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Abstract

Background: Due to recent emergence, dengue is becoming one of the major public health problems in Nepal.
The numbers of reported dengue cases in general and the area with reported dengue cases are both continuously
increasing in recent years. However, spatiotemporal patterns and clusters of dengue have not been investigated
yet. This study aims to fill this gap by analyzing spatiotemporal patterns based on monthly surveillance data
aggregated at district.

Methods: Dengue cases from 2010 to 2014 at district level were collected from the Nepal government’s health and
mapping agencies respectively. GeoDa software was used to map crude incidence, excess hazard and spatially
smoothed incidence. Cluster analysis was performed in SaTScan software to explore spatiotemporal clusters of
dengue during the above-mentioned time period.

Results: Spatiotemporal distribution of dengue fever in Nepal from 2010 to 2014 was mapped at district level
in terms of crude incidence, excess risk and spatially smoothed incidence. Results show that the distribution
of dengue fever was not random but clustered in space and time. Chitwan district was identified as the most
likely cluster and Jhapa district was the first secondary cluster in both spatial and spatiotemporal scan. July to
September of 2010 was identified as a significant temporal cluster.

Conclusion: This study assessed and mapped for the first time the spatiotemporal pattern of dengue fever in
Nepal. Two districts namely Chitwan and Jhapa were found highly affected by dengue fever. The current study also
demonstrated the importance of geospatial approach in epidemiological research. The initial result on dengue patterns

and risk of this study may assist institutions and policy makers to develop better preventive strategies.
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Background

Dengue fever is a mosquito-borne viral disease which is
transmitted from one person to another through bites of
female Aedes—spp. mosquito [1]. It is one of the major
public health problems for tropical and subtropical
countries all over the world. Nearly one third of the
world population lives in countries under the risk of
dengue fever. Annual dengue infection was estimated
around one hundred millions globally [2]. Dengue trans-
mission has expanded in new geographic areas and the
severity of infections has increased in areas where infec-
tion was already endemic [3]. Global burden of dengue
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has exceeded malaria and the problem is likely to be
more severe in the future [4] due to climate change, in-
creasing trend of urbanization and migration [5]. Despite
such massive problems, there are no effective initiatives
to prevent dengue and no medicine for causal treatment
available yet [6]. Therefore understanding the dynamics
of dengue transmission seems imperative to reduce the
public health burden.

The Aedes aegypti mosquito which is the main vector
of dengue, lives in urban habitats and breeds mostly in
man-made containers [7, 8]. Unlike other mosquitoes it
is a daytime feeder; its peak biting periods are early in
the morning and in the evening before dusk [8]. Several
factors determine occurrences and spread of dengue by
affecting life cycle and behavior of the mosquito.
Temperature and rainfall are the most significant factors
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for vectors development and dynamics [4, 9-13]. Very
low temperature limits not only egg hatching and larval
development process [14] but also extrinsic incubation
period and viral development rate [15]. Freezing temper-
atures in higher altitudes destroys larvae and eggs of
mosquitoes during winter time [16]. Adult mosquito
survival rates are linked with lower temperature and
higher humidity. Rainfall is a source of fresh water for
mosquito breeding in water containers. However exces-
sive rainfall is negatively associated with dengue by
washing out the eggs [17, 18]. Further, high population
density and low socioeconomic status are positively as-
sociated with dengue occurrence [17-19]. Due to vari-
ation in these factors, occurrence and spread of dengue
fever also vary over space and time. To understand the
variation of dengue fever, several studies have been carried
out to explore the spatiotemporal pattern and risk factors
of dengue fever in other areas of the world [16-19].

In Nepal, dengue is an emerging disease which was
first reported in 2004 [20]. Since then, it has been
spreading rapidly over wide geographical areas. The
number of both confirmed dengue cases and dengue
reported districts are continuously increasing. Now,
dengue is firmly established in the tropical and subtrop-
ical plains of Nepal, the Terai, and is migrating upwards
[21] posing significant challenges to the public health
officials. Till 2014, dengue has been reported in 32 dis-
tricts and confirmed dengue cases reached 2442 and 5
deaths toll [22]. These statistics are even believed to be
underreported and prevalence of dengue is considered
significantly high [23]. Ae. aegptiis now widely distrib-
uted in major cities of the Terai and also migrated up
to 2000 m altitude in response to climate change [24]
posing a high risk of outbreak even in major cities in
the hill districts (e.g. Kathmandu and Pokhara) [25]. All
four serotypes of dengue virus circulate in Nepal with
the host, vectors and the environment [26] which fur-
ther increase risk of dengue infection and outbreak in
Nepal. To our best knowledge, there are not scientific
studies to explore spatial epidemiology of dengue in
Nepal. For the improvement of government efforts to con-
trol dengue such studies would be of utmost importance.

In recent years, GIS (Geographic Information Systems)
and spatial statistics were frequently used to characterize
spatiotemporal patterns of dengue and other infectious
as well as non-infectious diseases [19, 27, 28]. Cheong et
al. assessed spatiotemporal patterns of dengue in Malaysia
combining the address and sub district levels [29]. Banu et
al. studied 50 years (1955-2004) spatiotemporal trends of
dengue transmission in the Asia-pacific region [30].
Similarly spatial analysis of dengue in Guangdong
province, China was conducted for incidence data
from 2001 to 2006 [31]. Most of the studies analyzing
spatiotemporal patterns of dengue have used SaTScan
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and GeoDa public domain software [19, 27, 28, 31].
GeoDa software provides several ways to visualize and
map distribution pattern of disease by correcting for
spatial autocorrelation and spatial dependencies [32].
SaTScan software provides a powerful tool to detect,
delineate, and validate disease clusters, risk popula-
tion, and factors associated with them over space and
time. Further SaTScan adjusts for confounding vari-
ables, and reduces pre-selection bias regarding the size
and location of clusters. The current study aims to as-
sess and map spatiotemporal patterns of reported
dengue cases based on monthly surveillance data ag-
gregated at 75 districts of Nepal.

Methods

Study area

The country Nepal is located roughly between 26° to 30°
N in latitude and 80°to 88°E in longitude. Land topog-
raphy is diverse with remarkable differences in elevation
ranging from 60 m in southern lowland to 8840 m of
the mighty Himalayas in the north. Administratively,
Nepal is divided into 5 development regions, 14 zones,
and 75 districts. In this study, the analysis was per-
formed on the level of the 75 districts as shown in Fig. 1.
Broadly, Nepal lies in a subtropical monsoon climate
zone characterized by large seasonal variation in rainfall,
temperature and humidity. Micro climatic variation is
also prominent due to variation in altitude and topog-
raphy. Summer and winter are the two major seasons.
Summer is normally hot and humid, while conversely,
winter is cold and dry. About 80 % of annual rainfall oc-
curs during summer through monsoon. Mean annual
rainfall generally decreases from east to west and from
north to south and mean annual temperatures also fol-
lows approximately the same pattern.

Data source
In this study, dengue incidence data was acquired from
Epidemiology and Disease Control Division (EDCD) of
Department of Health Services (DOHs). DOHs is, under
the Ministry of Health and Population, responsible for
collecting, processing and publishing disease data in-
cluding dengue in Nepal. Disease data in Nepal are re-
ported to the EDCD which is the Nepal government’s
authority for the prevention and control of infectious
disease. Disease data are usually reported on a weekly
basis but reported dailyduring outbreak. For this study
dengue data was available from 2010 to 2014. During
the study period 2343 dengue cases were reported to
EDCD based on either Immunoglobulin M (IgM) tests
or Polymerase Chain Reaction (PCR) tests.

The district boundary map and the population data
used in the study were obtained from Department of
Survey, Government of Nepal, and the National Censes
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Report-2011, published by Central Bureau of Statistics
(CBS) respectively.

GIS mapping and smoothing

We used choropleth mapping technique to visualize the
dengue count data for the 5 years at district level. To al-
leviate variations on dengue incidence for small popula-
tion numbers and areas, we calculated annual rates of
dengue from the count data. For this, we first computed
the mean annual incidence rate per 100,000 population
for each district by summing all the cases occurring each
year in each district and dividing them by the corre-
sponding district population. In the second step we aver-
aged annual incidence rate for 5 years resulting in an
averaged mean annual incidence rate of dengue per
100,000 populations per district (MAI gt (3))-

1 4T /' DFcase gy ;
MAIdist(i) _ |:( dist(i)year( y)

1 1000, 000
5 Populﬂtiondist(i)year(y)> . ' }

2010

Where: DF cases are the dengue fever cases reported
from the district (i) each year (y) from 2010-2014 and
the population is population reported in 2011 census.

Following Fang et al., we computed a 5 years annual
raw rate map [27]. This map was subject to spatial auto-
correlation and therefore cannot provide real distribu-
tion information. Therefore, we further processed 5
years averaged incidence rate to produce spatially
smoothed dengue distribution map through correction
of spatial autocorrelation. To do this, we used the empir-
ical Bayes approach [33] available in GeoDa. We first
created a spatial weight file in GeoDa that contain s
neighbored structure using the K-nearest neighborhood
criteria (four districts in our case) which was later
loaded to make spatially smoothed distribution maps.
To assess the risk of dengue, an excess hazard map was
computed. The excess hazard represents the ratio of ob-
served incidence at each district over the average inci-
dence of all endemic areas [34]. In the excess hazard
map, value one is usually determined as a cut-off value
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whereas below one indicates lower incidence than ex-
pected and above it indicates incidence higher than ex-
pected. All GIS mapping and smoothing works were
implemented in GeoDa, 1.6.7 software.

Spatiotemporal cluster analysis

SaTScan software version 9.4.2 developed by Kuldlorff
[35, 36] was used to detect and evaluate dengue clusters.
All three scanning methods (purely spatial, purely tem-
poral and spatiotemporal) were employed to assess the
geographical areas with highest dengue risk neglecting
the temporal dimension, to find highest risk period
neglecting the space dimension and to locate space-time
outbreak addressing the effect of purely spatial and
purely temporal variation in the incidence data. Poisson-
based model was employed in all three analyses.

SaTscan scans gradually across time and/or space to
identify possible clusters by comparing the number of
observed incidences and expected incidences (assuming
random distribution) inside the window at each loca-
tion. Scanning window is a time interval for purely
temporal scan, a circle or ellipse in spatial scan and a
cylinder in space-time scan where base of a cylinder
represents space dimension and height represents the
temporal dimension. The null hypothesis is that the risk
of dengue incidence is equal throughout the study area
while the alternative hypothesis is that the risk of den-
gue is different inside and outside of at least one circle
or cylinder. The area of circle or cylinder varies from
zero to the maximum specified cluster size of the total
cases. In this way, the entire study area (space) or time
is covered with varying size of circle or cylinder. Only
clusters with significant levels with cut-off values such
as 0.05, 0.01 and 0.001 after Monte Carlo simulation re-
peated e.g. 999 are reported. The cluster with the max-
imum log likelihood ratio is taken as the most likely
cluster, i.e. the cluster least likely to be due to chance. The
log likelihood ratio in Possion distribution is computed as:

= (g ) (ria)

Where:

LIR = Log Likelihood Ratio

C = total number of cases

¢ = observed number of cases within the window
E[c] = covariate adjusted expected number of cases
within the window under the null hypothesis,

I() = indicator function

For purely spatial and space-time analyses, SaTScan
also identifies secondary clusters in the data in addition
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to the most likely cluster, and orders them according to
their likelihood ratio test (LLR) statistic. SaTScan reports
both geographically overlapping and non-overlapping
secondary clusters. Due to the high log likelihood values
with the most likely cluster, these clusters provide little
additional information. However, non-overlapping sec-
ondary clusters are considered significant.

The maximum cluster size was set to 50 % of the
population at risk for spatial scan; to account for differ-
ences in population density [37] and a non-overlapping
secondary cluster was set to be reported [31, 37]. In
temporal scan analysis, a value of 6 months was chosen
for maximum temporal window size to capture seasonal-
ity in dengue incidence. In the space- time scan, purely
spatial and purely temporal window parameters were
taken. We chose high rates option in the scan for areas
option to account for clusters.

Results

Spatial and temporal distribution of dengue in Nepal

A total of 2343 dengue cases were reported in Nepal
from 2010 to 2014. Five years annual average incidence
ranges from 0 to 234 per 100,000 populations (Fig. 2).
Out of 75 districts, 43 were found non-endemic with
zero incidences whereas 32 were found endemic to the
disease. Among the 32 districts, 23 were low endemic
(<5 incidences), 6 were medium (5-30 incidences) and
two were found highly endemic (30-50 incidences).
With more than 50 incidences Chitwan district was found
the most endemic among the districts under consideration
where 234 people out of 100,000 were reported infected
with dengue virus during the 5 year period.

Figure 3 presents the distribution of excess risk of
dengue in Nepal over 5 years (2010-2014). The figure
shows that only 6 districts had the excess risk higher
than expected while the 64 districts had excess risk
lower than expected.

The intensity of risk is labeled using bipolar graduate
symbol where red side shows excess risk higher than ex-
pected while the blue shows excess risks less than ex-
pected. Among the 6 districts withexcess risk higher
than expected, Chitwan and Jhapa had highest excess
hazard while the Makawanpur and Rupendehi had the
lowest excess risk.

As shown in the Fig. 4, spatial variation of dengue in-
cidences was corrected using K-nearest neighbor criteria
based on the empirical bias approach. Due to implemen-
tation of smoothing, there is no spatial autocorrelation.
Therefore, this map presents a better pattern of dengue
incidence and shows clearly where dengue incidence was
most severe. The map also shows that Chitwan and the
adjacent four districts; Nawalparasi, Parsa, Rupendehi
and Makawanpur are dengue prone zones in Nepal.
Moreover Jhapa district is also an equally highly dengue
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vulnerable district. Besides these six, the districts from
far western region (mainly Kailali and Kanchanpur) were
found under high risk of dengue.

Dengue fever is highly seasonal in Nepal and follows
the patterns of monsoon rainfall. Dengue cases start to
appear with onset of monsoon and reach the highest
peak in the following months. Normally, monsoon starts
in early June and last for next 3 months. Nepal receives
about 80 percentage of annual rainfall during this period.
Figure 5 shows that August was the peak month of den-
gue outbreak in 2010 and the peak month of 2013 out-
break was October. October was also the peak for the
sum cases of 2010-2014.

Distribution of dengue clusters

Spatial clusters

Analysis of purely spatial clustering of dengue cases
from 2010 to 2014 produced one of the most likely clus-
ters and three other secondary clusters (Fig. 6). Using
the maximum spatial cluster size of 50 % of population
at risk, Chitwan district was identified as the most likely
cluster and Jhapa district as a first secondary dengue
cluster. Bara, Parsa-Makawanpur and Rautahat districts
were identified as the second secondary spatial cluster of
dengue and Nawalparasi, Rupendehi, Palpa and Syangja
districts as the third secondary cluster. Table 1 provides
the detailed result of spatial scan analysis.

Excess dengue
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Fig. 3 Excess hazard map of dengue fever in Nepal (2010-2014)
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Temporal clusters

Purely temporal cluster analysis has identified July to
September of 2010 (Fig. 7) to be a strongly significant
temporal cluster (Observed =761, Expected = 118.1, RR
=9.06, LLR =878.27,7 <0.001). Observed dengue cases
were also significantly high in August 2013 but as tem-
poral scanning method provides single temporal cluster,
it was not considered as another temporal cluster in the
analysis.

The space-time cluster analysis of dengue data from
2010 to 2014 was also tested. The result showed (Fig. 8)
three non-overlapping statistically significant spatiotem-
poral clusters. Among them, one was the most likely
cluster while the other two were the first and second
secondary clusters. The dengue cluster identified from
July to September of 2010 at Chitwan district was the
most likely cluster. First secondary cluster was identified
in Jhapa, from September to October of 2013. The
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Fig. 5 Monthly distribution of dengue fever in Nepal (2010-2014)
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Fig. 6 Distribution of spatial clusters of dengue fever in Nepal (2010-2014)

cluster in Parsa and adjoining 23 districts was another
secondary cluster from October to December 2013.
Table 2 shows the location of each cluster, observed cases,
expected cases, relative risk (RR) and log likelihood ratio
(LLR).

Discussion

In this study, exploratory data analysis and spatiotempo-
ral cluster analysis of dengue fever were conducted at
district level in Nepal. We mapped dengue fever in
terms of crude incidence, excess risk and spatially
smoothed incidence rate. In addition, we further evalu-
ated spatiotemporal distribution patterns and explored
significant spatial, temporal and spatiotemporal clusters.

To our knowledge, this is the first attempt to map and
analyze spatiotemporal pattern of dengue in Nepal.

Due to availability of data in some sort of spatial ag-
gregation, choropleth mapping technique is popular in
disease mapping compared to dot map or isopleths map
[33, 38]. Aggregated data is either directly plotted in the
map or rate of incidence is computed using base popula-
tion and level of spatial aggregation. Therefore, we also
used choropleth-mapping technique to visualize the dis-
tribution of dengue fever. However, when disease inci-
dences or population of area is too small, both the
highest and lowest values are concentrated towards the
highest values and map becomes misleading [33]. This
problem in disease mapping is also known as “small
numbers” problem. Small numbers problem commonly

Table 1 Dengue cluster (2010-2014) based on purely spatial analysis under the Poisson Discrete probability model

District Cluster type LLR P Observed cases Expected cases Relative risk
Chitwan Most likely 3624.83 0.0001 1360 51.31 61.75
Jhapa 1% Secondary 197.17 0.0001 290 71.90 4.46
Parsa, Rautahat, Bara, Makwanpur ond Secondary 12539 0.0001 2298 21197 1.46
Nawalparasi, Palpa, Rupandehi, Syangja 3" secondary 3193 0.00846 239 18349 1.34
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appears when the disease is relatively new and not fully
endemic across the country or region [39] or due to
the variable size of spatial aggregation unit [40]. The
advantage of smoothing of geographically aggregated
data is that it uncovers unexpected features, patterns
and gradients that one might not detect from direct
display [41]. In addition, smoothing can reduce unusual
values or outliers. Therefore a spatially smoothed map
(Fig. 4) presents a better distribution pattern of dengue
incidence and shows clearly where the problem was
most severe.

The results of the cluster analysis showed the signifi-
cant spatiotemporal variation of dengue fever in Nepal.

Although dengue disease is spreading rapidly to new
areas [26, 42], it is highly localized in particular locations
and times. Compared to other regions of the country,
central and eastern Terai are more vulnerable to dengue.
In mapping and cluster assessment, these two districts
appeared as a hotspot of dengue. Suitable climate, high
population density and excessive movements of the
people could attribute to a high dengue cluster. Due to
gateway location, we believe that reported dengue cases
from other hill districts of this region might have ac-
quired infection from Chitwan. Further investigation is
necessary to give more accurate answers about the pri-
mary cluster of dengue in Chitwan.
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Fig. 8 Distribution of spatiotemporal clusters of dengue fever in Nepal (2010-2014)
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Table 2 Dengue cluster (2010-2014) based on spatial temporal analysis under the Poisson Discrete

Districts Cluster type Period LLR p Observed cases Expected cases Relative risk

Chitwan Most likely 2010/7-2010/9 287558 0.0001 621 2.59 32642

Jhapa 1°" secondary 2013/9-2013/10 646.12 0.0001 189 240 8551

Parsa + 23 districts 2" secondary 2013/10-2013/12 97.35 0.0001 102 1740 6.08
We observed strong inter-annual and seasonal vari- Conclusion

ation of dengue in Nepal. Two major peaks were ob-
served during the 5 years interval: one in August 2010
and another in October 2013 (Fig. 5). Regarding the sea-
sonality, dengue fever follows the pattern of monsoon
rainfall. With some time lag, the major outbreak occurs in
the post-monsoon seasons; September-November [43].
Post-monsoon season provided the most suitable wea-
ther conditions including moderate rainfall and mild
mean temperature and optimum temperature range for
vector to live [44].

Due to the neighborhood effects [29], we observed an
overestimated spatiotemporal cluster including Parsa
and its adjacent 23 districts. No dengue incidences
were recorded during 2010-2014 in these 23 districts.
An overestimated cluster is identified when the expected
counts are low and it is surrounded by other loca-
tion with a lot of cases [35]. Hence careful selection
of scanning parameter and interpretation of the re-
sult is necessary to better represent and interpret
the clusters [45].

Moreover, this study also clearly demonstrated the im-
portance of geospatial technology in spatiotemporal as-
sessments of infectious disease. To our best knowledge,
such studies have not been done before in Nepal. There-
fore, this study could be an excellent example to pro-
mote such studies at higher temporal and spatial scale in
the future. Research results and approaches adopted
here could be valuable to the public health authority to
design and execute an intervention program on dengue
control. However, there are some limitations with this
study. Possibility of underreporting [23] due to those
who did not come to health facilities for treatment
and ill cooperation of private health institution in
government reporting system is the first limitation of
this study. Mapping and analysis on coarsely aggre-
gated data, month and district, may have missed daily
or weekly local dengue cluster is the second limita-
tion of this study. If we had daily or weekly dengue
cases at lower spatial unit (e.g. settlement, VDC,
municipality), we could detect outbreak dynamics and
movements of hotspots [29, 37]. Thirdly, this study
only analyzed distribution and did not analyze possible
environmental risk factors associated with clustering
and therefore we could not pinpoint such risk factors.
We are expecting to examine such factors in our next
research paper.

This study assessed and mapped the spatiotemporal pat-
tern of dengue fever in Nepal for the first time. Distribu-
tion of dengue fever was found highly clustered around
Chitwan and Jhapa districts. In the temporal context;
dengue is highly seasonal, starts with onset of monsoon,
and reaches peak in the post monsoon season. The re-
sults of this study are not only to provide an initial risk
assessment but also lay foundation to pursue further in-
vestigation into the environmental risk factors. This
study also clearly demonstrated the importance of geo-
spatial technology in mapping and spatiotemporal as-
sessment of infectious disease. The method adopted
here can be used for other diseases and higher spatio-
temporal scale. The results of this study may assist
health authorities to develop better preventive strategies
and increase public interventions effectiveness.
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