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INTRODUCTION 
 
Atherosclerosis (AS) is a chronic condition that has 
acute cardiovascular manifestations. Despite many 
advances in cardiovascular treatment and prevention, 
atherosclerotic cardiovascular disease and death are the 
leading causes of mortality and morbidity in developed 
and developing countries [1, 2], accounting for 31% of 
all deaths globally [3]. The rupture of atherosclerotic 
plaques as well as subsequent thromboses is the main 
cause of cardiovascular diseases such as stroke and 
heart attack [4]. Carotid plaque rupture leads to acute 
neurologic symptoms, and similarly, coronary plaque  

 

atheroembolism leads to acute coronary syndrome. The 
role of carotid endarterectomy in primary 
(asymptomatic patients) and secondary (symptomatic 
patients with nondisabling stroke or transient ischemic 
attack within the last 6 months) prevention of stroke in 
patients with severe carotid artery stenosis has been 
recognized [5]. However, one special challenge in 
combatting cardiovascular diseases is the abrupt and 
unforeseeable nature of the acute manifestations. 
Taking measures to prevent the destabilization and 
rupture of atherosclerotic plaques is the most 
appropriate therapeutic method for acute myocardial 
infarction. This strategy has fueled considerable 
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ABSTRACT 
 
In recent years, intense research has been conducted to explore the diagnostic value of mRNA expression 
differences in atherosclerosis (AS). Nevertheless, because various technology platforms are applied and sample 
sizes are small, the results are inconsistent among the studies. We conducted a comprehensive analysis of a 
total of 161 tissue samples from 4 published studies after evaluating 230 datasets from the Gene Expression 
Omnibus and ArrayExpress. Adopting the newly published robust rank aggregation approach, combined with 
Kyoto Encyclopedia of Genes and Genomes pathway analysis, Gene Ontology functional enrichment analysis, 
and protein-protein interaction network construction, we identified four significantly upregulated genes (CCL4, 
CCL18, MMP9 and SPP1) for diagnosing AS, even in the advanced stage. Then, we performed gene set 
enrichment analysis to identify the pathways that were most affected by altered mRNA expression in 
atherosclerotic plaques. We found that four hub genes cooperatively targeted lipid metabolism and 
inflammatory immune-related pathways and validated their high expression levels in ruptured plaques by qRT-
PCR, western blot analysis and immunohistochemical staining. In summary, our study showed that these genes 
can be used as interventional targets for plaque progression, and the results suggested we should focus on 
small changes in these key indicators in the clinical setting. 
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research aimed at exploring new biomarkers to identify 
people who are at risk before any cardiovascular events 
occur to initiate primary prevention measures. 
 
High-throughput technology has been utilized to 
identify differences in the expression levels of mRNAs 
between atherosclerotic plaques and normal tissues. 
These methods have the potential to recognize dozens 
or hundreds of differentially expressed mRNAs, 
although only a small portion of them might have real 
clinical utility as interventional targets. Finding an 
effective approach to combine various sources of data is 
important. Any difference in laboratory protocols or 
measurement platforms or small sample sizes could 
result in incomparable expression levels of genes. 
Therefore, researchers should analyze separate datasets 
and aggregate the resultant gene lists, as in the robust 
rank aggregation (RRA) [6] method. This approach has 
been used to define robust cancer-related gene sets [7] 
and miRNA sets [8–10]. However, this method has not 
been applied in AS research thus far. 
 
In the RRA method, some individual research results are 
combined to increase the statistical power, and then, any 
discrepancy or inconsistency between different profiling 
studies is resolved. We adopted this comprehensive 
analysis method and then conducted pathway analysis to 
identify the physiological influence of the deregulation of 

mRNAs on the progression of AS. Furthermore, the 
potential hub genes were validated within the clinical 
setting by using quantitative real-time polymerase chain 
reaction (qRT-PCR). Finally, four promising mRNAs 
were selected. The aim was to find potential early-
warning biomarkers and interventional targets to prevent 
atherosclerotic plaque destabilization and rupture after 
diagnosis in AS patients. 
 
RESULTS 
 
Robust rank aggregation (RRA) analysis of 
differentially expressed genes (DEGs) in 
differentiating plaque sets and poor prognosis sets 
from datasets 
 
During this research, we selected datasets of tissues 
from public databases so that we could compare and 
match them as much as possible. Hence, following the 
dataset selection in accordance with our criteria 
(Figure 1A), we analyzed four microarray datasets 
based on the workflow, and the hub genes were 
screened and verified in five steps (Figure 1B). After 
normalization and quality control, the four expression 
profiles for all datasets were analyzed using RRA 
analysis. A total of 161 samples were analyzed in our 
study, and their experimental design is shown in  
Table 1.  

 

 
 

Figure 1. Dataset selection flow chart and analysis processes. (A) In total, 136 datasets from Gene Expression Omnibus (GEO) and 94 
datasets from ArrayExpress were evaluated. Finally, 4 datasets for mRNAs were selected for inclusion in the comprehensive analysis. (B) The 
present study consisted of 5 steps, and the results of the analysis were finally validated on clinical samples. 
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Table 1. Characteristics of the individual studies. 

GEO ID Platform Tissue type Sample 
size Citation (PMID) Country Time 

GSE100927 
GPL17077 Agilent-

039494 SurePrint G3 
Human GE v2 

Atherosclerotic carotid 
artery and healthy 

carotid arteries 
29 vs.12 29500419 [48] France 2018 

GSE40231 
GPL570 [HG-
U133_Plus_2] 

Affymetrix Human 

Atherosclerotic aortic 
wall and Internal 
mammary artery 

40 vs.40 19997623 [49] Sweden 2012 

GSE41571 
GPL570 [HG-
U133_Plus_2] 

Affymetrix Human 

Ruptured carotid 
atheromatous plaque 

and Stable carotid 
atheromatous plaque 

5 vs.6 23122912 [50] United 
Kingdom 2012 

GSE28829 
GPL570 [HG-
U133_Plus_2] 

Affymetrix Human 

Advanced carotid 
atherosclerotic plaque 

and early carotid 
atherosclerotic plaque 

16 vs.13 22388324 [51] Netherlands 2011 

The GEO dataset and ArrayExpress are international public repositories in the context of high-throughput data. Abbreviation: 
GEO, Gene Expression Omnibus database. 
 

The GSE40231 and GSE100927 datasets, which served 
as the differentiating plaque sets, were shown to have 
25 downregulated and 26 upregulated DEGs within AS 
plaques compared to control tissues after Bonferroni 
correction (Supplementary Table 5). Their heat maps 
showed that DEGs could discriminate the respective 
groups (Figure 2A, 2C), and the principal component 
analysis (PCA) score trajectory plots of AS did not 
substantially overlap with the profiles of the control 
group, indicating that the parallel PCA plots both 
showed apparent differences resulting from the AS state 
and control group (Figure 2B and 2D). Thus, these 
molecules were subjected to further analysis. 
 
The expression profiles of poor prognosis sets were also 
analyzed; one had early or advanced carotid 
atherosclerotic plaques (GSE28829), and the other had 
stable carotid plaques compared with ruptured carotid 
plaques (GSE41571). After RRA analysis, 96 
upregulated and 50 downregulated DEGs (Figure 2E, 
2G and Supplementay Table 2) were identified. Their 
PCA plots also showed that the DEGs could clearly 
distinguish between the two groups in the poor 
prognosis sets (Figure 2F and 2H). 
 
PPI network identification of potential hub genes in 
ruptured and advanced AS for functional 
enrichment analysis 
 
A total of 9 shared hub genes were identified by Venn 
diagram (Figure 2I); these genes were identified by 

ranking and trend consistency based on the DEGs after 
RRA analysis, but relying on this analysis alone is one-
sided. Pathway aggregation is often used to predict 
importance, and thus, we further used Gene Ontology 
(GO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and protein-level protein-protein interaction 
(PPI) analyses to identify the 51 DEGs of the 
differentiating plaque sets and 146 DEGs of the poor 
prognosis sets. In the differentiating plaque sets, a 
GOCluster plot (Figure 3A) visualized the interaction 
between clusters and genes of GO terms, and the 
biological processes of the 51 potential hub genes were 
shown to focus on cellular response towards tumor 
necrosis factor, ERK2 and ERK1 cascade–positive 
regulation and cellular response to interleukin-1. Under 
molecular function, the genes were enriched in 
chemokine activity, and the analysis of the cellular 
components suggested that the genes were markedly 
enriched within the extracellular region, proteinaceous 
extracellular matrix and extracellular space (Figure 3A 
and Supplementary Table 1). In the KEGG pathway 
analysis, upregulated genes of the differentiating plaque 
sets were greatly enriched in 14 significant pathways, 
including cytokine-cytokine receptor interaction, 
chemokine signaling pathway and Toll-like receptor 
signaling pathway (Figure 3C). The downregulated 
genes were involved in 13 pathways, including 
glycerophospholipid metabolism, fat digestion and 
absorption, and glycerolipid metabolism, which were 
highly significant (Figure 3D). Figure 3C and 3D and 
Supplementary Table 2 show the detailed numbers of 
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involved genes and these pathways in individual 
bubbles. Then, using CytoNCA analysis of the results in 
the PPI network, we identified 31 nodes (i.e., key genes 
in PPI network analysis) with statistical significance 
from 51 potential hub genes of the original 
differentiating plaque sets based on three network 
parameters, including closeness centrality, betweenness 
centrality and degree centrality of the constructed 
network. Next, the genes obtained by the above analysis 
(PPI network, GO analysis and KEGG analysis) in the 
differentiated plaque sets and their relationship between 
the related pathways and their gene expression changes 
were collectively plotted in Figure 3B. These key 
potential hub genes will be highlighted and will be 
explored and validated in the poor prognosis sets. 
 
According to the method described in the analysis of 
differentiating plaque sets, the GOChord plot showed 
the functional enrichment results of the 146 potential 
hub genes in the poor prognosis sets, 48 of which were 
involved in more than 3 pathways and were associated 
with ruptured and advanced plaques (Figure 3E). These 
genes were involved in a total of 18 biological 
processes, such as immune, inflammatory, innate 

immune response, ERK2 and ERK1 cascade positive 
regulation, and other related pathways (Figure 3E and 
Supplementary Table 1). These data could help to 
further explore the functions of potential hub genes in 
the development and progression of atherosclerotic 
plaques. We also found a total of 45 KEGG pathways 
with significantly abundant DEGs (adj. p<0.05, 
Supplementary Table 3) in the poor prognosis sets. 
CytoNCA analysis was used to develop Figure 3F, 
which plots the interactive networks containing 81 
nodes (i.e., key genes in PPI network analysis). We also 
obtained their key potential hub nodes by combining the 
above results of GO, KEGG and PPI in the poor 
prognosis sets, just as in the method of distinguishing 
plaque sets. 
 
Venn diagram identification of the common 
differentially expressed genes and pathways of the 
differentiating plaque sets and poor prognosis sets 
 
Next, we used diagram analysis to select the genes and 
pathways of the differentiating plaque sets and poor 
prognosis sets, which were vital to distinguish the AS 
state and identify advanced-stage and ruptured plaques. 

 

 
 

Figure 2. Heatmaps and PCA score trajectory plots showing relative fold changes (FCs) of mRNAs in differentiating plaque 
sets and heatmaps and PCA score trajectory plots in poor prognosis sets. (A, C, E, G) Heatmap showing 51 DEGs in the 
differentiating plaque sets and 146 DEGs in the poor prognosis sets after RRA analysis. In the differentiating plaque sets (GSE40231 and 
GSE100927), samples are sorted by columns, and genes are sorted by rows. Cyan squares represent the control group, and red squares 
represent the AS group. In the poor prognosis sets (GSE28829 and GSE41571), the blue/green square represents the early/stable stage of the 
AS group, and the yellow/red square represents the advanced/ruptured stage of the AS group. (B, D, F, H) PCA score trajectory plots showing 
obvious differences with those DEGs from RRA in the differentiating plaque sets or in the poor prognosis sets. (I) Venn diagram showing 51 
DEGs in the differentiating plaque sets and 146 DEGs in the poor prognosis sets. A total of 9 shared hub genes were identified. 
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Figure 3. Functional enrichment analysis of candidate genes in differentiating plaque sets and poor prognosis sets. The 
potential hub genes were chosen using the p values corrected with the Holm step-down Bonferroni procedure. (A) GOCluster plot showing 
the relationship between 51 DEGs that were highly related to the AS state from RRA analysis and their related GO terms in differentiating 
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plaque sets. For all genes, their high (low) logFC values are demonstrated by brown (turquoise) rectangles. (B) KEGG enrichment pathways 
and PPI network of the 51 DEGs were highly related to the AS state from the RRA analysis in differentiating plaque sets. The purple round 
node represents enriched pathways. Red rectangle nodes are upregulated genes, and red triangle nodes are upregulated potential hub 
genes. Green rectangle nodes are downregulated genes, and green triangle nodes are downregulated potential hub genes. The width of the 
line is proportional to the combined score of PPI. (C, D) An advanced bubble chart demonstrates enrichment of DEGs in signaling pathways in 
differentiating plaque sets. The Y-axis label is the pathway, and the X-axis label is the gene ratio (gene ratio=number of DEGs enriched in the 
pathway/amount number of all genes in background gene set). The size and color of the bubble represent the number of enriched DEGs of 
poor prognosis sets in the pathway and the significance of enrichment, respectively. (E) GOChord plot showing the 48 genes involved in more 
than 3 pathways and associated with ruptured and advanced plaques. Their contributions to the enrichment are arranged in the order of 
their level of expression. (F) KEGG enrichment pathways and PPI network of the 146 DEGs that were highly related to ruptured and advanced 
stages from the RRA analysis in poor prognosis sets. Blue triangular node: enriched pathways. Pink round node: upregulated genes, pink 
rectangular node: upregulated hub genes. Green round node: downregulated genes, green rectangular node: downregulated hub genes. The 
width of the line is proportional to the combined score of PPI. 

The results identified the C-C motif chemokine ligand 
18 (CCL18) gene, C-C motif chemokine ligand 4 
(CCL4) gene, matrix metallopeptidase 9 (MMP9) gene 
and secreted phosphoprotein 1 (SPP1) (Figure 4A), 
which were all included in the 9 shared hub genes from 
RRA analysis (Figure 2I), indicating that they may be 
the best predictors or interventional targets for 
subsequent validation. They were all upregulated in 
both the differentiating plaque sets and poor prognosis 
sets, and the range of the fold change was 2.06 to 4.95 
times (Figure 4B). In addition, 4 GO processes 
(including positive regulation of ERK1 and ERK2 
cascades) and 9 KEGG pathways were common 
pathways to these two sets (Figure 4C and 4D). The 
Venn diagram analysis helped us identify common hub 
genes and pathways of the two sets as well as select 
important pathways and candidate genes that could be 
correlated with AS pathogenesis. 
 
ROC curve and linear regression analyses of the 
four common hub genes 
 
Therefore, our next step was to conduct ROC curve 
and linear regression analyses of these common hub 
genes. The linear regression analyses indicated that the 
four common hub genes (CCL18, CCL4, MMP9, and 
SPP1) were positively correlated with the AS state and 
the advanced stage (all p<0.005, Figure 5A and 5C). 
Their ROC curves confirmed that they could 
distinguish the AS state and the advanced stage (all 
p<0.05), and the AUCs were between 0.788 and 0.923 
(Figure 5B and 5D). 
 
Lipid metabolism and inflammatory immune-related 
pathways are progressively prominent in advanced-
stage atherosclerotic plaques: Gene set enrichment 
analysis (GSEA) 
 
To determine the possible functional pathways of these 
hub genes at the advanced stage of atherosclerotic 
plaques without ignoring their slight changes at the 
beginning of the late stage (their expression changes 
had not yet reached a significant level), we performed a 

GSEA to map the biological processes of these genes 
(Figure 6C). 
 
GSEA is particularly useful for identifying the 
correlations between related pathways of genes. The 
results revealed that the expression of the 4 hub genes 
was positively correlated with lipid metabolism and 
inflammation-related pathways. For example, lipid 
metabolism–related gene sets for galactose metabolism, 
adipocytokine signaling pathway, glycerolipid 
metabolism, and steroid biosynthesis pathways were 
upregulated at the advanced stage, with high enrichment 
on the basis of increasing gene expression, as well as 
the inflammatory immune-related lysosome, leukocyte 
transendothelial migration, apoptosis and chemokine 
signaling pathway (Figure 6C). Expression levels of 
peroxisome proliferator–activated receptor γ (PPARγ), 
C/EBP and fatty acid binding protein (FABP4), which 
are important markers of adipogenesis and 
adipocytokine pathways, were increased in AS plaques 
compared with the control samples (Figure 7A, 7B). 
These results suggested that slight changes in the 
expression of the 4 hub genes might also cause lipid 
metabolism and inflammatory immune-related 
pathways to become progressively enhanced in 
advanced-stage atherosclerotic plaques, suggesting that 
researchers should focus on small changes in key 
indicators in the clinical setting. 
 
Verification in the clinical samples: qRT-PCR, 
western blotting and immunohistochemistry 
 
To confirm and validate the expression of the 4 
common hub genes that were determined from the 
microarray data analysis, we included clinical samples 
of 30 patients suffering from carotid artery stenosis in 
total (>70%, determined by ultrasonography) in the 
present study. The symptomatic patients with ruptured 
plaques showing neurological symptoms (nondisabling 
stroke or transient ischemic attack within the last 6 
months) were assigned from the Department of 
Vascular Surgery of Peking Union Medical College 
Hospital, Beijing. 
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The mRNA expression of the 4 common hub genes 
(CCL18, CCL4, MMP9 and SPP1) was examined using 
qRT-PCR in 30 pairs clinical samples (15 stable plaques 
vs. control group 1 and 15 paired ruptured plaques vs. 
control group 2, n=30 pairs). The results from qRT-PCR 
showed that the mRNA levels of CCL18, CCL4, MMP9 
and SPP1 increased by 3.46-, 3.18-, 6.67- and 4.52-fold 
in stable plaques compared with normal controls, 

respectively (Figure 6B). The above genes were more 
prominently elevated in the ruptured plaques, and the 
mRNA levels of CCL18, CCL4, MMP9 and SPP1 were 
increased by 5.88-, 4.31-, 10.86- and 12.21-fold 
compared with those of the adjacent normal controls. 
Western blotting results showed that the expression levels 
of these hub proteins (SPP1, MMP9, CCL4, and CCL18) 
increased in ruptured plaques compared with adjacent 

 

 
 

Figure 4. Common hub genes and pathways in differentiating plaque sets and poor prognosis sets. A five-set Venn diagram 
showing a combination of all differentially expressed genes of GO processes and KEGG pathways in differentiating plaque sets and poor 
prognosis sets. A total of 4 common genes were identified. Fold change and P value of the 4 common genes in differentiating plaque sets and 
poor prognosis sets. They are all upregulated genes. Four-way Venn diagram of GO processes and KEGG pathways identified in differentiating 
plaque sets and poor prognosis sets. A total of 4 GO processes and 9 KEGG pathways were identified in common between the training set 
and differentiating plaque sets. Details of the common pathways from Venn diagram analysis. FC1: fold change in differentiating plaque sets; 
FC2: fold change in poor prognosis sets. 
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normal tissues (Figure 7A, 7B). The results are consistent 
with the data collected from our comprehensive 
bioinformatics analysis above. We also verified the 
adipogenesis and adipocytokine pathway proteins 
(PPARγ, C/EBP and FABP4) in ruptured plaques, which 
showed mild to moderate elevations (Figure 7A, 7B).  
 
Ten carotid histologic sections were evaluated. The 
most frequent plaque morphology was fibroatheroma in 

both symptomatic and asymptomatic plaques. Plaque 
rupture was more commonly observed in symptomatic 
plaques than asymptomatic plaques. Fibrocalcific 
plaques and/or calcified nodules were more common in 
asymptomatic plaques than symptomatic plaques. 
Representative histologic images from stable and 
ruptured plaques are shown in Figure 7C. The necrotic 
core area was significantly greater and the extent of 
calcification was significantly lower in ruptured plaques 

 

 
 

Figure 5. Linear regression analyses and ROC curve in training and poor prognosis sets. (A, C) The correlations of the expression of 
the 4 hub genes with AS state and advanced stage by linear regression analysis. (B, D) ROC curves of the 4 common hub genes for diagnosing 
the AS state or the advanced stage. According to one arbitrary guideline [31], we distinguished among excellent accuracy (0.9 ≤ AUC < 1), 
good accuracy (0.8 ≤ AUC < 0.9) and noninformative accuracy (AUC = 0.5). 
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compared with stable plaques. Immunohistochemical 
analysis revealed that ruptured plaques had a greater 
area occupied by CD68 macrophages and significantly 
greater expression of SPP1 and CCL18 than plaques 
from asymptomatic patients. There was a trend towards 
increased expression of MMP9 and CCL4 in ruptured 
plaques, although the differences compared to stable 
plaque lesions were not significant. 

DISCUSSION 
 
In the present study, we first identified 51 mRNAs in 
AS based on two mRNA profiling studies by using the 
RRA method. Twenty-six upregulated mRNAs and 
twenty-five downregulated mRNAs had a good 
diagnostic ability (Supplementary Table 5). Next, we 
investigated two other independent public databases, 

 

 
 

Figure 6. Verification in the clinical samples and gene set enrichment analysis (GSEA). (A) Human carotid artery segments were 
collected from below (normal control) and at (plaque-containing) the carotid bifurcation. (B) CCL18, CCL4, MMP9 and SPP1 expression in 
stable plaques (n=15 pair) and ruptured plaques (n=15 pair) were evaluated by qPCR and normalized against the corresponding 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression. An asterisk represents p<0.05, and two asterisks are shown as p<0.01 
when compared with the normal control group. (C) Gene set enrichment analysis (GSEA) plots showing lipid metabolism and inflammatory 
immune-related gene sets progressively affected advanced-stage AS. 
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Figure 7. Hub proteins and potential pathway proteins were increased in AS plaques, especially in tissue sections of ruptured 
plaques. (A) Detection of hub proteins (SPP1, MMP9, CCL4, and CCL18) and potential pathway proteins (PPARγ, C/EBP and FABP4) in 
ruptured plaques and adjacent normal tissues by western blots. β-actin was used as a loading control. Bands were quantified with ImageJ 
software. (B) Line chart showing IOD/area of proteins in immunoblot analysis. Red squares represent AS plaques, and the green circles 
indicate adjacent normal tissues. The different colored lines represent the trend of protein expression. (C, D) H&E (a) and Movat (b and c, low 
and high power) staining and immunoperoxidase antibody staining using anti-CD68 (d), anti-SPP1 (e), anti-MMP9 (f), anti-CCL4 (g), and anti-
CCL18 (h). Ca, calcification; PR, plaque rupture; Th, thrombus. 
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including 40 tissues from advanced and ruptured stages. 
The bioinformatics analysis suggested that the high 
expression of CCL18, CCL4, MMP9 and SPP1 had 
good value in differentiating plaques and even 
identifying advanced and ruptured stages. The results of 
ROC curve and linear regression analyses validated 
these results. Then, we further obtained the expression  
differences in these 4 genes between our matching  
carotid atherosclerotic plaque samples in advanced and 
ruptured stages and controls (n=30 pairs) by using qRT-
PCR, western blotting and immunohistochemistry, which 
were consistent with the above bioinformatics results. As 
expected, our comprehensive analysis identified the 
strong clinical value of these genes. Additionally, GSEA 
revealed that slight changes in the expression of these hub 
genes within atherosclerotic plaques were positively 
correlated with lipid metabolism and inflammation-related 
pathways. Therefore, we should focus on small changes to 
key indicators in the clinical setting. Taken together, our 
data provide evidence for the four genes as tissue-specific 
marker cues and can be served as indicators of future 
interventions. 
 
Datasets of mRNA expression profiling lack consistent 
results between studies because of the application of 
different laboratory protocols and technology platforms 
and small sample sizes. Although the optimal approach 
is to pool them together, such a strict method is usually 
unfeasible because of the different platforms. To 
overcome this limitation, researchers could analyze 
separate datasets and aggregate the resultant gene lists. 
Here, we adopted the RRA approach [8,11,12] to 
analyze mRNAs in advanced and ruptured AS obtained 
from independent profiling experiments. The core 
element of this method is the search for the most 
commonly recognized genes among different studies. 
 
Usually, self-organizing map analysis and individual 
gene-based analysis can identify genes with significant 
expression changes. Nevertheless, using these two 
methods may miss the subtle differences in genetic 
expression of functionally and biologically related gene 
sets in response to AS status or progression stage. To 
overcome the shortcomings of this analysis, we used the 
popular GSEA method [13, 14] to conduct a 
comparative study of different gene set enrichment 
methods for the four hub genes between two groups 
(poorly expressed or highly expressed in the advanced 
AS group). GSEA is more powerful than traditional 
single-gene approaches for exploring the effect of 
gradual change in expression of target genes in a 
specific disease stage, such as the advanced AS stage in 
this study (Figure 6C). 
 
We performed a comprehensive analysis of four mRNA 
profiling databases by evaluating 136 datasets from 

GEO and 94 datasets from ArrayExpress. To our 
knowledge, this is the first comprehensive research that 
combines all data on mRNA research at the tissue level 
from the public database and specifically investigated 
the common hub genes of the human AS state and of 
the advanced and ruptured stages of AS. This study 
proposed four promising mRNAs that could provide 
some clues to future intervention targets and their 
underlying mechanisms. These data of our study will 
also help predict the clinical deterioration of patients 
with AS plaques in the advanced and ruptured stages. 
 
When using mRNAs as candidate prognostic and 
diagnostic biomarkers for AS, some factors should be 
taken into account. First, a biomarker’s fold change is 
supposed to be significant enough to differentiate AS 
tissues from control tissues and even discriminate 
between the advanced and ruptured stages. The average 
fold changes of the four identified upregulated common 
hub mRNAs (CCL18, CCL4, SPP1, MMP9) from 
datasets (Figure 4B) or in our human carotid plaques 
validated by qRT-PCR (Figure 6B) were all more than 
twice, and their expression levels also increased in the 
AS plaques, as shown by immunoblot analysis. The 
expression levels of CCL4 and CCL18 were not 
obvious in asymptomatic stable plaques, which are 
easily lost during immunohistochemical manipulation 
because they are secreted proteins; however, they were 
shown to be significantly increased in AS plaques by 
the more sensitive mRNA and protein expression 
experiments. 
 
Second, the biological function of all mRNAs should be 
investigated comprehensively so that we can use them in 
clinical settings. The GSEA of putative target genes 
indicated that variation of the expression of the 4 hub 
genes may influence the lipid metabolism and 
inflammatory immune-related pathways involved in AS 
progression (Figure 6C). In our GSEA list, steroid 
biosynthesis, biosynthesis of unsaturated fatty acids, 
cytokine-cytokine receptor interaction, lysosome, 
chemokine signaling pathway and leukocyte 
transendothelial migration were ranked at the top; these 
findings are consistent with the known primary functions 
of these hub mRNAs. Then, the markers of the lipid 
metabolism synthesis pathway were further explored by 
immunoblotting. Activated nuclear receptor PPARγ is a 
master regulator of adipogenesis, acting as a transcription 
factor of FABP4 expressed in mature adipocytes [15]. A 
previous study [16] demonstrated that the differentiated 
state of adipose cells is achieved and maintained via a 
cycle of positive cross-regulation between C/EBPα and 
PPAR-γ. PPAR-γ, C/EBP and FABP4 are important 
markers of adipogenesis and adipocytokine pathways, 
consistent with the four hub protein trends and increased 
in ruptured plaques (Figure 7A, 7B). 
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These four hub genes have been shown to be matrix-
related factors (MMP9 and SPP1) or inflammatory 
factors (CCL18 and CCL4), which are increasingly 
secreted when cell integrity is disrupted or 
inflammatory stimuli occur. For example, the 
chemokine CCL18 serves as a marker of anti-
inflammatory activation and has been validated as a 
specific marker of refractory unstable angina pectoris 
[17]. CCL18 might participate in human atherosclerotic 
plaque formation [18]. LPS-induced CCL4 production 
in human monocytes has a significant positive 
correlation with LDL and total cholesterol concentration 
in vitro [19], and increasing expression of CCL4 in 
peripheral blood of patients with coronary artery disease 
was reduced by statin therapy [20]. The above pathway 
is consistent with the GSEA finding of this study that 
abnormalities of CCL4 may affect lipid metabolism 
gene sets (Figure 6C). MMP-9 modulates cholesterol 
metabolism, which affects the hepatic transcriptional 
responses to dietary cholesterol [21], and MMP-9 is 
associated with dysfunctional HDL and its 
proinflammatory properties [22]. Thus, dysregulation of 
MMP-9 can result in metabolic disorders, which could 
promote the formation of AS. In vitro, MMP-9, which is 
mainly derived from macrophages, plays dual roles in 
AS regulation, and MMP-9 cleaves extracellular matrix 
(ECM) substrates (particularly collagen) within the 
fibrous cap to increase the vulnerability of the plaque 
and promotes the migration of smooth muscle cells 
(SMCs) as well as transforming growth factor (TGF)-β1 
signaling to enhance ECM deposition [23]. However, 
the contribution of all effects to on the development of 
plaque remains to be elucidated, and the effects of the 4 
hub genes on each other have not been confirmed. SPP1 
is also known as osteopontin and is an adhesion 
molecule and proinflammatory cytokine implicated in 
monocyte chemoattraction and cell-mediated immunity. 
Previous studies [24, 25] indicated that genetic SPP1 
deficiency weakens AS development within apoE-/- 
mice, and macrophage SPP1 expression regulation is 
one mechanism whereby LXR ligands might influence 
the AS and inflammatory responses of macrophages. 
SPP1 mRNA has been observed within the wall near 
atheromas and is closely related to calcification [26]. 
When both SPP1 transgenic and wild-type mice were 
exposed to atherogenic diets, the former exhibited 
enhanced aortic atherosclerotic disease. Furthermore, 
foamy macrophages within their atherosclerotic plaques 
expressed higher levels of SPP1 than such macrophages 
in control mice [27]. In ApoE–/– mice exposed to 
AngII, SPP1 deficiency not only caused a reduction in 
the size of the aortic atherosclerotic lesions but also 
decreased the abundance of macrophages as well as 
their viability in the atherosclerotic plaque [28]. Thus, 
SPP1 contributes not only to plaque formation but also 
to plaque instability. During angiogenesis and vascular 

remodeling, behaviors of vascular smooth muscle cells 
(VSMCs) and their interaction with ECM play a critical 
role in the processes. Rat VSMCs overexpressing 
MMP9 showed enhanced migration and invasion in a 
collagen invasion assay [29]. Genetic MMP9 knockout 
impaired the migratory activity of isolated VSMCs and 
decreased intimal hyperplasia [29, 30]. In addition, a 
lack of MMP9 caused reorganization of the collagenous 
matrix and reduced VSMC attachment to gelatin [30, 
31]. Studies have also found that VSMC replication is 
significantly decreased in MMP9(−/−) arteries and that 
MMP9 may regulate VSMC proliferation by 
modulating cell adhesion as well as the cadherin and β-
catenin association [32]. These findings indicate that 
MMP9 not only degrades ECM but also maintains a 
connection between the cell surface and matrix. Various 
cytokines induced in vascular injury and 
immunoinflammatory responses contribute to AS and 
restenosis through MMP9-mediated VSMC migration. 
For CCL18, as mice appear to have fewer chemokine 
genes than humans, no CCL18 homologue has been 
found in rodents thus far [33]. RT-PCR analysis and in 
situ hybridization had demonstrated that CCL18 was 
only expressed in human atherosclerotic plaques and 
that the mRNA was restricted to macrophage-rich areas 
of the lesions [34]. The accumulation of macrophages in 
the arterial tunica intima plays an important role in the 
development of AS. CCL4 has not been extensively 
studied, similar to other members of the CC chemokine 
subfamily, and there are currently no studies of 
corresponding knockout mice. CCL4 was also identified 
upregulated in vulnerable AS plaques and was 
expressed by T cells in advanced atherosclerotic lesions 
in stroke patients, indicating that it might play a 
potential role in the development of AS [35, 36]. 
 
Third, there should be sufficient information on mRNA 
expression patterns within different specimen types. In 
the context of partial inconsistencies between plasma-
based and tissue-based results [37], we focused on 
research that analyzed the expression of mRNAs 
between AS plaques and control tissues, further 
exploring if DEGs of the AS state were also in the 
plaques of advanced and ruptured stages, because we 
thought the results could be tissue-specific. Although 
some studies have reported that circulating mRNAs in 
plasma could be more convenient and timely to 
diagnose AS than other molecules, we focused on 
tissue-specific hub genes to provide targeted directions 
for subsequent drug interventions. Large sample data in 
previous studies confirmed that partly genes are 
elevated in the peripheral blood of patients with 
coronary heart disease or AS and indirectly 
demonstrated that they can also be monitored as 
noninvasive markers. Additionally, chemokines play 
important roles in the pathology of AS and related 
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cardiovascular diseases. The human plaque samples of 
the previous studies came from fewer than 40 cases, and 
there may have been bias, so greater sample numbers 
would be more reliable and persuasive. The human 
plaque samples involved in the analysis in our study 
reached 120 cases (90 cases from the public database 
and 30 cases from clinical validation). Among the four 
mRNAs in this study, CCL18 was significantly 
upregulated in AS plaques. After strict filtering, the 
expression of CCL18 and SPP1 were still increased. 
The concentrations of SPP1 and CCL18 have been 
significantly and consistently upregulated within the 
local versus peripheral blood of acute myocardial 
infarction [38]. One review reported that high plasma 
SPP1 was related to the increased risk of major adverse 
cardiac events [39] and to the extent and presence of 
coronary artery disease [40]. Nevertheless, no studies 
have reported the function of SPP1 within carotid 
plaque tissues. In our study, all RNA levels and protein 
levels and the results of immunohistochemistry showed 
that SPP1 expression was obviously increased in 
ruptured carotid plaques. CCL4 has also been detected 
in human AS plaques [41], and its plasma level reflects 
the level of proatherogenic cytokines in plaque tissue 
[42]. These data, combined with our findings, support 
CCL4’s potential role in atherosclerotic disease and 
plaque vulnerability. MMP-9, one of the four hub genes, 
is a critical enzyme released from macrophages. 
Elevated serum MMP-9 is independently associated 
with plaque instability [43] and severity [44]. Another 
study revealed that the role of MMP9 in the degradation 
of atherosclerotic fibrous caps leads to fissures and 
eventually to acute thrombosis [45] and might be a 
target for unstable plaque treatment [46]. Therefore, 
MMP9 may be a tissue-specific potential diagnostic 
marker of the ruptured stage of AS. These data 
illustrated the reliability of our bioinformatics analysis. 
These findings provide a new idea for further 
exploration of the progression of AS. 
 
Last but not least, it is necessary to rigorously validate 
and demonstrate reproducibility within one 
independent cohort of patients to confirm the 
prognostic and diagnostic value of these common hub 
genes. We validated the 4 candidate hub genes within 
AS samples through experiments and verified that their 
expression was consistent with the results of the 
bioinformatics analysis in this study. We used a 
comprehensive analysis that combined some individual 
research results to increase the statistical power and 
then resolved the inconsistency between various 
profiling studies. This method identified potential hub 
genes that were stable and critical for various 
functions. Thus, researchers should obtain a holistic 
view of candidate mRNAs from multiple studies to 
avoid one-sided opinions. 

Nevertheless, we must admit that our analysis has 
certain limitations. The main limitation is the strict 
control of filtering conditions in the bioinformatics 
analysis of this study. For example, only DEGs with 
coexisting results of GO enrichment, KEGG signaling 
pathway analysis and the correlation score list of the 
PPI network could be considered potential hub genes. 
Therefore, the screened genes did not include all of the 
AS-related genes that have been reported thus far. Our 
conclusions will be more convincing if further 
prospective studies of multicenter clinical trials are 
performed. Third, the present study was validated with 
carotid plaques. AS is a disease affecting large and 
medium elastic and muscular arteries, especially in 
turbulent flow vessels, and the symptoms of coronary 
heart disease caused by coronary AS are the most 
urgent among AS. Considering the difficulty in 
obtaining coronary atherosclerotic plaques, we have 
combined the results of carotid plaques and 
bioinformatics analysis to explore the possibility of 
these four hub genes as intervention targets. Although 
previous studies have linked them to disease in the 
blood, in the future by designing a large sample cohort 
study could be useful in clinical practice. AS is 
complicated pathologically, and no single biomarker is 
optimal. These four biomarkers should be used together 
to monitor and diagnose the progression of AS or the 
efficacy of treatment. 
 
Our study proposed an approach to resolving the 
differences between studies and may provide clinical 
value for research on mRNAs in AS. The 4 identified 
hub genes (CCL18, CCL4, MMP9 and SPP1) might be 
utilized as diagnostic biomarkers or even prognostic 
factors, and they could serve as targets for interventions 
of plaque progression. 
 
MATERIALS AND METHODS 
 
Study design and data collection 
 
Four microarray datasets (GSE40231, GSE100927, 
GSE28829 and GSE41571) of human AS were obtained 
from the NCBI Gene Expression Omnibus (GEO) and 
ArrayExpress in accordance with our criteria up to 
August 4, 2018 (Figure 1). The former two were used 
for gene expression profiles for AS, while the latter two 
were analyzed for ruptured and advanced stages of AS. 
A total of 161 samples (71 control or early stage and 90 
cases or advanced stage) were analyzed in our study 
(Table 1). They were gathered from patients or donors 
in different countries. These four datasets were 
produced independently utilizing the GPL17077 and 
GPL570 platforms, and the normalization and quality 
control of these data were carried out with the “affy” R 
package [47] in our study. 
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Differentially expressed gene (DEG) screening and 
principal component analysis (PCA) in testing and 
differentiating plaque sets 
 
Data analysis was performed using the “limma” R 
package [52] to detect each DEG between the AS state 
and control or early stage and advanced stage after 
normalizations. The |log2fold change (FC)|>1 and false 
discovery rate (FDR)<0.05 were used as the cut-off 
criteria. Heatmaps and volcano plots were plotted using 
the pheatmap [53] and ggplot2 [54] package. Two 
features were extracted from the genes of each group 
using an unsupervised PCA method. 
 
Comprehensive analysis by the robust rank 
aggregation (RRA) method 
 
Different expression profiles of genes might show 
DEGs to obtain precise gene expression levels [55]. 
Therefore, we conducted a comprehensive analysis 
utilizing the “RobustRankAggreg” R package [6]. This 
approach assigns a p value to all elements in the list 
aggregated, indicating how much better its rank is than 
that of the null model, which expects random ordering. 
For assessing the stability of the obtained p values, 
leave-one-out cross-validation was utilized within the 
RRA algorithm [56]. The analysis was repeated 10,000 
times, and a random gene list was left out of the 
analysis each time. Then, the obtained p values from all 
rounds for all mRNAs were averaged. We conducted 
one subcomprehensive analysis of AS or non-AS 
samples (GSE40231 and GSE100927), and another 
analysis was performed in early- or advanced-stage and 
ruptured or stable plaques (GSE28829 and GSE41571) 
because they were different stages of AS, which served 
as the poor prognosis sets. 
 
Enriched Gene Ontology (GO) functional 
enrichment analysis, Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis and 
protein-protein interaction (PPI) network 
construction 
 
To explore the potential mechanism of how DEGs in 
comprehensive analyses impact the correlative AS state 
and advanced stage, we uploaded potential hub genes 
from RRA analysis into the Database for Annotation, 
Visualization and Integrated Discovery (DAVID) [57] 
database and performed GO functional enrichment 
analysis [58] and visualization on KEGG pathway maps 
by KOBAS [59]. A false discovery rate (FDR)<0.05 was 
used as the cut-off criterion. We used GOChord plot 
functions of the GOplot R package to add quantitative 
information about molecules to the GO terms of interest 
[60], which permitted us to incorporate data obtained 
from the measurements of the expression level with the 

data derived from functional annotation enrichment 
analysis. Additionally, the CytoNCA plug-in [61, 62] was 
applied to Cytoscape 3.2.1 [63] using betweenness 
centrality (BC), degree centrality (DC), and closeness 
centrality of the nodes of the PPI network as evaluation. A 
confidence score greater than 0.4 in the PPI network was 
considered significant. In this part, the common genes in 
the above three analyses served as common hub genes. 
 
Venn diagram analysis 
 
Venn diagram analysis was conducted by the 
VennDiagram R package [64, 65] for DEGs and 
pathways, which were filtered from datasets by GO, 
KEGG and PPI methods, and the results of RRA. The 
diagrams visualized the overlapping genes and 
biologically complementary aspects. 
 
Diagnostic effectiveness evaluation 
 
For diagnostic analysis, the patients were divided into 2 
groups in accordance with the expression of hub genes 
(low vs. high). Trait correlations were calculated and 
plotted using the corrplot package [66]. We investigated 
the optimal cut-off value by maximizing the Youden 
index, plotted the ROC curve, and calculated the AUC 
with the “ROCR” package [67]. We used one guideline 
[68] to distinguish between excellent accuracy 
(0.9≤AUC<1), good accuracy (0.8≤AUC<0.9) and 
noninformative accuracy (AUC=0.5). When the AUC 
value of the hub gene was greater than 0.8, it was 
considered to have excellent specificity and sensitivity 
to distinguish between the AS state or advanced stage. 
 
Ethics statement and sample collection 
 
This study was approved by the Department of 
Cardiology and Department of Vascular Surgery of 
Peking Union Medical College Hospital, Chinese 
Academy of Medical Sciences and Peking Union 
Medical College (Beijing, China). Symptomatic patients 
(n=15, average age: 66.8 years, age range: 55–78 years) 
and asymptomatic patients (n=15, average age: 65.1 
years, age range: 60–70 years) with internal carotid 
artery stenosis >70% were included in the study 
(Supplementary Table 4). Lesion morphology was 
assessed using a simplified scheme as previously 
reported [69]. Carotid plaques were characterized as 
pathologic intimal thickening, fibroatheromas, thin cap 
fibroatheromas, and ruptures with ulceration or luminal 
thrombi. Stable plaque phenotypes were generally 
fibrotic plaques with or without matrix calcification and 
healed plaque ruptures. 
 
Consistent with the method of a previous study [70], 
each carotid artery segment was collected at the time of
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Table 2. Primers for real-time PCR. 

Gene Forward (5′ to 3′) Reverse (5′ to 3′) 

GAPDH GGTGAAGGTCGGAGTCAACGGATTTGGTCG GGATCTCGCTCCTGGAAGATGGTGATGGG 
hMMP9 ATTTCTGCCAGGACCGCTTCTACT CAGTTTGTATCCGGCAAACTGGCT 
hCCL4 CTGTGCTGATCCCAGTGAATC TCAGTTCAGTTCCAGGTCATACA 
hCCL18 GGGGGCTGGTTTCAGAATA CTCCTTGTCCTCGTCTGCAC 
hSPP1 CTCCATTGACTCGAACGACTC CAGGTCTGCGAAACTTCTTAGAT 

 

endarterectomy en bloc from the intima to the external 
elastic lamina. Segments collected from the proximal 
cardiac carotid artery (“normal control”) and at the 
(plaque-containing) carotid bifurcation (Figure 6A) were 
snap-frozen within liquid nitrogen and kept at –80°C for 
qPCR and western blotting. After formalin fixation, ten 
morphologically complete carotid plaques collected at 
endarterectomy were embedded in paraffin and serially 
sectioned throughout the lesion. Histologic sections were 
prepared at 5 microns, affixed to charged slides, stained 
for histomorphometric analysis by H&E and modified 
Movat pentachrome, and underwent 
immunohistochemistry where CD68 (pan-macrophage 
marker), MMP9, SPP1, CCL4 and CCL18 were evaluated 
(Figure 7C). 
 
Validation of the mRNAs using quantitative real-
time polymerase chain reaction (qRT-PCR) 
 
RNAiso Plus reagents (cat. no. 9109, TaKaRa Bio, Inc., 
Otsu, Japan) were used to extract total RNA from the 
frozen heart tissues in accordance with the instructions of 
the manufacturer. One cDNA reverse transcription kit 
(cat. no. DRR036A, TaKaRa Bio, Inc.) was used to 
reverse-transcribe RNA, and the SYBR Green PCR kit 
(cat. no. DRR082A, TaKaRa Bio, Inc.) was used to 
amplify the resultant cDNA. Then, 2 µg of cDNA was 
tested in each reaction with the 7500 Fast Real-Time 
PCR System (Applied Biosystems; Thermo Fisher 
Scientific). Each experiment was conducted at least three 
times. The 2-ΔΔCt method was adopted to calculate the 
expression of genes relative to the housekeeping gene 
GAPDH. Table 2 shows the primers applied to qRT-
PCR. The primers used in our study were derived from 
previous studies [71, 72] or Harvard University's Primer 
Bank (https://pga.mgh.harvard.edu/primerbank/) and 
were tested by BLAST analysis before the experiment. 
 
Identification of potential mRNAs and gene set 
enrichment analysis (GSEA) 
 
The median value of the expression level of each hub 
gene was utilized as the cutoff point for dividing data into 
low and high groups for AS samples at an advanced stage. 

GSEA [15, 73] was conducted between the two groups to 
determine the potential functions of these hub genes in 
advanced-stage AS. The annotated gene set 
c2.cp.kegg.v6.1.symbols.gmt was selected as the 
reference gene set. Under the cutoff criterion of NOM p 
value<0.05, the pathways with the top rank of normalized 
enrichment score (NES) were chosen for analysis. 
 
Immunohistochemistry 
 
Immunohistochemistry for target proteins was 
performed by using the Vectastain Elite ABC Kit 
(Vector Laboratories, CA). Paraffin sections were 
deparaffinized and rehydrated through a graded alcohol 
series. Microwave heating at 450 W in 0.01 M EDTA 
buffer was performed for 20 minutes for antigen retrieval. 
Incubation with primary antibodies was overnight at 4°C. 
Control incubations were performed by omitting the 
specific primary antibody. Slides were counterstained 
with hematoxylin. The following antibodies were used: 
pan-macrophage marker CD68 (1:1000; ab213363, 
Abcam, Cambridge, UK), MMP9 (1:1000; ab76003, 
Abcam, Cambridge, UK), SPP1 (1:1000; ab214050, 
Abcam, Cambridge, UK), CCL4 (1:1000, ab235961, 
Abcam, Cambridge, UK), and CCL18 (1:1000, ab104867, 
Abcam, Cambridge, UK). Computer-assisted color image 
analysis segmentation with background correction was 
used to quantify immunohistochemical staining of 
macrophages and target proteins. 
 
Western blotting 
 
Tissue from the ruptured atherosclerotic plaque or control 
was lysed in ice-cold buffer containing 50 mM Tris-HCl, 
pH 7.4, 150 mM NaCl, 1% Triton X-100, 1% sodium 
deoxycholate, 0.1% SDS, sodium orthovanadate, and 
protease inhibitor cocktail (Beyotime, P1006, Shanghai, 
CHN) and 1 mM PMSF (Beyotime, ST506, Shanghai, 
CHN) for 30 minutes. Then, the insoluble material of 
tissue lysates was removed by centrifugation at 12000x g 
and 4°C for 30 minutes. After the protein concentration 
was measured (Beyotime, P0010S, Shanghai, CHN) and 
normalized to the total protein concentration, the tissue 
lysate was resuspended in SDS sample buffer and then 

https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
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denatured at 98°C for 5 minutes. Twenty micrograms of 
total protein was fractionated by electrophoresis on 12% 
or 10% polyacrylamide gels. The proteins were 
transferred electrophoretically onto a nitrocellulose 
membrane (Millipore, IPVH00010, Billerica, MA). After 
being blocked in 5% nonfat dry milk (BD Difco, 232100, 
New Jersey, US), the membrane was incubated with the 
appropriate primary antibodies overnight at 4°C. Proteins 
were detected by probing western blots with antibodies 
specific to β-actin (1:5000; ab8227, Abcam, Cambridge, 
UK), MMP9 (1:1000; ab76003, Abcam, Cambridge, 
UK), SPP1 (1:1000; ab214050, Abcam, Cambridge, 
UK), CCL4 (1:1000, ab45690, Abcam, Cambridge, UK), 
CCL18 (1:1000, ab104867, Abcam, Cambridge, UK), 
and adipogenesis markers (PPARγ, C/EBP FABP4, 
1:1000, CST, Boston, US). Following incubation with 
horseradish peroxidase-conjugated secondary antibodies 
(Beyotime, A0208, Shanghai, CHN), the antigen-
antibody complexes were detected with an enhanced 
chemiluminescence detection reagent kit (Thermo, 
34577, Massachusetts, US). Protein bands were 
visualized with a double-color infrared laser imaging 
system (LI-COR Biotechnology, Nebraska, US). 
Densitometry analysis of the gels was carried out using 
ImageJ software from the NIH (http://rsbweb.nih.gov/ij/). 
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SUPPLEMENTARY MATERIALS 
 
Please browse Full Text version to see the data of Supplementary Tables 1–3. 
 

Supplementary Table 1. GO result of differentiating plaque sets. 

 

Supplementary Table 2. KEGG PATHWAY result of upregulated genes in differentiating plaque sets. 

 

Supplementary Table 3. KEGG PATHWAY result of poor prognosis sets. 

 

Supplementary Table 4. Sample characteristics in this study. 

Parameters Symptomatic patients Asymptomatic patients 
Age (years) 66.8 (SD 7.2) 65.1 (SD 5.2) 
Diabetes (%) 80% 70% 
Hypertension (%) 50% 50% 
Smoking (past or current, %) 60% 60% 
Dyslipidemia (%) 80% 80% 
Statin treatment (%) 90% 80% 
Fasting lipoproteins (mmol/L):  

 
Total cholesterol 4.04 (SD 1.06) 3.77 (SD 0.76) 
LDL cholesterol 2.39 (SD 0.77) 2.24 (SD 0.32) 
HDL cholesterol 0.95 (SD 0.17) 1.01 (SD 0.24) 
Triglycerides 1.18 (SD 0.32) 1.33 (SD 0.27) 
Creatinin (mmol/L) 77.7 (SD 18.99) 68.3 (SD 12.49) 
High sensitive-CRP (mg/L) 4.23 (SD 5.45) 2.84 (SD 1.67) 
White blood cell count (109/L) 6.14 (SD 1.55) 5.89 (SD 1.37) 

 

Please browse Full Text version to see the data of Supplementary Table 5. 
 

Supplementary Table 5. The results of differentiating plaque sets and poor prognosis sets using RRA. 

 


