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Abstract

Expression of the wheat dehydrin gene Cor410b is induced several fold above its non-stressed levels upon exposure to
stresses such as cold, drought and wounding. Deletion analysis of the TdCor410b promoter revealed a single functional C-
repeat (CRT) element. Seven transcription factors (TFs) were shown to bind to this CRT element using yeast one-hybrid
screens of wheat and barley cDNA libraries, of which only one belonged to the DREB class of TFs. The remaining six encoded
ethylene response factors (ERFs) belong to three separate subfamilies. Analysis of binding selectivity of these TFs indicated
that all seven could bind to the CRT element (GCCGAC), and that three of the six ERFs could bind both to the CRT element
and the ethylene-responsive GCC-box (GCCGCC). The TaERF4 subfamily members specifically bound the CRT element, and
did not bind either the GCC-box or DRE element (ACCGAC). Molecular modeling and site-directed mutagenesis identified a
single residue Pro42 in the Apetala2 (AP2) domain of TaERF4-like proteins that is conserved in monocotyledonous plants
and is responsible for the recognition selectivity of this subfamily. We suggest that both DREB and ERF proteins regulate
expression of the Cor410b gene through a single, critical CRT element. Members of the TaERF4 subfamily are specific,
positive regulators of Cor410b gene expression.
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Introduction

Among various transcription factors (TFs) reported to be

associated with abiotic and biotic stress tolerance in plants, the

most widely studied are the drought-responsive element (DRE)

binding proteins (DREBs) and the ethylene response factors

(ERFs). The DREB proteins, known also as the C-repeat (CRT)

binding factors (CBFs), regulate expression of drought/cold stress-

related genes by binding to the CRT element (GCCGAC) [1–6],

while the ERFs are known to bind to the GCC box (GCCGCC)

[7–13] of gene promoters. Both families of proteins contain the

Apetala2 (AP2) domain, while the CBF/DREB proteins are

distinguished further by the presence of two additional regions,

PKKP/RAGRxKFxETRHP (abbreviated PKKPAGR) and

DSAWR, which are located immediately upstream and down-

stream, respectively, of the AP2 DNA-binding domain [14].

Although the ERF proteins are generally known to bind only the

GCC box, at least two ERFs, one from pepper and the other from

wheat, have previously been shown to associate with both the

GCC box and the CRT/DRE element [15,16]. This dual binding

has been suggested to be responsible for dual responses triggered

by a single ERF under different environmental conditions.

Dehydrins, a class of Late Embryogenesis Abundant (LEA)

proteins, constitute an important family of abiotic-stress-responsive

genes [17]. These proteins are constitutively expressed in mature

embryos and endosperm under normal growth conditions. Their

expression is further activated several fold in other plant tissues,

upon exposure to stresses with an osmotic component such as

drought, high salinity and cold [18]. The promoters of genes

encoding dehydrins are strongly activated in vegetative tissues by

these stresses.

The Cor410 gene was originally identified as a gene encoding a

LEA protein that accumulates to similar levels in root, crown and

leaf tissues of freezing-tolerant Gramineae during cold acclimation
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[19]. It has recently been demonstrated that levels of TaCor410

transcripts are highest for low-temperature tolerant wheat

genotypes and lowest for tender genotypes [20]. Highest transcript

levels in crown and leaf tissues of cold-tolerant wheat (Triticum

aestivum L.) were observed on the second day of cold acclimation

[20]. Immunolocalisation of the TaCor410 protein revealed that it

accumulated close to the plasma membrane of cells in the vascular

transition area, where freezing-induced dehydration is likely to be

more severe [21]. This finding suggested that the TaCor410

protein may function in protection of cell membranes under

freezing and/or dehydration conditions. Constitutive expression of

the TaCor410 gene in transgenic strawberry at a level comparable

to that in wheat after cold acclimation resulted in some

improvement in freezing tolerance, although no improvement

was detected in the absence of acclimation [22]. The authors

suggested the need for other protein partners that could be

induced during acclimation for activation of TaCor410. The closest

homologues of TaCor410 reported in other plant species are

AtCOR47 from Arabidopsis [23], HvDhn8 from barley [24] and

OsDhn1 from rice [25]. The expression of AtCOR47 and HvDhn8 is

strongly induced by cold, but also up-regulated by drought and

abscisic acid (ABA) treatments [26,27]. In contrast, expression of

OsDhn1 is most strongly induced by drought, although induction

by cold, high salinity and ABA has also been demonstrated [25].

In a previous study, over-expression of Arabidopsis DREB1B/

CBF1 was found to up-regulate the expression of OsDhn1 in

transgenic rice plants [25], suggesting activation of the OsDhn1

promoter through a drought-responsive element(s). Similarly, up-

regulation of the Dhn8 gene was observed in transgenic bahia grass

plants (Paspalum notatum Flugge cv. Argentine) transformed with a

CaMV35S-HsDREB1A fusion construct containing a DREB gene

from Hordeum spontaneum [28], and up-regulation of HvDhn8 and

TaCor410 in transgenic barley and wheat plants was also seen

following constitutive or drought-inducible over-expression of

either TaDREB2 or TaDREB3 [29]. However, cis-acting promoter

elements responsible for the constitutive expression and stress-

inducible activation of either TaCor410 or TaCor410-like genes

have not been identified. Moreover, while several TFs are reported

to regulate Cor410 gene expression, it is not known which specific

TFs are likely to be most important for stress-inducible activation

of Cor410.

In this work, the promoter of the TdCor410b stress-inducible

gene was isolated from durum wheat and used for identification of

functional DRE/CRT cis-elements via a transient expression assay.

TFs that bind the critical functional CRT element were isolated

and their ability to activate the TdCor410b promoter was

evaluated. Molecular modeling was used to investigate the nature

of protein-DNA binding interactions between different types of

ERF/DREB TFs and promoter elements.

Materials and Methods

Nucleotide sequences reported in this work have been deposited

in GenBank under Accession numbers JN681186 (TdCor410b),

JN681187 (TdERF6), JN681188 (TaERF6), JN681189 (TaERF4a),

JN681190 (TaERF4b), JN681191 (TaERF5a), JN681192

(TaERF5b) and JN681193 (HvERF4).

Promoter cloning and plasmid construction
The full-length coding region of the TaCor410 cDNA (GenBank

accession L29152) was isolated by PCR using a cDNA library

obtained from spikes of drought-stressed wheat (Triticum aestivum L

cv. Chinese spring) as a template. The TaCor410 cDNA was used

as a probe to screen a BAC library prepared from genomic DNA

of Triticum durum cv. Langdon [30], as previously described [31].

The selected BAC clone (#661 E9) was used as a template for

isolation by PCR of the T. durum homolog of TaCor410 (TdCor410),

with primers derived from the coding region of the TaCor410

cDNA. The TdCor410b promoter sequence was identified through

sequencing of the BAC clone. A 2685 bp long promoter region

containing a full-length 59-untranslated region of TdCor410b was

cloned into the pMDC164 vector [32] as described [31] and the

resulting construct was designated pTdCor410b-GUS. TdCor410b

promoter deletions were generated by PCR using AccuPrimeTM

Pfx DNA polymerase (Invitrogen, Mulgrave, Victoria, Australia)

and the TdCor410b promoter as a template. PLACE software

(http://www.dna.affrc.go.jp/PLACE/signalup.html) was used to

predict DRE/CRT elements in the TdCor410b promoter region,

and forward primers were designed so as not to interrupt potential

cis-elements. Promoter deletions were cloned into the pMDC164

vector and used in transient expression assays described below.

An artificial promoter was generated by substitution of the

functional CRT element in the shortest active deletion of the

TdCor410b promoter (263 bp), with three repeats of the GCC-box

(AGCCGCC). A tandem of GCC-boxes was added to the

sequence of the forward PCR primer and the artificial promoter

was generated by PCR. Together with the full length TdCor410b

promoter, the artificial promoter was used in transient expression

assays to test activation properties of ERFs and molecular variants

of TaERF4a in planta.

The coding regions for TaDREB2, TaDREB3, TaERF4,

TaERF4a, TaERF5a, TdERF6, GFP and GUS were cloned into

the pENTR-D-TOPO vector (Invitrogen). The cloned inserts

were verified by sequencing, subcloned into the pUbi vector [29]

and used for transformation of wheat cell cultures. pUbi-GFP and

pUbi-GUS plasmids were used as negative and positive controls,

respectively, and for quantification of the efficiency of biolistic

bombardment in the transient expression assays described below.

Transient expression assay
A transient promoter activation assay, based on co-bombard-

ment of promoter-GUS fusion constructs with pUbi-TF con-

structs, was performed using a suspension cell culture of T.

monoccocum L. initiated from roots [33]. Cell suspensions were

grown in 100 ml of liquid medium (K-strength Murashige-Skoog

(MS) medium supplemented with 2 mg/L of 2,4-dichlorophenox-

yacetic acid (2,4-D) in the dark at 25uC, and were sub-cultured

weekly. Cell suspensions were harvested on the sixth day following

subculture by sieving in a laminar-flow hood and approximately

1 ml of the cell material was spread over a piece of Whatman filter

paper to form a circle of 3.5 cm in diameter. This material was

incubated on K-strength MS + 2,4-D+300 mM sucrose for 2 h

prior to bombardment. The concentration of each plasmid sample

was adjusted to 0.5 mg/ml, then 5 mL each of a plasmid containing

TF coding sequence and a plasmid containing promoter regions

were mixed and co-precipitated with 1 ml of 3 M sodium acetate

(pH 4.8) and 15 ml 100% (v/v) isopropanol. The DNA precipitates

were recovered by centrifugation (13,0006 g, 4uC, 15 min). The

pellet was washed twice in 75% (v/v) ethanol and dried in a

laminar-flow hood. The pellet containing a mixture of plasmid

DNAs was dissolved in 10 ml MilliQ water and used for coating

0.6 mm gold particles [34]. Microprojectile bombardment was

performed using the Biolistic PDS-1000/He Particle Delivery

System (Bio-Rad, Hercules, CA, USA). Bombardment conditions

were 1100 psi, with a 15 mm distance from the macrocarrier

launch point to a stopping screen and a 60 mm distance from the

stopping screen to the target plant material. The distance between

the rupture disk and the launch point of the macrocarrier was
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12 mm. The pre-cultured cell suspensions were bombarded on

growth media containing 150 mM sucrose, and transformed cells

were incubated on the same growth media in the dark at room

temperature for 40–48 h. GUS staining solution was prepared as

described [35], except that 20% (v/v) methanol was added to the

solution before use. Filters containing the transformed cells were

transferred to Petri dishes and 1.3 ml of GUS staining solution was

pipetted under the filter paper so as not to disturb the circle of cell

suspension. The stained cells were incubated overnight at 37uC.

GUS activity was determined by counting the number of blue cells

(foci) using a Leica DC 300F stereomicroscope (Leica Micro-

systems GmbH, Nussloch, Germany). For each combination of

constructs, 3 – 4 independent bombardments were performed.

The pUbi-GFP construct was used to determine the efficiency of

bombardment. Statistical analyses were performed by one-way

ANOVA (GenStat 9.0).

Plant transformation and analysis of transgenic plants
Two vectors were generated, where the 2635S promoter was

excised using the HindIII and KpnII restriction sites from the

pMDC32 vector [32], and replaced with either 2,685 or 275 bp

long fragments of the TdCor410b promoter. These vectors were

designated as pCor410H and pCor410H2, respectively. The

coding region of TaDREB3 cDNA [36] was cloned into pCor410H

and pCor410H2 and the resultant constructs were transformed

into barley (Hordeum vulgare L. cv. Golden Promise), using

Agrobacterium-mediated transformation [29]. Transgene integration

was confirmed by PCR using a forward primer from the 39 end of

the promoter and a reverse primer from the 59 end of the nos

terminator. The basal level of activity of the TdCor410b promoter

fragments in leaves of transgenic T0 lines was determined by

northern blot hybridization analysis using coding region of

TaDREB3 cDNA as a probe. To analyse activity of the long

and short versions of the promoter in transgenic barley plants,

seedlings of each of three selected transgenic lines and three

control wild type plants were grown together in 10-inch pots

containing 2.5 kg of standard coco peat potting mix in a growth

chamber (24uC/50% relative humidity (day) and 18uC/80%

(night), with a 12 h photoperiod). For the drought induction assay,

plants were well watered for three weeks and then water was

withheld. Leaf samples were collected on the last day of watering;

two further samples were collected at 7 and 10 days after the

cessation of watering. Relative soil water content measured using a

Fieldscout spectrometer (Spectrum technologies Ltd., Illinois,

USA) indicated soil water contents of 48 (for well-watered), 7,

and 3% (v/v), respectively. For the induction of the TdCor410b

promoter by cold, plants were grown for three weeks before being

transferred to a cold cabinet (BINDER GmbH, Tuttlingen,

Germany) maintained at 4uC. Leaf samples were collected before

the cold treatment and after 2, 8 and 24 hours of incubation at

4uC. For the analysis of promoter inducibility by wounding, the

leaves of 3-week-old seedlings were mechanically wounded with a

fine metal brush and harvested at 0, 0.5, 1, 4, 8, and 24 hours after

wounding. Leaves from three biological replicates were used for

RNA isolation and Q-PCR analysis.

Preparation of cDNA libraries and isolation of TFs using a
Y1H screen

TaDREB2 (Acc. DQ353852) and TaDREB3 (Acc. DQ353853)

were previously isolated from a bread wheat (T. aestivum cv.

Chinese Spring) endosperm cDNA library (WENDL) [36].

A barley cDNA library (BCG) was prepared from floral tissues/

flag leaf of cold-tolerant barley (cv. Haruna Nijo) under cold/frost

stress. Plants were grown to anthesis in a growth chamber set to

the following conditions: four weeks at 20uC (day)/8uC (night) with

a 10 h photoperiod; four weeks at 21uC (day)/10uC (night) with a

12 h photoperiod; then 22uC (day)/12uC (night) with a 14 h

photoperiod. At anthesis, plants were moved to a frost chamber.

Flag leaves and whole spikes were sampled when the temperature

at floret height (i) fell to 4uC; (ii) had been held at the minimum

temperature of 25.5 uC for 2 h; and (iii) had returned to 4uC. The

RNA was pooled from each time point (30% from the first time

point, 50% from the second time point and 20% from the third

time point), so that the contribution from each time point

comprised equal amounts of RNA from 12 individual heads from

each of three plants.

A wheat cDNA library (WHSL) was prepared from flag leaves

and spikes of an Australian drought-tolerant bread wheat (T.

aestivum cv. RAC875), that had been subjected to high tempera-

tures under both well-watered and drought stress conditions.

Plants were grown in well-watered conditions to anthesis in a

growth chamber 22uC (day)/10uC (night) with a 14 h photope-

riod). At flowering, plants were subjected to seven days of heat

stress, where on each day, the day-time temperature was gradually

increased to 40uC (10 min at each of 24, 27, 29, 30, 32, 34, 36uC),

held at 40uC for a further 4 h, then lowered to 28uC for 2 h and

returned to 22uC for the remainder of the day and overnight.

Watering was withheld from the second day, and plants showed

signs of water deficiency from the fourth day. On the first day of

the heat stress treatment (well-watered), and again on the fourth

and seventh days (drought-stressed), samples of flag leaf and spike

(at different stages of development) were collected at two time

points; as soon as the temperature reached 40uC, and again after a

further 3.5 h at 40uC. Tissue samples were collected from five

plants in total. A mixture of equal amounts of total RNA from

each plant was used for cDNA library preparation.

The WENDL, WHSL, and BCG cDNA libraries were screened

with baits constructed from five repeats of a GCCGAC (CRT1)

core element, or three repeats of a 16 bp long TdCor410b promoter

fragment, TTCCGGCCGACACGCT (CRT2, bold type indicat-

ing the GCCGAC core element) [36]. Twenty four positive clones

were analysed for each library/bait pair.

Transcriptional activation and DNA binding assays in
yeast

The coding regions of selected representatives from each of the

three cloned subfamilies of ERFs, TaERF4a, TaERF5a and

TdERF6, were amplified by PCR using primers with additional

EcoRI and either BamH1 (TaERF4a and TdERF6) or PstI

(TaERF5a) restriction sites. The amplified fragments were cloned

into the respective restriction sites of the pGBKT7 vector and the

resultant constructs were transformed into yeast (Saccharomyces

cerevisiae strain AH109). Yeast transformants carrying the plasmids

were selected on synthetic defined (SD) (-Trp) medium and

replica-plated to SD2 (-Trp, -His) medium. The ability of

transformants to grow on SD2 medium suggested the presence

of a native activation domain in the ERF.

Construction of three-dimensional (3D) models of AP2
DNA-binding domains of TaERF4a, TaERF5a and TaDREB3

Three-dimensional models were constructed by comparative

(homology) modeling that relies on applying spatial restraints

derived from a structural template [37]. Templates for the AP2

domains of TaERF4a, TaERF5a and TaDREB3 were identified

via 3D-PSSM [38], LOMETS [39], MUSTER [40] and the

Structure Prediction Meta-server [41]. The most suitable template

for all three AP2 domains was identified to be the AP2 of AtERF1

Regulation of Stress-Responsive Promoters
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[Protein Data Bank (PDB) accession number 1 gcc, chain A, here

designated as 1 gcc:A] from Arabidopsis thaliana [42]. The 1 gcc:A

structure was solved by NMR in complex with the 59-

GCTAGCCGCCAGC-39 cis-element [42]. Full-length sequences

of TaERF4a, TaERF5a and TaDREB3 were analysed by

ProDom [43] to determine domain arrangements and the

boundaries of the AP2 domains. After the domain boundaries of

the TaERF4a, TaERF5a and TaDREB3 AP2 domains were

identified, the sequences were aligned with 1 gcc:A by PRO-

MALS3D [44]. The aligned sequence pairs were further

investigated by Hydrophobic Cluster Analysis (HCA) [45] to

confirm that the secondary structures of the proteins remained

undisturbed. As the 1 gcc:A 3D structure was elucidated in the

presence of a double stranded cis-element, these data gave us the

opportunity to model the wheat AP2 domains in complex with

their respective cis-elements identified in the current work. Hence,

AP2 of TaERF4a was modelled with GCCGAC, AP2 TaERF5a

with GCCGCC and GCCGAC, and TaDREB3 with ACCGAC

and GCCGAC. The individual cis-elements were generated via the

Sybyl 8.0 suite of programs (Tripos International, St. Louis, MO,

USA) and were minimized with a Tripos force field. The aligned

template and target sequences with their respective cis-elements

were further used as input parameters to generate 3D models of

the TaERF4a, TaERF5a and TaDREB3 AP2 domains (62, 62

and 63 residues, respectively), using Modeller 9v7 [37], and

running the Fedora 12 operating system on a Linux station. The

most optimal models with the lowest value of the Modeller 9v7

objective function and the most favourable discrete optimized

protein energy scoring parameters were chosen from 50 models for

optimisation with a Tripos force field (Sybyl 8.0). A Ramachan-

dran plot of the optimized AP2 models indicated that 100% of

residues were in the most favoured, additionally allowed and

generously allowed regions, when excluding the Gly and Pro

residues, indicating that protein stereochemistry was satisfactory.

The overall G-factors (estimates of stereochemical parameters)

evaluated by PROCHECK [46], were 20.23, 20.13, 20.12 and

20.19 for 1 gcc:A, TaERF4a, TaERF5a and TaDREB3,

respectively. The Z-score values deduced from Prosa2003 [47],

reflecting combined statistical potential energy, were -5.5, 26.1,

and25.9 and 26.3 for 1 gcc:A, TaERF4a, TaERF5a and

TaDREB3, respectively. The rmsd values, between 1 gcc:A and

TaERF4a, TaERF5a and TaDREB3 (superpositions of total of 62

residues in each case), determined with the PyMol (http://www.

pymol.org) ‘super’ algorithm were 0. 24 Å, 0.25 Å and 0.25 Å in

the Ca positions, respectively. The electrostatic potentials were

calculated with the Adaptive Poisson-Boltzmann Solver (the

dielectric constants of solvent and solute were 80 and 2,

respectively) (http://apbs.sourceforge.net/) implemented in Py-

Mol as a plugin, and mapped onto the protein molecular surfaces

that were generated with a probe radius of 1.4 Å. Molecular

graphics was generated with PyMol (http://www.pymol.org).

Phylogenetic analysis of TFs containing the AP2 domain
The amino acid sequences of 32 AP2 domain-containing plant

TFs including those of 13 ERFs with C-terminal repressor motifs,

were aligned with AtERF1 (1 gcc:A from A. thaliana) [42] and a

phylogenetic tree, based on a crude distance measure, was

generated using PROMALS3D [48]. The tree was visualised

using TreeView [49]. The TF sequences included in this analysis

were TaDREB2 (Acc. ABC86563), TaDREB3 (Acc. ABC86564),

TaDREB6 (Acc. AAX13289), GhDREB (Acc. AAQ08000),

TmCBF12 (Acc. ABW87011), BjDREB1B (Acc. ABX00639),

AtDREB1A (Acc. BAA33434), AtDREB2A (Acc. BAA33435),

GmERF3 (Acc. ACD47129), GmERF4 (Acc. ACE76905),

AtERF1 (Acc. AB008103), NtWRAF1 (Acc. BAF48803),

NtWRAF2 (Acc. BAF48804), HvERF1 (Acc. ADO21119),

OsBIERF1 (Acc. AAV98700), CaERFLP1 (Acc. AAS20427),

TaERF3 (Acc. ABQ52687), AtERF3 (Acc. NP_175479), AtERF4

(Acc. NP_188139), AtERF7 (Acc. NP_188666), AtERF8 (Acc.

NP_175725), AtERF9 (Acc. NP_199234), AtERF10 (Acc.

NP_171876), AtERF11 (Acc. NP_174159), AtERF12 (Acc.

NP_174158) and NsERF3 (Acc. BAA97123).

Quantitative PCR
Q-PCR analysis of the expression of the TdCor410b and ERF

genes in different tissues and under several stresses were performed

as described [50]. Absolute expression of genes of interest (Table

S1) were normalised against three control genes and were

converted to measurements of (normalised) copy number per mg

of total RNA used in the reverse transcription reaction. The cDNA

tissue series were prepared from different tissues of T. aestivum (cv.

Chinese spring). The stress cDNA series for Q-PCR analysis was

prepared from three to four leaves that were collected from each of

2 – 4 independent 6-week-old plants of either T. aestivum (cv.

RAC875) and/or T. durum (cv. Langdon), subjected to each of the

following stresses: drought (samples were collected from well-

watered plants, wilted plants under strong drought (soil volumetric

water content of 3%), and two weeks after re-watering); cold stress

at 4uC (samples were collected following 0, 1, 4, 24, and 48 hours

of cold stress); and wounding with a fine metal brush (samples of T.

aestivum were collected at 0, 1, 3, 7 and 24 h after wounding,

samples of T. durum were collected at 0, 0.25, 0.5, 1, 1.5, 2, 3, 4,

and 7 h after wounding).

Results

Identification of functional DRE/CRT cis-elements in the
TdCor410b promoter, and confirmation of their
involvement in response to different stresses

A homolog of the TaCor410 gene, and regulatory sequences

starting 2,685 bp upstream of the translational start codon, were

isolated from a BAC library prepared from Triticum durum cv.

Langdon [30]. The cloned gene contained a single intron of

111 bp. An alignment of the deduced protein to TaCor410

homoeologs and similar proteins from rice and barley demon-

strated that the gene product from T. durum has the greatest amino

acid sequence similarity to TaCor410b (only a single residue

difference; Figure S1), and was therefore designated as

TdCor410b.

Ten DREs/CRTs/LTREs, two ABREs, and several putative

abiotic stress-related MYC and MYB responsive elements [51]

were identified in the 2,685 bp promoter region of TdCor410b

using PLACE software [52,53]. Of the ten predicted DRE/CRT/

LTRE elements, five were of the GCCGAC type and three were

of the ACCGAC type (Figure S2). No GCC-box was identified in

the promoter region of TdCor410b. It has previously been

demonstrated that the promoters of TaCor410-like genes from

rice, barley and wheat can be activated in transgenic plants

through over-expression of DREB proteins [25,28,29]. We

therefore used TaDREB3 to activate 59 truncated segments of

the TdCor410b promoter in transient expression assays, with the

aim of identifying functional cis-element(s). Mixtures of equal

amounts of pUbi-GFP (negative control) or pUbi-TaDREB3 with

the pTdCor410b-GUS plasmid(s), containing deletions in the

TdCor410b promoter, were used to co-transform a cell suspension

culture of T. monoccocum. Deletions of the promoter were generated

based on putative cis-acting elements at 21872, 2945, 2556,

2417, 2299, and 2230 bp (Figure S2). Each of these deletions,
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except deletion 2945, decreased the number of putative DRE/

CRT elements by one, thus creating the opportunity to evaluate

individual elements for functionality (Figure 1A). A basal level of

activity of the TdCor410b promoter was detected when the

negative control was used for co-transformation instead of

TaDREB3. Cell cultures transformed with 21872, 2945, 2556,

2417, and 2299 deletions in the promoter region showed similar

induction of GUS expression over basal levels, of between 2.1 and

2.9-fold. However, the 2230 bp promoter deletion could not

activate the reporter gene, indicating that the TdCor410b promoter

is regulated by TaDREB3 through the putative DRE/CRT

element located between 2299 and 2230 bp (Figure 1A). The

element responsible for basal levels of promoter activity was

evidently located on the same segment of the promoter, because

the -230 bp long deletion could provide only about a quarter of

the basal activity of the full-length promoter. The sequence of the

DRE/CRT element in this region recognised by TaDREB3 is

TTCCGGCCGACACGCT (the bold type indicates the

GCCGAC core element). The GCCGAC core element is referred

to as a cold-responsive element that functions in Arabidopsis as the

GGCCGACAT element [5,54] and in barley as the (G/a)(C/

t)CGAC element [6]. The GCCGAC core element differs from

the originally identified DRE element, TACCGAC [55,56], used

for the isolation of TaDREB3 [36], in the first base pair of the core

element. It was shown previously that both GCCGAC and

ACCGAC are responsible for activation of promoters via cold and

drought [5,54–56]. However, we have found that the GCCGAC

and ACCGAC elements have different protein-binding specific-

ities, and for this reason we designate these elements as CRT and

DRE types, respectively.

Several single bp mutations introduced into the core sequence

of the mapped functional CRT element in a 2263 bp deletion of

the TdCor410b promoter were used in transient expression assays

to verify functionality of the identified cis-element (Figure 1B).

Activation of GUS fused to each of the mutant fragments was

compared with activity of the D7 (2263 bp) (positive control) and

D8 (2230 bp) (negative control) deletions after co-bombardment

with the pUbi-TaDREB3 construct. Each of the four tested

mutations strongly decreased the activity of the 2263 promoter

deletion. However, substitution of the second C and last C of the

core element for T was the most critical for DNA-protein binding.

These mutations decreased the activity of the 2263 deletion to the

level of the negative control (Figure 1B). The HvDhn8 promoter

sequence available from the NCBI databases (Acc. AF043093) was

compared with that of TdCor410b. The position and adjacent

sequences of the mapped CRT element were conserved (Figure
S3A). Co-bombardment of pHvDhn8-GUS and pUbi-TaDREB3

constructs resulted in a 6-fold activation of the promoter with

TaDREB3 compared with the negative control (Figure S3B).

Unfortunately, activation of promoter fragments by stresses

such as drought and wounding cannot be tested using a transient

expression assay. Analysis of transgenic barley plants expressing

TaDREB3 driven by 2,685 bp and 275 bp fragments of the

TdCor410b promoter revealed the presence of basal levels of

promoter activity, and inducibility of both promoter fragments by

cold, drought and wounding (Figure S4). This analysis confirmed

that activation of the TdCor410b promoter by stress, and even in

the absence of stress, occurred providing the CRT element

immediately proximal to the TATA box was retained.

Isolation of TFs using a CRT element as bait
The core sequence GCCGAC repeated five times (CRT1), or

three repeats of a fragment of the TdCor410b promoter containing

the GCCGAC core sequence, (TTCCGGCCGACACGCT)

(CRT2), were used in a yeast one-hybrid system to screen three

separate prey libraries. These were WENDL, a library prepared

from wheat un-stressed endosperm, WHSL, a library prepared

from drought/heat-stressed wheat flag leaf and spikes, and BCG, a

library prepared from cold/frost-stressed barley floral tissues and

flag leaf. The WENDL cDNA library was previously used for the

isolation of DREB proteins and TFs that are not induced by stress

[36]. Because the TaCor410b gene is expressed in early grain/

endosperm in the absence of stress, we searched for potential up-

stream activators of this gene in the WENDL library. The barley

cDNA library (BCG) was used because a cDNA library from

wheat tissue subjected to cold/frost treatment was not available.

The amounts of RNA from various time intervals in this library

reflect our attempt to enrich the library with early-responsive

genes and genes responsive to temperatures below zero.

The coding sequences of six ERFs and one DREB were isolated

in Y1H screens from WENDL: TaERF5a, TaERF4a, TaERF5b,

TaERF6 and TaDREB2; from WHSL: TaERF4a and TaERF4b;

from BCG: HvERF4. All listed TFs were isolated using the CRT1

element. TaERF4a and HvERF4b were also isolated in screens with

the CRT2 element, as well as clones containing partial cDNA

sequences of TaERF5b and TaERF6. An Expressed Sequence Tag

(EST) encoding the 59 end of the TaERF5b cDNA was identified

from the NCBI databases (Acc. CA728064), and the full-length

sequence of TaERF5b cDNA was isolated from WHSL cDNA

using nested PCR. No complementary ESTs have been deposited

in the NCBI databases for the TaERF6 cDNA. However, the

intron-less gene of the TaERF6 orthologue from T. durum was

identified in BAC clone #191 I19, using a segment of the coding

region of TaERF6 as a probe. The full-length coding region of this

gene, designated TdERF6, was used to make a construct for

transient expression assays.

In total, seven different AP2-domain-containing TFs were

isolated, only one of these (TaDREB2) belonging to the DREB

family. The remaining six TFs encoded TaERF4a, TaERF4b,

HvERF4, TaERF5a, TaERF5b, and TaERF6, all belonging to

subfamilies of the ethylene-responsive element (GCC-box) binding

TFs (EREBPs or ERFs). TaERF5a, TaERF5b, and TaERF6 had

been isolated previously using the GCC-box as bait from the same

cDNA libraries (unpublished data). However, no TaERF4-like TFs

have been isolated with the GCC-box from any cDNA library.

Absence of the TaDREB3 cDNA among isolated clones can be

explained by low abundance of this cDNA [29], and an insufficient

number of analysed clones to identify sequences with low

abundance.

Phylogenetic analysis of TFs isolated in Y1H screens and
DNA binding and activation properties of ERFs

Phylogenetic analysis (Figure 2A) indicated an evolutionary

relationship between wheat TFs isolated in the Y1H screen and

known homologues from other plant species [21,57–62]. The

unrooted tree of 32 TFs containing AP2 domains from mono- and

dicotyledonous species was constructed to establish a phylogenetic

relationship among the individual proteins (Figure 2A). It was

also important to establish phylogenetic relationships with AtERF1

from Arabidopsis (in bold characters and underlined), as this protein

was used as a template for molecular modeling of the AP2

domains of TaERF4a, TaERF5a and TaDREB3. The full-length

sequence of the selected mono- and dicotyledonous ERF and

DREB proteins clustered into four independent branches,

highlighting their functional roles (Figure 2A). This clustering is

in agreement with their DNA binding selectivity as demonstrated

by Y1H assays (Figure 2B). The analysis of selectivity of binding

of cis-elements confirmed that all tested TFs from wheat could
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bind the CRT (GCCGAC) core element. We could not detect

differences for any of the tested factors between their binding to

the CRT1 (GCCGAC) and CRT2 (TTCCGGCCGACACGCT;

the bold type indicates the GCCGAC core element) sequences.

Thus, the core element itself may be sufficient to confer specificity

of binding, and the influence of adjacent sequences may be

minimal. Y1H assays also established that the DREB TFs could

bind the DRE (ACCGAC) motif, but could not bind the GCC-box

(GCCGCC). As expected, TaERF5a and TaERF6 could interact

with the GCC-box, but could not bind the DRE motif.

Surprisingly, TaERF4a could bind neither the GCC-box nor

DRE, binding only to CRT (Figure 2B).

Representatives from each subfamily of isolated ERFs,

TaERF4a, TaERF5a and TaERF6, were tested in yeast for the

presence of activation domains and their ability to activate a yeast

reporter gene. All three proteins behaved as activators

(Figure 2C). Each of the proteins, when fused to the binding

domain of the yeast GAL4 TF, could activate a downstream

reporter gene and consequently support yeast growth on selective

medium (Figure 2C).

Figure 1. Identification of functional DRE/CRT element in the TdCor410b promoter using transient expression assay. (A), Identification
of functional drought-responsive DRE/CRT elements by 59 deletion analysis of the TdCor410b promoter, using trans-activation of the GUS reporter
gene in a transient expression assay. The full-length TdCor410b promoter and six promoter deletions were linked to the GUS reporter gene and co-
transformed via particle bombardment into cell suspension cultures with either pUbi-GFP (negative control) or pUbi-TaDREB3 (transcription
activator). A schematic representation of the 59 terminal deletions of the promoter fused to the GUS gene is shown in the left part of the figure:
asterisk (*) denotes the predicted DRE/CRT site. A negative control (basal levels of full-length promoter activity) is shown at the top of the right panel
as an empty box. Error bars represent standard deviation (P,0.05) for 3 – 4 independent measurements. (B) Influence of point mutations in the
identified functional CRT element on TdCor410b promoter activation, as demonstrated by a transient expression assay. D7 denotes a 2263 promoter
deletion containing the non-mutated CRT element (positive control), D8 and M5 denote promoter deletions without the CRT element (negative
controls), and M1–M4 denote the D7 deletion with different single base pair substitutions to T.
doi:10.1371/journal.pone.0058713.g001
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Figure 2. Wheat TFs isolated in Y1H screens and their properties. (A) An unrooted radial phylogenetic tree of AP2-domain containing TFs
from monocotyledonous and dicotyledonous plant species. Amino acid sequences of 32 proteins were aligned with ProMals3D (44) and branch
lengths were drawn to scale. Grey shading indicates distinct branches of ERF and DREB TFs. Two-letter prefixes in the sequence identifiers indicate
species of origin (Ta = Triticum aestivum; Hv = Hordeum vulgare; Os = Oriza sativa; Gm = Glycine max; At = Arabidopsis thaliana; Bj = Brassica
juncea; Gh = Gossypium hirsutum; Nt = Nicotiana tabacum; Ns = Nicotiana sylvestris; Ca = Capsicum annuum). Protein accession numbers are
specified in the Materials and Methods. TFs isolated in this work are shown in bold. The Arabidopsis AtERF1 TF was used for construction of 3D
models of the AP2 domains of TaERF4a, TaERF5a and TaDREB3, and is shown in bold and underlined. (B) Specificity of recognition of known stress-
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The full-length coding regions of TaERF4a, TaERF5a and

TdERF6 were cloned into the pUbi vector and examined for their

ability to activate the TdCor410b promoter in a wheat suspension

cell transient expression assay. Here, we found that only TaERF4a

activated the full-length promoter of the TdCor410b gene, and this

activation was about 6 – 7 fold higher than the basal level of

promoter activity (Figure 2D). TaERF5a and TaERF6 could not

activate the TdCor410b promoter, but either partially or totally

inhibited the basal activity of the promoter (Figure 2D). These

inhibitory effects of TaERF5a and TaERF6 were observed in

several independent experiments.

Mutations that were introduced into a predicted ERF-associat-

ed amphiphilic repression (EAR) motif of TaERF4a strongly

decreased promoter activation. The mutations consisted of

substitutions of four conserved residues in the EAR motif to Ala

(D164A, L165A, N166A, and P169A; Figure S6B). TdCor410b

promoter activity was reduced to basal levels by these mutations

(Figure 2D).

Expression patterns of TaCor410b and ERFs in different
tissues and under different stress conditions

Spatial expression patterns of TaCor410b and five ERF genes

isolated in the Y1H screen were analysed using Q-PCR. In the

absence of stress, expression of TaCor410b was detected in all

tissues analysed, with strongest expression in anthers and pistils

shortly before fertilization. TaDREB3, which weakly activated

TaCor410b in transgenic wheat [29] and the TdCor410b promoter

in transient assays, was also expressed in reproductive tissues [29].

Co-expression analysis of the ERFs and TaCor410b in the absence

of stress showed that the pattern of expression of TaERF4a closely

correlated with the expression of TaCor410b in all tested tissues,

thus making the TaERF4a gene the best candidate for regulation of

TaCor410b in the absence of stress (Figure 3). The expression

pattern of TaERF4b showed very little correlation with the

expression patterns of TaERF4a or TaCor410b, but closely

resembled that of TaERF6 (Figure 3). The close homologues,

possibly homoeologues, TaERF5a and TaERF5b, had very similar

expression patterns, although expression of TaERF5b was consis-

tently about 20-fold higher than that of TaERF5a.

Cold stress, imposed as a constant treatment at 4uC, strongly

induced TaCor410b by about eleven-fold (Figure 4A). Expression

of the gene started to increase within several hours, and reached

maximum levels after 24 h of plant exposure to cold, but returned

to near-basal levels after 48 h (Figure 4A). The wheat ERF genes

and barley HvERF4 (Figure 4A and S5), as well as TaDREB3 and

TaDREB2 [29] showed a weak to mild induction by cold during

the first four hours of stress exposure, with expression levels

declining with prolonged treatment. The induction of ERFs and

DREBs by cold stress always preceded induction of the

downstream TaCor410b gene (Figure 4A).

Under stringent drought conditions, where leaf wilting was

observable and volumetric water content in soil was #3%,

TaCor410b was up-regulated approximately four-fold (Figure 4B).

TaCor410b expression returned to normal levels after re-watering

and two weeks of recovery. Under these drought stress conditions,

similar induction of expression, followed by a return to normal

levels after re-watering and recovery, was also observed for

TaERF4a, TaERF4b, TaERF6, and TaDREB3. By contrast, the

expression of TaERF5a decreased under stringent drought

conditions, while expression of TaERF5b was not responsive to

water deficit. Increased expression of both genes, by 2.5 – 3 fold,

was observed following re-watering and recovery from drought

(Figure 4B).

Wounding of leaves of a three-week old wheat seedling resulted

in 1.5-fold activation of TaCor410b RNA levels one hour after the

wounding. After 24 hours, the levels of expression were 12-fold

higher than those in a control leaf (Figure 5A). The expression

patterns of all tested ERFs except for TaERF6 were very similar,

showing a strong reduction in expression at three hours after

wounding, and partial or complete restoration to normal

expression levels after 24 h. TdERF6 induction in response to

wounding in leaves and developing grain preceded that of

TdCor410b (Figure 5B and 5C), and the same temporal

relationship between TaERF6 and TaCor410b was also observed

in leaves of bread wheat (Figure 5A).

Domain organisation and structural alignments of
AtERF1 (1 gcc:A) with AP2 domains of TaERF4a, TaERF5a
and TaDREB3

The AP2 domain (or GCC-box binding domain) of AtERF1

from Arabidopsis (PDB accession 1 gcc:A) was used for comparative

structural modelling and analysis of ERF and DREB TFs isolated

in our studies, due to the presence of this domain (of

approximately 62 residues) in both subfamilies of TFs. Structural

alignment of 32 AP2 domain-containing sequences provided

information about the conservation of the AP2 domains at the

amino acid level within selected TFs. Analysis indicated that the

sequences could be divided into two major groups, based on

conservation of a Pro residue following Arg152 in 1 gcc:A; Arg152

makes close interactions with the coding strand of a DNA element

[42]. While this Pro residue was conserved in all ERF sequences

included in the alignment (Figure 6A), a highly variable residue

was present in the corresponding position of the analysed DREB

sequences (regions highlighted in green and yellow, respectively, in

Figure 6A). Further examination of the alignment revealed that

the ERF sequences could be sub-divided into two additional

subgroups. The first subgroup comprised members of the

subfamily of TaERF4a-like proteins, which contained Pro42 in

the TPI motif in position 42, whereas all other examined ERFs

contained Arg in the corresponding position (regions highlighted

in cyan and grey in Figure 6A). This analysis suggested the

significance of Arg, Pro and other adjacent residues that may play

roles in a recognition selectivity of the GCC-box by ERFs

(Figure 6A). Of critical importance was the observation that

Pro42 found in the TaERF4a-like proteins occurred exclusively in

monocotyledonous species, as confirmed by the analysis of 501

sequences (data not shown) through the ConSurf server [63].

responsive cis-elements by ERF and DREB TFs detected via a Y1H assay. Growth of yeast on selective medium (-Leu, -His,+5 mM 3-AT) indicates
protein-DNA interaction. The cis-element CAATGATTG of the HD-Zip class II TF was used as a negative control. (C) Demonstration of activator
properties using ERFs in a Y1H assay. The presence of their own activation domains in the representatives from each subfamily of ERFs supports the
activation of the yeast genes and consequent growth of yeast on the selective (-Leu, -Trp, -His, -Ade) medium. (D) Regulation of TdCor410b promoter
activity by representatives of each isolated subfamily of ERFs. TFs were tested in a transient expression assay in a wheat cell culture. The pTdCor410b-
GUS construct was co-bombarded with pUbi-GFP (GFP; negative control), pUbi-TaERF4a (TaERF4a), pUbi-TaERF4a mutated in the ERF-associated
amphiphilic repression (EAR) motif (TaERF4a m), pUbi-TaERF6 (TaERF6), and pUbi-TaERF5a (TaERF5a), and GUS expression in the cultures was
quantified (n = 46SD (P,0.05)).
doi:10.1371/journal.pone.0058713.g002
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Molecular modeling of the AP2 domains of TaERF4a,
TaERF5a and TaDREB3 to reveal selectivity of binding of
cis-elements

The suitability of AtERF1 from A. thaliana (designated here as

1 gcc:A) as a template for modelling was confirmed through

searches using PsiPred [64], SAM-T08 [65], STRIDE [66], DSSP

[67], PROMALS3D [48] and Robetta [68]. The sequence of

1 gcc:A [69] was aligned with TaERF4a, TaERF5a and

TaDREB3, whereby care was taken that the positions of

secondary structures of proteins remained undisturbed. The

positional sequence identity and similarity between AtERF1

(1 gcc:A) and TaERF4a, TaERF5a and TaDREB3, determined

by an Epprofile algorithm [70], were 40% and 55%, 31% and

Figure 3. Expression of TaCor410b and five ERF genes in a variety of wheat tissues in the absence of stress. Levels of expression were
detected by Q-PCR and are shown as normalised transcription levels in arbitrary units (n = 46 SD (P,0.05)).
doi:10.1371/journal.pone.0058713.g003
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50%, and 38% and 53%, respectively. The sequence identity

between 1 gcc:A and TaERF5a was close to the so-called ‘twilight

zone’ case and this fact emphasized a complexity of modeling [71].

Pairwise alignments between the template and the target

sequences, TaERF4a, TaERF5a and TaDREB3, indicated that

there was one single-residue deletion (corresponding to Asn167

in1 gcc:A) in all three alignments (data not shown).

Figure 4. Stress-inducible expression of TaCor410b and ERF/DREB genes in leaves of 4-week old wheat seedlings. (A) Expression of
TaCor410b and five ERF genes during cold (4uC) stress. (B) Expression of TaCor410b, TaDREB3 and five ERF genes in leaves of two different plants (P1
and P2) under well-watered conditions (W), drought (D), and two-weeks after re-watering (R). Levels of expression were detected by Q-PCR and are
shown as normalised transcription levels in arbitrary units (n = 4 6 SD (P,0.05)).
doi:10.1371/journal.pone.0058713.g004
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Analyses through PROCHECK [46] and Prosa2003 [47]

indicated that the 3D models were reliable and that the

stereochemistry of protein structures was satisfactory. The

sequence identities between the TaERF4a, TaERF5a and

TaDREB3 AP2 domains were within similar ranges, and therefore

it was not surprising to detect similar protein folds, as well as a

high degree of conservation of residues in all 3D models

(Figure 7A). It is evident in Figure 7B that all three TFs

contained an a-helix and a three-stranded anti-parallel b-sheet.

This type of architecture is characteristic of a global ‘alpha and

Figure 5. Expression of Cor410b and ERF genes in leaves and grain of bread and durum wheat subjected to mechanical wounding.
(A) Expression of TaCor410b and TaERF genes in leaves of bread wheat plants following wounding. Levels of expression, detected by Q-PCR, are
shown as normalised transcription levels in arbitrary units. (B) Expression of TdCor410b and TdERF6 following wounding in leaves of durum wheat
plants at flowering. (C) Expression of TdCor410b and TdERF6 wheat grains following wounding, with the wounding being applied at 8–15 days after
pollination. Values are means (6 SD (P,0.05)) of 3 measurements.
doi:10.1371/journal.pone.0058713.g005
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Figure 6. Key residues of AP2 domains that underlie selectivity of cis-elements binding, and regulation of the TdCor410b promoter
activity. (A) Multiple sequence alignment of selected AP2 domains using PROMALS3D (44). Representative sequences are coloured according to
predicted secondary structures (red: a-helix, blue: b-strand). The black box indicates the boundaries of the AP2 domains. The positions of highly
conserved Pro residues in the ERF sequences and of variable non-proline residues in the DREB sequences are highlighted in yellow and green,
respectively. The positions of two Pro residues conserved in selected cereal ERF sequences are highlighted in cyan, while the positions of the
corresponding Arg residues are highlighted in grey. Consensus of secondary structure elements indicates the position of b-sheets (black arrows) and
of an a-helix (purple). The degree of conservation of residues is shown above the sequences by black and brown numbers with a conservation index
of 5 and higher. (B) Influence of conserved proline residue substitutions in the AP2 domain of TaERF4a on recognition of the GCC-box. TaDREB3 was
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beta protein’ class, which bind DNA, according to SCOP protein

classification [72]. Calculations of electrostatic potentials revealed

the presence of a highly positively-charged depression within the

structure of the AP2 domains, where the double stranded cis-

elements would be expected to bind (Figure 7A). As the molecular

models of the AP2 domains of TaERF4a, TaERF5a and

TaDREB3 were generated in the presence of their respective cis-

elements, we could envisage how the individual DNA hexamers

bound within the AP2 grooves, and precisely how structural

determinants underlied the recognition selectivity of the respective

cis-elements (Figure 7A and 7B). Molecular modeling revealed

that the coding strands, rather than the complimentary strands, of

DNA elements were bound through a series of highly conserved

residues exposed on the two longer anti-parallel b-sheets, and that

conserved Arg and Trp residues mediated the contacts between

cis-elements and the AP2 domains in all instances (Figure 7B). It

was of note that, from all the residues within the AP2 domains, the

conservation of two Pro residues in TaERF4a, TaERF5a and

HvERF4 was most obvious, as well as the presence of variable

residues in DREBs at the end of a short b-sheet and in the middle

of the b-sheet (Figures 6A and 7B). These comparisons

suggested that the b-sheets in the ERF or DREB AP2 domains

can flex to a higher or lesser degree, due to the presence or

absence of Pro, and that this b-sheet flexibility could affect the

overall architecture of the AP2 domains, or more or less

favourably re-orient individual cis-elements. This could lead to

tighter or weaker binding of cis-elements by individual AP2

domains. Comparisons of TaDREB3 in complex with GCCGAC

and ACCGAC indicated that Arg48, which is positioned next to

Gly49 (Figures 6A and 7B), had significant flexibility and could

reach out and mediate close contacts with both cis-elements. By

contrast, flexibility of Arg131 in TaERF5a (a factor that binds

both GCCGCC and GCCGAC) could be severely restricted due

to the presence of neighbouring Pro132. The question then arises

as to why the GCCGCC cis-element is only recognised by the AP2

domain of TaERF5a and not by TaDREB3? Our modeling

studies indicated that the recognition selectivity of TaDREB3

could be decided by several structural features. Firstly, the overall

length of the protein segment spanning Gly49 to Arg66 (16

residues, compared to 15 residues in the ERF AP2 domains) might

be of importance and, secondly, the specific environment around

Arg48 and Arg66 might be critical, preventing binding of the

GCC-box by TaDREB3. On the other hand, the environment

around Arg131 in the AP2 of TaERF5a (iso-positional to Arg48 in

AP2 of TaDREB3), and a shorter b-sheet region comprising 15

residues between Pro132 and Arg148 (iso-positional to the Gly49-

Arg66 region in TaDREB3’s AP2), would allow binding of both

cis-elements GCCGCC and GCCGAC. However, the length of

the b-sheet segment that forms a DNA binding region in TaERFs

cannot be the only structural requirement that determines binding

of the GCC-box, because TaERF4a does not bind to GCC-box

elements. In the AP2 domain of TaERF4a, the presence of the two

relatively closely positioned Pro residues could restrict flexibility of

the b-sheet, thus preventing interactions with the GCC-box.

Conversely, binding of GCCGAC by the AP2 domain of

TaERF4a could be favourable, because an amino group in the

purine ring of adenine could mediate productive interactions with

AP2 (Figure 7B).

Site-directed mutagenesis of amino acid residues to
determine recognition selectivity of the AP2 domain of
TaERF4a

The molecular model of the AP2 domain of TaERF4a, and its

comparison with the AP2 models of TaERF5a and TaDREB3 in

complex with a variety of cis-elements (Figure7), allowed

generation of variant proteins of the AP2 domain of TaERF4a

with potentially modified selectivity for binding the GCC box

(GCCGCC) (Figure6). Through site-directed mutagenesis, we

mutated each of the two conserved Pro residues to create a

Pro26Arg mutant (TaERF4a m1), a Pro42Arg mutant (TaERF4a

m2), and a Pro26Arg+Pro42Arg double mutant (TaERF4a m1+2;

Figure 6B). The double mutant was designed to modify

flexibilities of cognate b-sheets through side-chain residue varia-

tions, to mimic properties of the respective b-sheets and disposition

of residues within TaDREB3.

Complete restoration of binding to the GCC-box by the AP2

domain of TaERF4a was obtained by replacing Pro42 with Arg42

(TaERF4a m2). The yeast GCC-box bait strain grew on the

selective medium when TaERF4a m2 was expressed, while this

was not the case for TaERF4a m1 (Figure 6B). The ability of the

double mutant, TaERF4a m1+2, to grow on the selective medium

was likely due only to the Pro42Arg mutation (Figure 6B). The

expression of wild type TaERF4a could not support growth of the

yeast GCC-box bait strain under the same selective conditions

(Figure 6B). These data were further confirmed using transient

expression assays in wheat cell cultures. An artificial promoter,

containing three repeats of the GCC-box was weakly activated by

wild type TaERF4a. This promoter was not activated by

TaERF4a m1, but was strongly activated by TaERF4a m2

(Figure 6C). The functionality of the artificial promoter was

confirmed by activation of this promoter with TaERF5a and

TaERF6 TFs. These findings demonstrated the activation

behaviour of the latter two ERFs in planta and confirmed our

observations in yeast (Figure 2C). Surprisingly, the wild type

TdCor410b promoter was also strongly activated by TaERF4a m2,

but was not activated by TaERF4a m1 and was only weakly

activated by TaERF4a m1+2. In contrast to TaERF4a m2, neither

TaERF5a nor TaERF6 TFs were able to activate the wild type

TdCor410b promoter in the transient expression assay.

Discussion

Several important cis-elements involved in regulating promoters

of stress-inducible genes in plants have been identified and studied

previously. These studies, however, have focussed on the model

plant Arabidopsis [4,5], instead of more agrononically-relevant,

monocot species. Furthermore, little has been done to understand

the complexity of regulation of particular promoter elements by

TFs in planta. For example, can a single cis-element be recognised

by multiple TFs? Is the same cis-element regulated differently

used as a negative control and TaERF5a as a positive control of interaction with the GCC-box. Mutation of Pro26 to Arg26 (underlined) has no
influence on interaction of the TaERF4a variant with the cis-element. Mutation of Pro42 to Arg42 (underlined and boxed in blue) lead to restoration of
interaction and consequent growth of yeast on the selective (-Leu, -His, + 5 mM 3-AT) medium. (C) Regulation of the activity of the TdCor410b
promoter and of the artificial promoter with substitution of the CRT element for a tandem of three GCC-boxes by representatives of each isolated ERF
subfamily, and variants of TaERF4a with mutations in the AP2 domain. TFs were tested in a transient expression assay in a wheat cell culture. Either
pTdCor410b-GUS or 36GCCbox-GUS constructs were co-bombarded with pUbi-GFP (GFP; negative control), pUbi-TaERF4a (TaERF4a), pUbi-TaERF4a
mutated at Pro26 (TaERF4a m1), pUbi-TaERF4a mutated at Pro42 (TaERF4a m2), pUbi-TaERF4a mutated at Pro26 and Pro42 (TaERF4a m1+2), pUbi-
TaERF6 (TaERF6), or pUbi-TaERF5a (TaERF5a).
doi:10.1371/journal.pone.0058713.g006
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under different environmental conditions? Is basal constitutive

expression of a stress-responsive gene regulated through the same

or different cis-element(s) in the promoter? Can strength and/or

specificity of protein-DNA interactions be modulated by geneti-

cally engineered variants of existing TFs? These and related

questions have been addressed in the current work using the

TdCor410b promoter.

The TdCor410b promoter
In this study we have focused on DRE/CRT elements in the

TdCor410b promoter. DRE/CRT elements are involved in

abiotic-stress responses, including drought and cold, and are

known to be bound mostly by one class of TFs, namely, DREB/

CBFs. We predicted ten potential DRE/CRT/LTR elements in

the TdCor410b promoter. However, activation by the TaDREB3

TF was confirmed only with the CRT element closest to the

potential TATA-box. Our results show that regulation of the

stress-inducible TdCor410b promoter is complex and involves the

participation of several different types of AP2 domain-containing

TFs. These different TFs use a single, ‘promiscuous’ CRT element

with a core sequence GCCGAC. The CRT element may be

involved in cold-induced activation of TdCor410b by TaDREB3 or

other DREB/CBF proteins. It is possible that other upstream

CRT(s) could become functional, at least partially, if the primary

element was lost or mutated. Alternatively, other DREB/CBFs

may target other DRE/CRT elements within the same promoter.

Basal activity of the TdCor410b promoter was mapped to a -

299 bp fragment of the promoter, suggesting that the same single

CRT cis-element may be responsible for both constitutive activity

and inducible activation of the TdCor410b promoter. This

hypothesis was confirmed when several single-base mutations

were introduced into the mapped element (Figure 1B). Further-

more, a comparison of sequences of the TdCor410b and HvDhn8

promoters revealed a high level of conservation of the position of

the GCCGAC elements and of the adjacent sequences in both

promoters. Activation of the HvDhn8 promoter by TaDREB3 was

demonstrated in transgenic barley plants with constitutive

overexpression of TaDREB3 [29], as well as in this study using

transient assays (Figure S3). Furthermore, barley plants were

stably transformed with TaDREB3 under the regulation of the

2,567 bp and 275 bp regions of the TdCor410b promoter. Analysis

of transgenic lines demonstrated that both promoter regions drove

basal levels of TaDREB3 expression, and both were activated by

cold, drought and wounding (Figure S4). These results defined

the role of the CRT element proximal to the TATA box as a

universal element, which could regulate TdCor410b promoter

activity under optimal growth conditions and in response to a

variety of abiotic stresses.

TdCor410b activation
To better understand the mechanism of promoter activation, we

isolated TFs that bound to the TdCor410b promoter, using the

GCCGAC element (CRT1) as bait in Y1H screens of cDNA

libraries prepared from both un-stressed and stressed wheat or

barley tissues. Seven different AP2 domain-containing TFs were

isolated in the screen. Surprisingly, only one, TaDREB2, belonged

to the DREB subfamily. The other six TFs belonged to the ERF

subfamily of the AP2 domain family. Genes from the DREB/CBF

subfamily have been reported to play a critical role in responses of

plants to abiotic stress through DRE/CRT elements within the

core motif (A/G)CCGAC [54,56,73]. In contrast, the ERF

subfamily members, formally known as EREBPs, are mainly

involved in responses to pathogens and wounding through

recognition of the GCC-box AGCCGCC (bold type indicating

the core GCC element) [7–13,58,74–82]. The ability of a number

of ERFs to also interact with the GCCGAC sequence has been

demonstrated [12,77,83,84] using Electrophoretic Mobility Shift

Assays, an artificial system where aberrant binding may occur. In

our study, a Y1H assay and plant cell culture analyses were used to

determine functional binding of TFs to cis-elements. The Y1H

assay revealed in vivo interactions for all three types of identified

wheat ERFs with the GCCGAC element. However, only two

types of ERFs were able to bind the GCC-box and, as expected,

neither interacted with the ACCGAC element (Figure 2B). The

functionality of such interactions was confirmed by the ability of

TaERF4a to activate the TdCor410b promoter in transient

expression assays (Figure 2D). In contrast to TaERF4a, the

other two types of ERFs did not activate the TdCor410b promoter.

Substitution of the CRT element for a three-fold repeat of the

GCC-box in the same promoter, however, led to activation

(Figure 6C).

Mode of action of TaERF4
The most abundant independent clones isolated in the Y1H

screen were homologues of TaERF4a, TaERF4b and HvERF4. All

three genes belong to the same subfamily of ERF factors that have

homologies to AtERF3 and AtERF4 from Arabidopsis [58,62], and to

ERF3 from Nicotiana sylvestris [59,60] (Figures 2A and S6).

AtERF3, AtERF4 and the tobacco ERF3 are all believed to function

as repressors, and their gene products contain a C-terminal ERF-

associated amphiphilic repression (EAR) motif (L/F)DLN(L/

F)(X)P, that has more recently been found in other families of

TFs [85]. TaERF4a, TaERF4b and HvERF4 also contain the

EAR motif, but our functional analyses indicated that they

function as activators of promoter activity rather than repressors.

The substitution of four key amino acid residues in the EAR motif

for alanine residues strongly decreased the promoter activation

properties of TaERF4a in both Y1H and transient expression

assays (Figure 2D). In contrast to TaERF4a, TaERF4b and

Figure 7. Molecular models of AP2 domains in complex with cis-elements. (A) Molecular surface morphologies of the AP2 domains of
AtERF1, TaERF4a, TaERF5a and TaDREB3 TFs in complex with cis-elements. White, blue and red patches on protein surfaces indicate electro-neutral,
electropositive and electronegative patches; the charged patched are contoured at 65 kT/e. Double-stranded DNA sequences of the cis-elements
(GCCGCC/GGCGGC, GCCGAC/GTCGGC and ACCGAC/GTCGGT) are indicated by sticks, where the coding and complementary strands are shown in
green and yellow atomic colours, respectively. (B) Molecular folds of the AP2 domains of AtERF1, TaERF4a, TaERF5a and TaDREB3 TFs in complex with
cis-elements. Ribbon representations show the disposition of secondary structure elements, where anti-parallel strands carry amino acid residues that
mediate contacts between individual cis-elements and the AP2 domains. The ribbons are coloured in green (AtERF1), cyan (TaERF4a), yellow
(TaERF5a) and magenta (TaDREB3). The black arrows point to the NH2-termini of the AP2 domains. The coding strands of cis-elements GCCGCC,
GCGGAC and ACCGAC are shown as stick models and are coloured in atomic colours. The interacting residues in the AP2 domains are also shown as
sticks, and are coloured in green (AtERF1), cyan (TaERF4a), yellow (TaERF5a) and magenta (TaDREB3). Distances of $3.4 Å between the contacting
residues (Arg and Trp) and cis-elements are indicated by dotted lines. The positions of respective Pro or Gly residues, adjacent to the contacting Arg
residues, are also indicated. The interplay of these residues within the structures suggested that structural rigidity or flexibility could impact upon
selectivity of binding of individual cis-elements.
doi:10.1371/journal.pone.0058713.g007
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HvERF4, subfamily members from tobacco and Arabidopsis

contain Arg42 instead of Pro42 in the AP2 domain, and were

shown to strongly interact with the GCC-box [58,60]. Alignment

and conservation analysis through the ConSurf server revealed

that Pro42 can only be found in ERF sequences of monocotyle-

donous plants. Although we have demonstrated that Pro42

changed the specificity of protein-DNA binding of ERF4

subfamily members, the biological significance of Pro at this

position in monocotyledonous plants remains to be determined.

Other TFs containing the EAR domain have also been shown to

act as transcriptional activators [86]. Although the mechanism of

such activation has not been explained, it has been suggested that

indirect regulation through repression of repressors may occur.

It is likely that TaERF4a functions as a specific regulator of the

TdCor410b promoter, because transcript expression of TaERF4a

and TaCor410b was highly correlated (Figure 3).

Structure of TaERFs
Three-dimensional models of the AP2 domains of TaERF5a,

TaERF4a and TaDREB3 were constructed based on the DNA-

binding domain of AtERF1 in complex with the 59-

GCTAGCCGCCAGC element. The mutual interplay of residues

within the secondary structure elements of the AP2 domains that

form a b-sheet, could impact upon structural rigidity or flexibility

of AP2 domains, and may affect DNA binding selectivity. The

overall shape variability and disparity in surface electrostatic

potentials among individual AP2 domains of ERF and DREB TFs,

could also contribute to differences in binding selectivity of cis-

elements.

Our attempt to restore the binding ability of TaERF4a to the

GCC-box through site-directed mutagenesis (Figure 6B) needs to

be discussed in connection with recent molecular dynamics

simulations of TFs [87]. Wang et al. [87] reported that the

significance of the Arg150, Arg152, Arg170 and Trp172 residues

in the AP2 domain of AtERF1 for binding the GCC-box differs

between AtERF1, AtERF4 and AtCRT/DREB1 [85]. Arg150,

Arg152, Arg170 and Trp172 are iso-positional to Arg23, Arg25,

Pro42 and Trp44 in AP2 of TaERF4a; our modelling indicated

that only the two conserved Arg23 and Arg25 residues directly

contacted the first G in GCCGAC in the coding strand of the

DNA element, as well as two G bases in the complementary

strand, GTCGGC. Therefore, these two residues mediate primary

DNA binding for GCCGAC/GTCGGC. The Pro42 residue in

the AP2 domain of TaERF4a does not interact with the

GCCGAC element. Modeling also indicated that mutation of

Pro42 to Arg would create a variant form of TaERF4 that could

potentially bind base C of GCCGCC, and we were able to

demonstrate this experimentally in our study (Figure 6B).

Thus, structural comparisons of the AP2 domains of TaERFs

and TaDREBs, in complex with cis-elements, identified the

specific variations in amino acid residues that affected flexibility

of the secondary structure. These variations lead to differences in

recognition selectivity of cis-elements by TaERF and TaDREB

DNA binding domains.

Interactions between ERFs
Although both TaERF6 and TaERF5a behaved as activators in

yeast, they appeared to compete for CRT binding with

endogenous TaERF4-like or DREB/CBF proteins in wheat cell

cultures, and were unable to activate the TdCor410b promoter.

However, TaERF6 and TaERF5a were both able to activate a

modified promoter, where the CRT element was substituted for

the GCC-box. Synchronised expression of the TaERF6 and

TdCor410b genes in response to wounding suggests that TaERF6

may be a candidate for wounding-induced TdCor410b promoter

activation, and this could occur via the CRT element. Other

wounding-inducible or tissue-specific TFs or modifying enzymes

may be required to assist TaERF6 activation of the TdCor410b

promoter. In our transient expression assay, TaERF6 down-

regulates the basal activity level of the TdCor410b promoter, which

Figure 8. A schematic representation of the regulation of abiotic and biotic stress-responsive genes by ERFs and DREBs/CBFs,
through three types of stress-responsive cis-acting elements.
doi:10.1371/journal.pone.0058713.g008
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indicates there is a TaERF6 protein-promoter interaction, albeit a

negative one, in planta. Further investigation will be required to

understand if additional TFs function as part of an activation

complex involving TaERF6, or as passive repressors of genes

interacting with other CRT elements, during pathogen attack

and/or during plant recovery after abiotic stress (Figure 8).

Additionally, TaERF6 may directly or indirectly act as a passive

repressor of two other subfamilies of ERF genes. Partial repression

of transcription was observed for members of ERF4 and ERF5

subfamilies shortly after activation of TaERF6 by wounding

(Figure 5A). The closest published homologues of TaERF6 are

the wound-inducible ERFs, WRAP1 and WRAP2, from tobacco

[61], which were not reported to be induced by abiotic stresses.

Here we found that TaERF6 was weakly induced by both cold

and drought, evidence that TaERF6-like TFs are involved in

abiotic stress regulation in monocotyledonous species.

TaERF5a and TaERF5b were found to be close homologues/

orthologues of rice OsBIERF1, which shows moderate expression

in the absence of stress and is induced by a number of biotic and

abiotic stresses including cold, salt and drought [75]. No clear

influence of TaERF5a on TdCor410b promoter activity was

detected in wheat cell culture transient expression assays. TaERF5a

was down-regulated in leaves of drought-stressed plants, whereas

no changes in expression were detected for TaERF5b. Therefore,

these proteins are unlikely to be active positive regulators of

TaCor410b in response to drought. However, TaERF5b strongly

activated the artificial Cor410b promoter via the GCC-box in our

transient assays, suggesting this ERF may be an ethylene-regulated

activator.

Conclusion
We suggest that TaCor410 genes are likely to be regulated by

ERF and DREB/CBF TFs through a single CRT (GCCGAC)

element. Stress-responsive induction of TdCor410b indicated that a

complex interplay of ERF and DREB/CBF TFs takes place,

which may also involve other TFs and modifying factors. The best

candidate for driving constitutive activity and drought-inducible

activation of TdCor410b promoter was TaERF4a. The exact role,

if any, of two other types of ERFs in TdCor410b promoter

regulation requires further investigation. TaERF4a possessed

properties that were atypical of other ERFs investigated in this

study, including unusual DNA-binding specificity and specific

transcriptional activation.

Supporting Information

Figure S1 Multiple sequence alignment of protein sequences of

TdCor410b and products of homoeologous genes from bread

wheat, and reported homologues from barley and rice: Wcor410

(Acc. AAA20189), Wcor410b (Acc. AAB18201), Wcor410c (Acc.

AAB18202), HvDHN8 (Acc. AAD022259), OsDHN1 (Acc.

AAV49032). Identical amino acid residues are in yellow boxes,

conserved residues are in blue boxes, and similar residues are in

green boxes.

(EPS)

Figure S2 The sequence of the TdCor410b promoter with

predicted CRT/DRE/LTRE elements. The putative TATA-box

is in bold and underlined, the predicted elements are in grey

boxes, the functional element is in a grey box and underlined. First

bp of each promoter deletion used in promoter mapping is marked

with a black box. Names and sizes (bp) of promoter deletions are

shown above the black boxes.

(EPS)

Figure S3 Comparison of the TdCor410b and HvDHN8 promot-

ers. (A) Pair-wise alignment of nucleotide sequences of the

TdCor410b and HvDHN8 promoters. Computer-predicted cis-

elements common for both promoters are in transparent boxes;

sequence of the functional cis-element is marked with *. The

putative TATA-box and translational start are in bold. (B) Basal

activity of the TdCor410b and HvDhn8 promoters (1) and activity

induced by overexpression of TaDREB3 (2). The promoter-GUS

construct was co-bombarded in the wheat suspension cell culture

with either the pUbi-GFP (1) or pUbi-TaDREB3 (2) constructs.

(EPS)

Figure S4 Activation of a -275 bp and -2,685 bp long promoter

fragments by wounding, cold and drought in transgenic barley

plants detected by Q-PCR.

(EPS)

Figure S5 The Q-PCR analysis of HvERF4 expression in leaves

and roots of barley plants subjected to cold (4oC).

(EPS)

Figure S6 Sequence alignment of AP2 domains and EAR motifs

of TaERF4a-like proteins. (A) A multiple sequence alignment of

thirteen AP2 domains of the ERF sequences using PROMALS3D

(41). The positions of highly conserved Pro residues in the ERF

sequences are highlighted in yellow and the positions of three Pro

residues conserved in the selected cereal ERF sequences are

highlighted in cyan. (B) The conserved regions of the COOH-

terminal EAR sequence underlying the importance of four

conserved residues Asp, Leu, Asn and Pro, are in pink.

(EPS)

Table S1 List of primers used for Q-PCR.

(DOCX)
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