baseline value was
computed by the median of all points in between the actual
minimum and the preceding minimum and thus we obtained
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FIGURE 2 | Beat to beat intervals BBIs and contraction strengths CSs, 1CSs, rCSs computed from optical (video) recordings. (A) BBIs computed according to

Equation (2). This tissue sample yielded actually 660 data points (number of beats NB = 661). (B) Contraction strengths CSs computed according to Equation (3) for

the same tissue sample with 660 data points. (C) Differences of contraction strengths 1CS computed as the differences of the average gray values Gs of the beating

signal according to Equation (4). (D) Relative contraction strengths rCSs computed by integration of the 1CS values according to Equation (5).

moving baseline values (for every minimum a separate baseline
value, some sample baseline values are depicted graphically in
Figure 1C with red points). This ensured that baseline drifts,
unavoidable during a recording time of 5min, did not contribute.
Consequently, CS was computed by

CSb =
∣

∣Gb − baselineb
∣

∣ , (3)

with CSb the contraction strength of the beat b, Gb the average
gray value of the image detected as the “beat image,” baselineb
the corresponding baseline value, b = 1, 2, 3, . . . ,NB, and NB

the number of beats in a video. A sample signal can be seen in
Figure 2B.

Although the signals seemed to be reliable, it turned out
that this moving median algorithm produced some variation
errors due to residual noise components of the baseline.
Additionally, but only occasionally, for one mouse treated
with acetylcholine (#5 in Figure 6), subsequent contractions
showed some consecutively fast repeating bursts instead of
full contractions. For such short burst intervals, the median
algorithm yielded erroneous baseline values leading to too small
CS values. A graphical representation of such errors is shown in
Figure 1D. An alternative algorithm for finding the baseline may
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be feasible, but we present a convenient way that does not need
baseline detection at all.

In this approach we eliminated the baseline (offset), since
we actually were interested in variabilities of these temporal
signals and not in absolute values. Discrete differentiation of
the time signal (average gray values according to Equation (1)
and exemplarily depicted in Figure 1C) revealed differences of
contraction strengths 1CSs and eliminated the hassle of finding
baseline points.

1CSb = Gb − Gb−1, (4)

with b = 2,3,. . . , NB.
Subsequent discrete integration generated back the changing

content of the contraction strength signal but without the
baseline and was termed relative contraction strength rCS.

rCSb = 1CSb + rCSb−1, (5)

with b = 2, 3, . . . ,NB and rCS1 = 0.
Integration usually gives the anti-derivative plus an unknown

constant, which was in our case the baseline (offset). Discrete
differentiation followed by integration was actually carried out
with software IQM (Kainz et al., 2015) using the mathematics
feature for one dimensional signals.

Sample graphs of 1CS and rCS can be seen in Figures 2C,D.
BBI, CS and rCS data series for each experiment (Con and ACh
treated) are provided as “Data Sheet 1” csv file in the supplement.

Sample Entropy and Higuchi Dimension
Sample entropy SampEn and Higuchi dimension DH are two
well-known and successfully applied nonlinear descriptors for
time signal variations (Higuchi, 1988; Richman and Moorman,
2000). Approximate entropy ApEn is also widely used, but is not
suitable for this particular study because the number of beats
changed from video to video. SampEn is proportional to the
conditional probability that a sequence which is similar for m
points remains similar for m+1 points. A tolerance distance r
is defined so that repetitions must not be exact. Usually, r is
defined as a multiple of the standard deviation SD of the signal
and therefore, SampEn is a scale invariant measure (Richman and
Moorman, 2000). Self matches are not included.

The discrete time signals
{

x (1) , x (2) , . . . , x(NB)
}

(x stands
for values from CS or rCS signals) with length NB were taken and
(NB –m+ 1) sequences were created:

Xm (i) = [x (i) , x (i+ 1) , . . . , x (i+m− 1)]. (6)

The parameter m was set to two (m = 2). Distances in between
these data series were computed using the maximum metric:

d
[

Xm (i) ,Xm

(

j
)]

= max
k=1,2,..,m

{
∣

∣Xm

(

i+ k− 1
)

− Xm(j+ k− 1)
∣

∣

}

(7)

The normalized sums of distances smaller than the tolerance
distance r = 0.15SD were computed for each i, j with 1 ≤ i, j ≤
NB −m+ 1 and i 6= j:

Cm
i (r) =

number of Xm(j) where d[Xm (i) ,Xm

(

j
)

] ≤ r

NB −m+ 1
. (8)

The normalized number of sums can be computed using

Bm (r) =
1

NB −m

∑NB−m

i= 1
Cm
i (r). (9)

Finally, SampEn was computed with

SampEn (m, r,NB) = − ln

(

Bm+1(r)

Bm(r)

)

. (10)

Higuchi proposed a method to compute the fractal dimension
of a signal by using sums of differences with varying inter data
point intervals (delays) (Higuchi, 1988). The Higuchi dimension
is frequently applied in contemporary neurophysiology and
neuropathology (Kesić and Spasić, 2016) and is well known
for its accuracy, speed and robustness including high linearities
of the double log plots. Phase space reconstructions are not
involved and therefore, the number of data points available can
be restricted. Initial data points are set to m = 1,2,. . . , k with a
delay interval k = 1,2,. . . , 30. Following data point series were
constructed:

Sm
(

k
)

: x (m) , x
(

m+ k
)

, x
(

m+ 2k
)

, . . . , x(m+

⌊

NB −m

k

⌋

k)

(11)

The lengths Lm(k) of these series, depending on the initial data
pointsm and k were computed according to:

Lm(k) =
1

k

{(

∑

⌊

NB−m
k

⌋

i=1

∣

∣x
(

m+ ik
)

− x(m+ (i− 1) k)
∣

∣

)

NB − 1
⌊

NB−m
k

⌋

k

}

(12)

The symbol
⌊ ⌋

stands for the floor function. For each k, the
mean length was determined by

L
(

k
)

=
1

k

∑k

m= 1
Lm(k). (13)

Finally, a double logarithmic plot of L(k) vs. k was constructed
and the slope of a linear regression was used to compute DH .
Values of k above 30 were not used because they introduced
noticeable deviations of data points from the linear regression.
Signals were processed as they were recorded without editing.
Algorithms were implemented in the Software IQM (Kainz et al.,
2015) and are available from the authors or from the IQM project
page.

Statistics
Statistics was computed with public domain software R, version
3.3.3 and RStudio software version 1.0.136 (RStudio, 2016; R
Core Team, 2017). Due to small sample sizes, differences of
paired samples were statistically analyzed with a two-sided
median test using the R function sintv2 (Wilcox and Rousselet,
2018). This method performs very well in terms of controlling
the probability of a Type I error (Wilcox, 2016). Data acquisition
via video and electrode setup did not start synchronously
(lag of 1–3 beats). Cross correlation (unbiased estimate,
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MATLAB R© R2017b) was used to remove this start dependent
asynchronism between the optical and electrical signal.
Correlation of CSs with BBIs was computed using Spearman’s
rank correlation coefficient rs. Coefficients of determination
R2 were computed for double log plots to estimate Higuchi
dimensions.

Surrogate analysis was performed to provide further evidence
of long-range nonlinear correlations in the optically measured
signals and to demask possible white noise components indicated
by some relatively high SampEn and DH values. Each optically
recorded signal was shuffled 50 times using IQM (Kainz
et al., 2015). A total number of 5,400 surrogate data series
were constructed considering nine SAN tissues, two nonlinear
measures (SampEn,DH), two treatments (Con, ACh), three signal
types (BBI, CS, rCS), and 50x shuffling. Following evaluation
types were carried out:

SurrEval-1: Each individual experimentally gained value was
tested against the normally distributed surrogate values applying
a two-sided one sample Student’s t-test.

SurrEval-2: The experimentally gained values were tested
against the respective means of the shuffled signals by a two-sided
median test using the R function sintv2.

SurrEval-3: The respective means of shuffled control against
means of shuffled ACh signals were tested by a two-sided median
test using the R function sintv2.

RESULTS

Linear variance measures of the beat to beat interval are
dependent on absolute values and are only well suited for linear
stochastic processes. Nonlinear signals with random correlations
or Random walk like signals can be well investigated with scale
independent measures such as the sample entropy SampEn or the
Higuchi dimension DH .

Double Log Plots for Higuchi Dimensions
Double log plot linear regressions for estimating the Higuchi
dimensions revealed very high coefficients of determination
R2 within a range of [0.959–0.999]. Sample linear regressions
can be seen in Figures 3A,B for control and ACh treated cases.
With this high linearity, the application of the fractal concept
seems to be very appropriate and robust. Nevertheless, we
found a marginally lower R2 for some signals (4 out of 18)
which was visible as a slight wobbling of data points around the
straight line (see a sample graph in Figure 3B, blue dots). This
occurred for control as well as ACh treated cases. The reason was
that the specific signals showed subsequent alternating values
which could be interpreted as binary oscillations or negative
correlations. Fractal dimensions of period doubling signals
cannot be directly calculated, but it is known that periodic
components in time series yield distinct and periodic differences
in the double log plot (Galvez Coyt et al., 2013).

Correlation of Optically and Electrically
Recorded Beat to Beat Intervals
Optically (video) recorded values of BBIs correlated very well
with electrically recorded values. Representative BBI value pairs
showing just negligible differences can be seen in Figure 4A. A
sample regression plot of a whole 5min recording can be seen in
Figure 4B. The slopes for all 13 experiments were in the range
of [0.977–1.067] and the coefficients of determination R2 were in
the range of [0.984–0.999].

Additionally, we computed sample entropies and Higuchi
dimensions for these 13 control samples. Results can be seen
in net plots for each individual experiment in Figure 5A.
Traditional box plots including the data values can be seen in
Figure 5B.

SampEn values are very close and statistically not different
(p = 0.46, df = 12). For DH values a p-value of 0.05 (df = 12)

FIGURE 3 | Higuchi dimension DH double log plots. Data from optical recordings. (A) Typical double logarithmic plots of DH showing very linear regressions for the

control and the acetylcholine treated cases. (B) Another sample of double logarithmic plots showing occasional deviations from the linear regression, in this particular

case for acetylcholine (blue dots).
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FIGURE 4 | Opto-electrical correlation. (A) Some representative beat to beat intervals BBIs computed from simultaneously measured electrical and optical (video)

recordings. (B) Regression of electrically and optically gained BBIs from one experiment (i.e., one mouse). The linear slope is very close to one and the coefficient of

determination R2 is very high.

indicates a possible effect. Since the corresponding median
difference was very small (only in the third decimal place), we
show scatterplots of data point pairs in Figure 5C. The minimal
deviations from the straight line (no effect) suggest no practical
relevance.

Correlation of Contraction Strengths and
Beat to Beat Intervals
Scatterplots ofCSs vs. BBIs in milliseconds are shown in Figure 6.
Control tissue (red) and ACh treated tissue (blue) showed
mostly positive correlations. A few correlations are weak and/or
negative.

Additionally, scatterplots and correlations of relative
contraction strengths rCSs vs. BBIs were computed. Actual
plots are not shown, because the correlations were quite similar
compared to Figure 6.

Acetylcholine Induced Changes of Beat to
Beat Intervals and Contraction Strengths
The median beat to beat interval of the control group was 512ms
and increased to 614ms after applying ACh. Net and box plots
can be seen in Figure 7 (left column). The significant increase in
the beating rate of ∼20% (3µM ACh) is in line with previously
published data (Glukhov et al., 2010).

The median beat to beat contraction strength of the control
group was 20.85 and decreased to 13.24 after treatment with
ACh. Net- and box plots can be seen in Figure 7 (right column).
The significant decrease of CS of ∼37% is in accordance with
previously published data (Kitazawa et al., 2009).

Acetylcholine Induced Changes to Sample
Entropies and Higuchi Dimensions
Figure 8 depicts net- and box plots of nonlinear measures of
BBIs. Median values of SampEn decrease from 1.58 (Con) to

0.92 (ACh) and are not significantly different (p = 0.11, df = 8,
Figure 8B, left column). This is also the case for DH (p = 0.97,
df = 8, Figure 8B, right column) which decreased from 1.98
to 1.97.

SampEn surrogate evaluation according to SurrEval-1
revealed that all experimentally gained values (BBIs for Con
and ACh) were significantly lower than the shuffled ones with
p < 0.001, df = 49. This agrees with SurrEval-2 showing that
all experimental values were also significantly lower than the
means of the corresponding shuffled ones with p < 0.001, df = 8,
see Table 1. Furthermore, according to SurrEval-3 the means
of SampEn values for shuffled signals showed no indication for
statistical significance between Con and ACh, p = 0.82, df = 8,
see Figure 8C.

SurrEval-1 for DH yielded similar results with p < 0.001,
df = 49, except for some experimental values >2 in the third
decimal (two cases for Con and three cases for ACh) where
obviously the shuffled values could not further increase. This is
well reflected by SurrEval-2 with a borderline p = 0.05, df = 8
for Con and a non-significant p-value for ACh (Table 1). As
expected, SurrEval-3 reveals no significant difference between the
groups Con and ACh, p= 0.77, df = 8, see Figure 8C.

Figure 9 shows net and box plots of nonlinear measures of
the proposed CSs. Median values for SampEn show a significant
difference between Con and ACh (p < 0.001, df = 8), namely
a decrease from 1.60 (Con) to 0.72 (ACh) which can been seen
in Figures 9A,B, left column. Median values for DH tend to
decrease slightly (Figure 9B, right column) as indicated by a
borderline p-value of p = 0.05 (df = 8). In detail median values
decrease from 1.97 (Con) to 1.91 (ACh).

For SampEn, all three CS surrogate evaluations yielded
consistent results regarding nonlinear patterns in the measured
signals, since shuffled values were always statistically higher
(SurrEval-1: p < 0.001, df = 49, and SurrEval-2: Table 1) and
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FIGURE 5 | Sample entropy SampEn (left column) and Higuchi dimension DH (right column) of beat to beat intervals BBIs determined optically and electrically. (A) Net

plots showing 13 SampEn and DH values for BBIs. (B) Box plots of these 13 experiments, p-values with df = 12, median test. (C) Scatterplots of these 13

experiments. Dashed lines represent theoretical correlations with the slope of one.

the difference between Con and ACh vanished compared to the
experimental case (SurrEval-3: Figure 9C). Now, SurrEval-1 for
DH yielded no exception with p < 0.001, df = 49 and all three
surrogate evaluations are again consistent (SurrEval-2: Table 1
and SurrEval-3: Figure 9C).

Finally, Figure 10 depicts net and box plots of nonlinear
measures of the proposed rCSs. For SampEn, the decrease and
the significance of rCS is similar to CS with median values
from 1.76 (Con) to 0.49 (ACh) and with p < 0.001, df = 8
(Figures 10A,B, left column). The decrease of DH values is

slightly more pronounced for rCS compared to CS with median
values from 1.98 (Con) to 1.91 (ACh) and now exceeds the 95%
statistical significance level with p = 0.03, df = 8 (Figure 10B,
right column).

Surrogate analyses for rCs are again consistent for both,
SampEn and DH , indicating nonlinear long-range correlations.
Shuffled values are always statistically higher (SurrEval-1: p <

0.001, df = 49, and SurrEval-2: Table 1) and the difference
between Con and ACh vanishes compared to the experimental
case (SurrEval-3: Figure 10C).
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FIGURE 6 | Scatterplots of contraction strengths CSs vs. beat to beat intervals BBIs in milliseconds. Data from optical recordings. Red dots correspond to control

tissue, blue dots to ACh treated tissue. For each individual plot the experiment (mouse) number #, in brackets the actual Spearman’s rank correlation coefficient rs and

the degrees of freedom df are depicted.

DISCUSSION

Beat to beat intervals are commonly investigated in order to
detect nonlinear correlations in time signals. This study proposes
an optical method, particularly, a high-speed video technique
to detect mechanical contractions of the heart tissue. Usual
video recordings with frame rates of about 30 fps or software
triggered acquisitions are a convenient way for spectral analyses
or computing beating frequencies (Kojima et al., 2006; Chan

et al., 2009; Fassina et al., 2011; Hsiao et al., 2013; Ahola et al.,
2014). But obviously, video frame rates must be higher for high
beating rates (De Luca et al., 2014) or accurate detections of
beating events (Stummann et al., 2008). Our high-speed video
recordings allowed us to extract beat to beat intervals BBIs as
well as the contraction strengths CSs and the relative contraction
strengths rCSs, because the average gray value of an image was
directly proportional to the mechanical contraction. Variation
analyses with two distinguished nonlinear measures, the sample

Frontiers in Physiology | www.frontiersin.org 10 May 2018 | Volume 9 | Article 546

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ahammer et al. Contraction Strength Variability

FIGURE 7 | Medians of beat to beat intervals BBIs (left column) and contraction strengths CSs (right column). Data from optical recordings. The control group is

depicted in red and the values for the ACh treated group in blue. (A) Net plots of all experiments, showing individual and pairwise values. (B) Box plots of all

experiments show statistically significant differences between Con and ACh groups, p < 0,001, df = 8, median test.

entropy SampEn and the Higuchi dimension DH , revealed that
this video technique is able to produce consistent results for BBIs
as well as for CSs and rCSs.

The detection of the baseline (relaxed tissue) may be prone
for errors such as measurement noise or optical drifts during
the recording and thus, we proposed the second contraction
parameter rCS. This is basically the varying contraction content
of the signal, without the absolute value, drift or offset.
SampEn, DH and other scale independent nonlinear measures
or fractal dimensions are not dependent on absolute values
and consequently, rCS is an appropriate and very promising
parameter for variance analyses.

To our knowledge, studies of BBV using isolated SAN
tissue are very limited. Since no consensus exists to classify
possible physiological artifacts (e.g., ectopic beats) in this in vitro
preparation, we analyzed the original signals without any editing
that could lead to a loss of valuable information.

We observed that ACh changed the beating behavior of the
sinus node tissue by significantly reducing beating frequency
as well as contraction strength, which is in accordance to
previously published data (Kitazawa et al., 2009). Application

of SampEn and DH , two frequently used nonlinear measures
for time signal variations, revealed a significant change of
variabilities in the contraction strength but not in the beat to
beat interval. The observed reduction of nonlinear measures
indicates that the contraction process estimated by CS and rCS
becomes more regular in the SAN tissue after ACh application.
The spontaneous activity of pacemaker cells in the SAN tissue
is based on two tightly linked clocks referred to as calcium
and membrane clock (Lakatta and DiFrancesco, 2009). Both
clocks exhibit inherent random components which arise from
stochastic opening and closing of transmembrane ion channels
(Krogh-Madsen et al., 2017) in the case of the membrane
clock and from spontaneous stochastic calcium release via
sarcoplasmic ryanodine receptors (Yaniv et al., 2014b) in the
case of the calcium clock. The spontaneous calcium release in
turn activates the sodium-calcium exchanger thereby triggering
the action potential upstroke and subsequently a massive
calcium release from sarcoplasmic reticulum, thus coupling
excitation with contraction. ACh is an important modulator
of SAN beating frequency as well as of contraction strength,
particularly in the adjacent atrial tissue (Okada et al., 2013).
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FIGURE 8 | Sample entropy SampEn (left column) and Higuchi dimension DH (right column) of beat to beat intervals BBIs. Data from optical recordings. The control

group is depicted in red and the ACh treated group in blue. (A) Net plots of all experiments, showing individual and pairwise values. (B) Box plots of all experiments.

Differences are not statistically significant (SampEn p = 0.11, df = 8, DH p = 0.97, df = 8, median test). (C) Mean SampEn and DH values of shuffled (50x) data series.

TABLE 1 | Median test of sample entropy SampEn and Higuchi dimension DH values from optical recordings against means of 50x shuffled data series according to

SurrEval-2.

Nonlinear measure BBI Con BBI ACh CS Con CS ACh rCS Con rCS ACh

SampEn <0.001(0.36)

[0.25, 0.41]

<0.001(1.05)

[0.31, 1.32]

<0.001(0.72)

[0.23, 1.11]

<0.001(1.50)

[1.17, 1.63]

<0.001(0.47)

[0.34, 1.05]

<0.001(1.73)

[1.25, 2.02]

DH 0.05(0.02)

[0.00, 0.03]

0.27(0.03)

[−0.01, 0.08]

<0.001(0.03)

[0.01, 0.04]

<0.001(0.09)

[0.01, 0.15]

<0.001(0.02)

[0.01, 0.08]

<0.001(0.11)

[0.02, 0.27]

p-values, median differences and confidence intervals (df = 8) are given for BBI, CS, rCS, and for control and ACh treatment. p-values, (median difference), [confidence interval], median
test according to SurrEval-2, df=8.
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FIGURE 9 | Sample entropy SampEn (left column) and Higuchi dimension DH (right column) of contraction strengths CSs. Data from optical recordings. The control

group is depicted in red and the ACh treated group in blue. (A) Net plots of all experiments, showing individual and pairwise values. (B) Box plots of all experiments.

The difference in SampEn is statistically significant, p < 0.001, df = 8, median test. The difference in DH is statistically borderline (p = 0.05, df = 8). (C) Mean

SampEn and DH values of shuffled (50x) data series.

Activation of muscarinic receptors by ACh causes multiple
effects on the membrane and the calcium clock via G-protein
coupled signaling ultimately reducing beating frequency and
contractility (Harvey and Belevych, 2003). This is in line
with our results. The physiological mechanisms underlying the
observed increase in contraction strength regularity by ACh
in our study are currently unknown. Theoretically, a reduced
randomness in membrane and/or calcium clock as well as in
the contraction process itself could account for our observation.
It is noteworthy that in our study ACh increases CS regularity

but not BBI regularity. This may be due to the fact that
the beating behavior in the time domain is determined solely
by sinus node pacemaking, whereas CS regularity may also
depend on the effect of ACh on atrial tissue present in our
preparations.

Studies on ACh effects on SAN cells/tissue using nonlinear
measures are very scarce. Yaniv et al (Yaniv et al., 2014a)
investigated the beating rate variability at different levels of
integration from the heart in vivo to single pacemaker cells
by linear (coefficient of variation) and nonlinear (approximate
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FIGURE 10 | Sample entropy SampEn (left column) and Higuchi dimension DH (right column) of relative contraction strengths rCSs. Data from optical recordings. The

control group is depicted in red and the ACh treated group in blue. (A) Net plots of all experiments, showing individual and pairwise values. (B) Box plots of all

experiments. The differences in SampEn and DH are statistically significant, p < 0.001, df = 8 and p = 0.03, df = 8 respectively, median test. (C) Mean SampEn and

DH values of shuffled (50x) data series.

entropy, power law and detrended fluctuation analysis)measures.
Their results show that beating interval regularity increased in
the order in vivo, denervated heart, isolated SAN tissue, but
decreased again in single pacemaker cells. However, single SAN
cells showed fractal-like behavior only to a small percentage.
Carbachol, a parasympathomimetic drug, decreased regularity
of beating intervals of single SAN cells. Since this group
analyzed the effect of parasympathetic stimulation on beating
behavior only in the time domain and at the single cell
level, a direct comparison to our results does not seem to be
reasonable. Clearly, further studies are needed to elucidate the

underlying physiological mechanisms of muscarinic stimulation
on nonlinear measures in SAN cells/tissue.

Compared to commonly used mechanical force transducer
measurements (Kihara and Morgan, 1991; Torres and Janssen,
2011; Koyani et al., 2017), the high-speed video technique used
in this study seems to be an appropriate, contact-free tool to
quantify changes in contraction strength variability. The SAN
preparation represents a very sensitive and fragile tissue which
could be easily damaged by hooks or threads of mechanical
transducers. Moreover, SAN tissue may not be very suitable
for mechanical force measurements because forces developed
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by the low tissue mass are very small leading to low signal
amplitudes and hence low signal to noise ratios. The suggested
video method does not provide absolute values of contraction
forces. Absolute values are certainly a prerequisite for linear
analyses but not for nonlinear investigations of variabilities that
are per se independent of the absolute value. The electrical
and the contractile processes underlying the measured BBIs and
CSs are not reducible to each other, although tightly linked.
Thus, the measured video signal provides information about
these two distinct processes and consequently allows a more
comprehensive characterization compared to frequently used
electrode techniques.

For optically computed SampEn values, all surrogate
evaluations strengthen the experimental findings that long-range
correlations are present in BBI, CS, and rCS signals. Shuffled
values are always statistically higher compared to experimentally
obtained values and the difference between control and ACh
treated tissue vanishes compared to the experimental case.
Hence, the investigated physiological signals contain inherent
nonlinear patterns in the interval and the contraction strength
domains, justifying the application of the chosen nonlinear
measures. Furthermore, the increase of regularity due to
ACh (lower SampEn and DH values) seems to be caused by
deterministic and not by random processes.

The surrogate analyses for DH values agree very well to
SampEn evaluations, except for BBI signals (see Table 1).
Particularly, some experimental values were already close to
two, implicating a high degree of underlying random processes.
Obviously, data time series shuffling did not reveal any significant
changes. Distinct DH and SampEn surrogate results concerning
BBIs imply different sensitivities to underlying random and
deterministic physiological mechanisms. This may indicate that
the Higuchi dimension and not the sample entropy is able
to discriminate differences between interval and contraction
strength signals, but further investigations are needed to
corroborate this assumption. In order to rule out that high
DH values close to two were method specific, we additionally
performed a detrended fluctuation analysis DFA (Peng et al.,
1994; Goldberger et al., 2002). DFA characterizes white noise with
α = 0.5 and Brownian noise with α =1.5.The maximal window
length was set to 30, comparable to k = 30 for DH . The medians
of all control cases including BBI, CS, and rCS (n = 27) were
1.98 for DH and 0.61 for α (DFA) confirming the high degrees of
randomness in the signals. Thus, the decreased DH values under
ACh treatment indicate a change from very low correlations to
increased long-range correlations and self-affine processes.

Complexity can be defined as the presence of long-range
correlations, arising from nonlinear interaction dominated
dynamical processes being neither totally regular nor totally
irregular (Van Orden et al., 2011). This concept has been
successfully applied to discriminate healthy and pathological
conditions, where a breakdown of long-term correlations
and an according change in fractal dimension has been
observed (Goldberger et al., 2002). In our case, SAN tissue
preparations show a high degree of irregularity near white noise
indicating a low complexity without long-range correlations

or self-organizing mechanisms. This may be due to a loss
of multiple and interwoven communication pathways and
nonlinear dependencies present in the intact heart but not in
the tissue preparation. This is supported by ACh as a relevant
external stimulus that changes the interaction dominated
dynamical system by reducing the degrees of freedom and by
introducing long-range correlations, multiplicative interactions
and feedback. ACh may be interpreted as a control parameter
for the system. Phase transitions or bifurcations, dependent
on control parameters exceeding critical values, may also
play an important role for our tissue preparation, but at
this stage further investigations are necessary to justify such
interpretations.

In conclusion, the described technique represents a reliable,
easy handling and long-lasting recording method, from which
beating rate variabilities and contraction strength variabilities can
be assessed.
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