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ABSTRACT: Genes, sex, age, diet, lifestyle, gut microbiome, and multiple other factors affect human metabolomic profiles.
Understanding metabolomic variation is critical in human nutrition research as metabolites that are sensitive to change versus those
that are more stable might be more informative for a particular study design. This study aims to identify stable metabolomic regions
and determine the genetic and environmental contributions to stability. Using a classic twin design, 1H nuclear magnetic resonance
(NMR) urinary metabolomic profiles were measured in 128 twins at baseline, 1 month, and 2 months. Multivariate mixed models
identified stable urinary metabolites with intraclass correlation coefficients ≥0.51. Longitudinal twin modeling measured the
contribution of genetic and environmental influences to variation in the stable urinary NMR metabolome, comprising stable
metabolites. The conservation of an individual’s stable urinary NMR metabolome over time was assessed by calculating conservation
indices. In this study, 20% of the urinary NMR metabolome is stable over 2 months (intraclass correlation (ICC) 0.51−0.65).
Common genetic and shared environmental factors contributed to variance in the stable urinary NMR metabolome over time. Using
the stable metabolome, 91% of individuals had good metabolomic conservation indices ≥0.70. To conclude, this research identifies
20% of the urinary NMR metabolome as stable, improves our knowledge of the sources of metabolomic variation over time, and
demonstrates the conservation of an individual’s urinary NMR metabolome.

KEYWORDS: stable NMR metabolome, intra- and interindividual variations, conservation, genetic and environmental influences

■ INTRODUCTION

Metabolomics involves the comprehensive systematic profiling
of metabolites in a biological sample.1 In nutrition and health
research, metabolomics enhances our understanding of the
effects of foods or diet on metabolic pathways and identifies
dietary biomarkers.2 Levels and patterns of intra- and
interindividual variations differ for every metabolite. To
identify robust associations with a metabolite, studies must
understand and control for the influences contributing to
variation in metabolites over time. Metabolites that are
sensitive to short-term changes in diet or lifestyle are useful
in dietary intervention studies, whereas stable metabolites
might provide useful information on longer-term markers of
diet or health.
The metabolomic composition of biofluids is affected by

many factors including gene sex, age, diet, lifestyle, and the gut

microbiome.3,45,6 Using repeated sample collections, fair to
good stability over several days to 3 years has been reported for
blood and urine metabolites.3,5,7−10 Floegel et al.7 reports good
stability for 163 serum metabolites over a 4 month period,
defining good stability as intraclass correlation (ICCs) between
0.51 and 0.74. Stable metabolites measured using flow
injection analysis tandem mass spectrometry (MS) included
hexose, sphingolipids, amino acids, and glycerophospholipids.7

In urine, 31% of 539 metabolites, measured using liquid
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chromatography-MS and gas chromatography-MS, had ex-
cellent stability (ICC > 0.80) over 60−90 days.4 Age, sex, and
body mass index (BMI) explained only a small proportion of
variation in the stable metabolites, suggesting that other factors
contribute toward stability.4 Although blood is under tighter
homeostatic control compared to urine, findings demonstrate
that some metabolites are more stable compared to others over
time across both biofluids.
Blood metabolomic profiles are characteristic of an

individual and conserved over 8−10 years.11−14 In an Italian
cohort, healthy subjects were characterized by a stable
metabolic space over 10 years.14 Conditions including
pregnancy, lactation, or cancer were associated with deviations
from a stable metabolic space.14 Yousri et al.15 examined the
long-term conservation of human metabolomic profiles over 7
years, showing that 53% of the cohort had excellent
metabolome conservation. Highly stable metabolites increased
metabolome conservation.15 Stable metabolites could be
grouped into those that were conserved due to genetics and
those conserved due to dietary or lifestyle preferences.15

Nicholson et al.16 decomposed biological variation in plasma
and urinary NMR metabolites collected over 4 months into
two stable (familiality and individual environment) and two
unstable (individual-visit and common-visit) components.
Stable components accounted for, on average, 60 and 47% of
the variation in plasma and urinary metabolites, respectively.16

Using a classic twin design, the authors demonstrate that
familial factors comprising genetic and shared environment
contribute a stable and pervasive influence to stability in the
NMR metabolome.16 Research suggests that stable metabolites
may improve metabolome conservation and stable metabolites
are influenced by a combination of genetic and environmental
factors.3,15

To date, the plasma metabolomic profile has been used to
examine metabolomic conservation or how well an individual
is recognized with themselves over time, whereas less is known
about the stability of the urine metabolome. Lower blood
metabolomic profile conservation has been associated with an
increase in all-cause mortality risk independent of several
health parameters including cardiovascular risk factors and
chronic illness.17 Thus, changes in metabolism could be
identified by monitoring the conservation of an individual’s
metabolomic profile without focusing on specific disease
biomarkers. This study aims to classify stable regions of the
urinary NMR metabolomic profile and quantify the genetic
and environmental contributions to stability over time using a
classic twin design.

■ MATERIALS AND METHODS

Study Population

The UCD twin study is a semilongitudinal classic twin study.
Participants included healthy male and female monozygotic
(MZ) and dizygotic (DZ) twins (same sex) aged 18−65 years
living in Ireland. The study design and inclusion and exclusion
criteria were described previously.18 Briefly, participants
attended five study visits over a 2 month period, with a visit
approximately every 2 weeks (±3 days). Each twin pair
completed their visits within 1 month of one another. Urine
samples collected at baseline, 1 month, and 2 month visits were
used in this research. One-hundred and twenty-eight
participants constitute our study population. Ethical approval
was obtained from the Human Research Ethics Committee in

University College Dublin, and all participants provided
informed written consent (LS-13-44-OSullivan). All proce-
dures were conducted according to the principles expressed in
the Declaration of Helsinki. A cohort of 64 twin pairs (88 MZ
and 40 DZ twins) is powered to estimate additive genetic
effects (A) ≥ 77% with an 80% power.19 The power to detect a
range of significant parameters in the UCD twin study cohort
was also examined (Supporting Information Table S-1). While
this study is powered to estimate heritability for certain traits,
the sample size is small and therefore insufficient to estimate
significant contributions of genetics and environment for all
traits. Figure S-1 describes the study workflow design.

Biofluid Collection

On each study visit in the morning, after an overnight fast,
participants collected a first-void midstream urine sample.
Samples were placed on ice packs and transported to the study
center. Samples were inverted twice and immediately
centrifuged at 1500g for 10 min and stored at −80 °C until
analysis. Buccal swabs were collected for zygosity analysis and
confirmed by 21 DNA markers (Genetic Testing Laboratories
Inc. Brighton, U.K.).

NMR Spectroscopy

Spot urine samples were prepared by the addition of 250 μL of
phosphate buffer (0.2 M KH2PO4, 0.8 K2HPO4 at pH 7.4), 10
μL of sodium trimethylsilyl propionate (0.05 g/4 mL), and 50
μL of D

2
0 (99.9%) to 500 μL of urine. Spectra were acquired

on a 600 MHz Varian NMR spectrometer using a nuclear
Overhauser spectroscopy (NOESY) pulse sequence with 16 K
complex points and 128 scans over a width of 9 kHz. Water
suppression was achieved during the relaxation delay (2.5 s)
and mixing time (100 ms). 1H NMR urine spectra were
processed manually with Chenomx software and were line-
broadened and phase- and baseline-corrected. Spectra (10.00−
0.00 ppm) were reduced by dividing the spectra into bins of
0.02 width. The area of the bin was calculated to represent the
spectral region. Data were normalized to the sum of the
spectral integral. Metabolomic bin regions were transformed
using Johnson transformation. Metabolites within bin regions
classified as “stable” were identified using Chenomx software
and are presented in Supporting Information Table S-2
(Chenomx Inc., Edmonton, Canada).

Dietary Analysis and Anthropometric Measurements

Dietary intake was assessed on 5 nonconsecutive days, over a 2
month period, using the 24 h recall method based on the U.S.
Department of Agriculture Automated Multiple-Pass Method
(USDA AMPM). Collection and analysis of dietary data were
previously described.20 Briefly, food intake data were coded
and entered into the WISP version 3.0 (Tinuviel Software,
U.K.) for analysis. All data were quality-controlled for accuracy
and assessed for under-reporters of energy intake using Henry
equations.21 Healthy eating index (HEI)-2015 components
and scores were calculated according to the criteria set out by
Krebs-Smith et al.22 Height was measured to the nearest
millimeter with a Leicester portable height measure
(Chasmores Ltd., U.K.) without shoes; body mass was
measured in duplicate using a Tanita body composition
analyzer BC- 420MA (Tanita Ltd., U.K.), and body
composition, including fat-free mass (FFM), was measured
by air-displacement plethysmography (BOD-POD, Life
Measurements Instruments).
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Statistical Analysis

Statistical analysis was performed using the R statistical suite
version 3.6.1 for Mac OS X. Linear mixed modeling was
performed to decompose total variance (σT

2) in urinary
metabolomic bin regions into several components: interindi-
vidual variance (σB

2), which can also be considered the
variance of the “usual” level in a population; intraindividual
variance (σW

2), which reflects monthly variability around the
usual level within an individual; and intrafamily variance (σF

2),
which accounts for family relatedness. The three-variance
components were estimated using the linear mixed modeling
equation

Y B Fij ij j ij0β ε= + + + (1)

Yij is the normalized transformed metabolomic bin level of twin
i from pair j and random effects included subject ID (Bij), and
family ID (Fj), which represents the omitted family character-
istics or unobserved heterogeneity. The intraclass correlation
(ICC) is denoted as the proportion of the population’s
biologic variability that is due to the interindividual variation as
well as intrafamily variation, accounting for similarities
between twins

ICC B
2

F
2

B
2

F
2

W
2

σ σ
σ σ σ

=
+

+ + (2)

Variance Explained by Age, Sex, FFM, and HEI

Equation 1 was expanded to include the four covariates, age
(αa), sex (δg), FFM (γw), and HEI score (ϕh)

Y B Fij ij j ij0 a g w hij ij ij ij
β α δ γ ε= + + + + ⌀ + + +

(3)

Fixed effects for age (αaij), sex (δgij), FFM (γwij
), and HEI score

(ϕhij) were included for each subject, i.e., twin i from pair j. We
assessed whether the covariates were significantly associated
with metabolomic bin regions and obtained p-values by
conducting an analysis of variance (ANOVA) on the mixed
models. The Benjamini−Hochberg correction for multiple
comparisons was applied, and statistically significant thresholds
were based on false discovery rate (FDR) cutoffs (p < 0.05).23

The proportion of variance explained by each significant
covariate (R2) was estimated for each metabolomic bin region
using the R package MuMIn.24 Total variance was defined as

T sig covariate
2

B
2

F
2

W
2σ σ σ σ σ= + + + , and the proportion of the

variance attributable to a significant covariate was defined as
sig covariate
2

T

σ

σ
.

Classification of Stable Metabolomic Regions

For each metabolomic bin region, significant covariates were
included in eq 3. ICC values were calculated (eq 1), and the
following cutoffs were used to classify ICC values: an ICC ≥
0.75 indicates excellent stability, 0.51−0.74 indicates good
stability, 0.40−0.50 indicates fair stability, and <0.40 indicates
poor stability.7,25 Metabolomic bin regions were classed as
stable if the ICC value was ≥0.51. Stable bin regions were
carried forward for additional analysis and collectively are
referred to as the stable urinary NMR metabolome.
Longitudinal Structural Equation Modeling (SEM)

Longitudinal SEM was performed on stable bin regions using
the R Package OpenMx (version 2.9.9).26 To establish
regularity and randomness of sampling, means and variances

were examined to ensure equality across twin order and
zygosity groups (Supporting Information Table S-3). A
saturated Cholesky decomposition model was performed to
examine time-specific etiology, explaining whether new sources
of variance emerge over time while also modeling variance
through successive traits onto the same trait at each new time
point.27 The saturated model assumes that genetic variation of
each variable is determined by a genetic component underlying
that variable, as well as all other variables ordered before it in
the model. In SEM, standardized path coefficients are
calculated by multiplying the path coefficient matrix by the
inverse of the standard deviation. Standardization allows path
coefficients to be compared, assessing the relative effects of the
variables within the fitted regression model. Standardized path
coefficients are squared to derive the proportion of variance.

Conservation of the Metabolomic Profile

To measure conservation of an individual’s stable urinary
NMR metabolomic profile, conservation indices were
created.15 Several steps were carried out: (1) intra- and
interindividual metabolomic profile correlations were calcu-
lated; Pearson’s correlations were performed between an
individual’s baseline profile and all participants’ profiles at 2
months (n = 128); (2) correlations were ranked; an
individual’s intraindividual correlation was ranked against the
interindividual correlations of that individual with all other
participants; (3) conservation indices were calculated using the
formula 1-((rank(i)-1)/(N-1)).15 To compare our results to
previously published methodologies,15 the conservation index
of the entire metabolomic profile (400 bins) was recreated
using intra- and interindividual metabolomic profile correla-
tions that were weighted using longitudinal bin correlations.
Longitudinal Pearson’s correlations were performed between
the same metabolomic bin region at baseline and 2 months.
Pearson’s correlations were controlled for age, sex, FFM, and
HEI scores using the R package ppcor (version 1.1). Weighting
was applied to metabolomic profile correlations using the R
package pysch (version 2.0.7).

■ RESULTS

Characteristics of the Cohort and the Stability of the
Metabolomic Profile

This study included 88 MZ and 40 DZ twins, including 58
males and 70 females. The cohort had a mean age of 35 years
(±13), a mean height of 170.5 cm (±8.5), a mean body mass
of 70.4 kg (±11.4), and a mean BMI of 24.2 kg/m2 (±3.1)
(Table 1). ICC values for 400 urinary bin regions ranged from
0.00 to 0.65, and the median ICC was 0.39 (±0.17). Pearson’s
correlations ranged −0.22−0.59, and the median value was
0.16 (±0.17). Metabolomic bin regions classed as having good
conservation (ICC ≥ 0.51) are presented in Table 2. Twenty
percent of the urinary NMR metabolomic profile (81 bin
regions) had good stability over 2 months and collectively
make up the stable urinary NMR metabolome (Table 2). The
contribution of sex, age, FFM, and HEI scores to variance in
each stable metabolomic bin region is reported in Table 2. Age
and diet quality (HEI score) significantly contributed to
variance in 44% (36 bin regions) and 33% (27 bin regions) of
the stable NMR metabolome, respectively. The median
proportion of variance (R2) explained by age and HEI score
was 10.9 and 4.8%, respectively. Sex and FFM significantly
contributed to variance in fewer regions (10 and 7%) but the
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median proportion of variation explained by these covariates
was 15 and 9.5%, respectively.

Contribution of Genetic and Environmental Influences to
the Stable Urinary NMR Metabolome

Longitudinal variation in the stable urinary NMR metabolome
was examined using a Cholesky decomposition model. The
longitudinal Cholesky decomposition model permits examina-
tion of genetic or environmental influences that emerge at
different times. Squared standardized path coefficients and
confidence intervals for the top 10 most stable bin regions are
reported in Table 3. Genetic (A1) and shared environmental
factors (C1) present at baseline and persisting over time
accounted for covariance in the metabolomic bin regions at
each visit. A smaller proportion of genetic and shared
environmental variances was unique to bin regions at each
visit but did not influence variation at the next time point. For
example, bin 3.35 ppm, the most stable metabolomic region,
had a shared environmental factor common with all three visits
(C1) that accounted for 0.40, 0.36, and 0.38 of variation at
each time point, respectively. Three percent of the shared
environmental variance (1% of total variance) at visit 3 was
explained by a factor common with visits 2 and 3 only (C2),
and none of the variance was explained by a factor unique to
visit 3 (C3). For the top 10 stable urinary bin regions, 8 had a
strong shared environmental factor common with all three
visits, whereas 2 (bins 1.71 and 1.89 ppm) had a strong genetic
factor common across visits. The Cholesky decomposition
model estimates for the entire stable metabolome are reported
in Supporting Information Table S-2.

NMR Urinary Metabolomic Profile Conservation

Conservation indices were calculated for the stable urinary
NMR metabolome (Table 4). Thirty-four percent of
individuals had an excellent conservation index of 1.00,
meaning they were most similar to themselves after 2 months;
91% of individuals had a conservation index ≥0.70, meaning
these individuals ranked among the 30% highest correlations
with all other profiles; and only 9% of individuals had a lower
conservation index (<0.70). Using a weighted method on the
entire metabolomic profile, 90% of individuals had a
conservation index ≥0.70 and 10% of individuals had a
lower conservation index. Conservation indices calculated
using the stable urinary NMR metabolome only and the
weighted method yielded similar results; however, the stable
method had more individuals with excellent indices.

■ DISCUSSION

Twenty percent of the urinary NMR metabolomic profile is
stable over a 2 month period. Genetic and shared environ-
mental influences present at baseline persisted and consistently
accounted for sources of variation across time. The stable
urinary NMR metabolome had a high conservation index for
91% of the cohort. Sex, age, FFM, and diet quality were
associated with many regions of the stable urinary NMR
metabolome but the contribution of covariates to total variance
was relatively low ranging from 0 to 20.3%. The stable urinary
NMR metabolome, composed of 81 bin regions, provides an
effective method to distinguish individuals from one another
and to measure or monitor metabolomic conservation over
time.
This research aims to understand what factors contribute

toward stability in the urine NMR metabolomic profile. Having
identified a stable component of the urinary NMR
metabolomic profile, this study demonstrates that both genetic
and shared environmental factors contribute to stability over
time. Heritability estimates ranged from 0.00 to 0.69 across the
three study visits with a median heritability of 0.16. A genetic
factor common with visit 1 explained on average 82% of
heritability at visit 2 and 79% at visit 3. This agrees with
previous research suggesting the presence of a genetic
component influencing an individual’s “metabolomic finger-
print” over time.12 Yousri et al.15 showed that heritability and
stability of metabolites over 7 years were highly correlated,
suggesting that metabolites are more conserved because of
genetic influences. The authors suggested that metabolites with
high stability and low heritability were conserved as a result of
environmental factors which could be diet or lifestyle related.15

We previously identified a collection of reproducible urinary
metabolomic regions that were consistently correlated to
habitual diet quality over time in both MZ and DZ twins.20

The same diet-associated metabolomic regions were captured
in the stable NMR metabolome in this study, suggesting the
influence of habitual diet on conservation. In this study, shared
environmental estimates ranged from 0.00 to 0.56 with a
median estimate of 0.18. A shared environmental factor
common with visit 1 explained on average 81% of shared
environmental influences at visit 2 and 85% at visit 3. In adult
twins living apart, the shared environment may represent
lasting influences of their time cohabiting or similar current
living environments, including the same/similar neighborhood,
exposure to similar pollutants, or shared diet and lifestyle.
Significantly correlated metabolites between spouses who share
a household indicate that shared environment contributes to
similarities in the metabolome.28 This longitudinal modeling
demonstrates that familial factors, composed of genetics and
shared environment, influence variation in the urinary NMR
metabolome over time.
To the best of our knowledge, two studies to date have

examined variation in metabolomic profiles over time using
twins.16,29 In a cohort of 56 MZ and 21 DZ twin pairs, familial
factors contributed ∼30% of variation in urinary metabolites.16

Thirty-four MZ twins donated samples twice over 4 months,
which allowed decomposition of the remaining nonfamilial
variation (i.e., unique environment) into individual environ-
ment, individual-visit, and common-visit components. The
authors describe individual environment as a stable component
that captures long-term lifestyle factors such as diet, culture,
and social factors that are unique to an individual.16 The visit

Table 1. Descriptives of the Cohorta

total (n = 128) MZ (n = 88) DZ (n = 40)

gender male 58 38 20
female 70 50 20

age years 35 (13) 37 (12) 32 (12)
height cm 170.5 (8.5) 169.7 (8.0) 172.4 (9.3)
waist cm 80.0 (8.7) 79.8 (9.6) 80.6 (6.3)
hip cm 97.9 (7.4) 97.6 (7.7) 98.5 (6.6)
body fat % 25.7 (9.5) 25.8 (9.6) 25.3 (9.5)
body mass kg 70.4 (11.4) 69.5 (12.1) 72. 4 (9.6)
BMI kg/m2 24.2 (3.1) 24.1 (3.3) 24.4 (2.5)

aAll values are mean (±SD). n, number of observations; MZ,
monozygotic; DZ, dizygotic; cm, centimeters; %, percentage; kg,
kilograms; BMI, body mass index; and m2, meters squared.
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Table 2. Proportion of Variance Explained by Significant Covariates and ICC for the Stable Urinary NMR Metabolomea

bin (ppm) sex % (β) p-value age % (β) p-value FFM % (β) p-value HEI p-value ICC

3.35 7.1 (0.27) 0.021 12.1 (0.34) <0.001 0.645
2.51 19.1 (0.87) <0.001 8.1 (0.29) 0.019 10.1 (−0.31) 0.044 0.626
8.83 0.625
1.71 0.624
7.29 4.1 (0.20) 0.045 0.622
1.19 0.621
1.89 0.617
9.11 0.615
6.91 0.613
6.97 6.1 (0.24) 0.015 0.609
2.33 11.1 (0.34) 0.001 5.1 (−0.22) 0.028 0.604
1.25 8.1 (−0.29) 0.010 0.594
1.73 0.594
7.61 13.1 (0.37) 0.001 5.1 (0.22) 0.016 0.593
7.81 14.1 (0.37) 0.001 4.1 (0.20) 0.028 0.593
3.55 8.1 (-0.29) 0.045 0.591
3.41 8.1 (−0.58) 0.024 0.591
7.63 13.1 (0.37) 0.001 5.1 (0.23) 0.014 0.590
2.85 0.588
2.65 17.1 (0.83) 0.001 10.1 (0.32) 0.006 10.1 (−0.31) 0.043 0.587
7.27 16.1 (0.40) <0.001 0.586
7.83 14.1 (0.38) 0.001 7.1 (0.25) 0.007 0.585
2.17 0.584
7.53 11.1 (0.33) 0.002 0.583
7.55 15.1 (0.39) <0.001 7.1 (0.27) 0.004 0.578
1.47 3.1 (−0.17) 0.044 0.578
2.29 0.578
3.01 0.566
3.15 6.1 (−0.48) 0.039 0.566
3.03 20.1 (−0.90) <0.001 20.1 (−0.45) <0.001 19.1 (0.44) <0.001 0.565
2.61 0.565
1.17 3.1 (0.17) 0.044 0.565
2.27 6.1 (0.25) 0.016 0.550
1.31 6.1 (−0.25) 0.019 0.563
2.43 4.1 (−0.20) 0.028 0.562
1.97 0.562
3.99 12.1 (−0.35) <0.001 4.1 (−0.19) 0.048 0.560
7.35 16.1 (0.40) <0.001 0.555
6.89 0.552
7.39 9.1 (0.30) 0.003 0.551
7.41 18.1 (0.42) <0.001 0.548
2.67 18.1 (0.86) <0.001 9.1 (−0.30) 0.038 0.547
0.97 0.546
1.93 7.1 (−0.27) 0.004 0.545
3.13 0.544
8.77 0.543
8.53 7.1 (0.27) 0.008 0.541
3.95 8.1 (0.29) 0.007 5.1 (0.22) 0.013 0.540
2.59 3.1 (0.18) 0.04 0.539
6.85 0.538
0.99 6.1 (−0.24) 0.016 0.537
0.95 11.1 (−0.34) 0.001 4.1 (−0.20) 0.038 0.537
3.93 0.536
3.19 6.1 (−0.24) 0.014 0.535
2.07 5.1 (−0.23) 0.013 0.534
2.53 13.1 (0.73) 0.003 6.1 (0.25) 0.025 0.533
2.41 0.532
2.05 5.1 (−0.21) 0.04 5.1 (−0.22) 0.014 0.530
2.03 5.1 (−0.21) 0.013 0.530
1.09 0.529
0.83 5.1 (-0.23) 0.024 4.1 (−0.20) 0.027 0.529
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components capture variation between sample collection time
points. In this study, we have three urine samples per person
(MZ and DZ twins) collected over time, which when
combined with a multivariate modeling approach permits
decomposition of covariation between time points into genetic,
shared, and unique environmental factors. Although some
metabolomic regions identified as highly stable are similar
across both studies (e.g., bin 3.35 ppm), the variance estimates
are not comparable. Another study reported heritability
estimates for 901 serum metabolites at three time points
collected over an 18 year period.29 However, Long et al.29

reported univariate heritability estimates for individual time
points and categorized metabolites as consistently heritable if
the coefficient of variation between time points was <0.50. The
shared environment also contributed to variation in consis-
tently heritable serum metabolites but shared environment
consistency was not reported.29 Similarly, this study reports
heritability at three visits but longitudinal Cholesky decom-
position modeling allows time-specific sources of variation to
emerge and allows potential short-term changes in environ-
ment to be identified. This study extends the existing
knowledge and demonstrates that genetic and shared environ-
mental factors exert a stable and pervasive influence on urinary
metabolites, which contributes to the conservation and
uniqueness of an individual’s stable urinary NMR metabolome.
We examined several covariates to elucidate the factors

contributing to metabolomic stability. Many factors including
age, sex, and weight are commonly adjusted covariates in
studies but these may also contribute toward stability. In this
study, some metabolomic regions were more strongly
influenced by covariates than others. For example, 32% of
variation in region 3.03 ppm was explained by age, sex, and
FFM. Region 3.03 ppm represents a clear peak for the
metabolite creatinine, an end product of creatine metabolism
produced at a steady rate in the body.30 Blood creatine15 and
urinary creatinine4 are stable, and creatinine production

decreases with age, varies with sex, and a positive relationship
exists with FFM.31,32 In this study, covariates accounted for a
larger proportion of variance in stable urinary bin regions than
previously reported.4 Age was associated with the largest
number of stable regions and was also the covariate with the
highest contribution to variance in a stable bin. Biologically
significant changes occur with aging, and the majority of age-
associated metabolites are related to lipid and amino acid
pathways.33 Overall, covariates or their combinations explained
some of the variance in the stable metabolome but future
research should examine other covariates contributing to
variance, such as gut microbiota and physical activity.
This research also demonstrates that the stable urinary NMR

metabolome is distinguishable and conserved over time. The
stable NMR metabolome showed good conservation for 91%
of the cohort (index ≥ 0.70). Plasma metabolome conservation
was reported in the KORA and TwinsUK cohorts,15 where
95% of individuals had conversation indices > 0.83 and > 0.78,
respectively. Differences between cohorts are likely due to the
different biofluids; that is, urinary metabolites are more
variable and sensitive to day-to-day changes and dietary intake.
Thus, urinary profiles may provide additional, valuable
information about long-term dietary influences on metab-
olomic conservation. Yousri et al.15 weighted metabolome
conservation indices using longitudinal metabolite intra-
correlations and demonstrated improved metabolomic con-
servation in their cohort.15 In this study, the stable method and
weighted method yielded similar results; however, the stable
method had more individuals with excellent indices. Similarity
in results demonstrates that using ICCs to identify regions with
low intraindividual variation is an effective method to
distinguish individuals and supports evidence that not all
regions are equally informative for identification of individuals
as themselves at a later time. Across all studies, some
individual’s profiles were less well conserved and may signify
a significant lifestyle or health status change, such as antibiotic

Table 2. continued

bin (ppm) sex % (β) p-value age % (β) p-value FFM % (β) p-value HEI p-value ICC

2.25 16.1 (0.40) <0.001 0.528
2.35 6.1 (−0.25) 0.016 4.1 (−0.19) 0.044 0.526
6.83 6.1 (0.24) 0.011 0.526
2.31 0.525
0.89 0.524
1.27 5.1 (−0.22) 0.024 0.523
1.01 0.523
2.91 4.1 (−0.20) 0.049 0.522
7.33 17.1 (0.42) <0.001 0.518
7.43 15.1 (0.38) <0.001 0.517
7.37 13.1 (0.36) <0.001 0.517
1.35 6.1 (0.25) 0.045 0.516
1.87 4.1 (−0.19) 0.039 0.516
7.65 13.1 (0.36) <0.001 11.1 (0.32) <0.001 0.515
2.69 0.515
3.45 0.514
3.05 7.1 (−0.55) 0.04 16.1 (−0.40) <0.001 0.513
2.13 6.1 (−0.24) 0.014 0.510
1.77 0.510
3.83 7.1 (−0.26) 0.005 0.510

a%: R2 value calculated the proportion of variance explained by significant fixed effects. β: fixed effect parameter estimate; p-value: FDR (α < 0.05)
corrected p-values from ANOVAs on the mixed models; ICC: intraclass correlations with significant covariates included as fixed effects; ppm: parts
per million; FFM: fat-free mass; HEI: healthy eating index. n = 128 individuals.
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treatment, or pregnancy/breastfeeding.14 Lacruz et al.17

demonstrated that poor metabolome conservation is associated
with an increase in all-cause mortality risk independent of
several other health parameters.17 Evidence of change in an
individual’s stable metabolome could support early interven-

tion for an illness or disease. However, we must further
understand intraindividual metabolomic variation and begin to
identify the factors contributing to metabolite stability before
we can use profiles to inform diet and lifestyle change or alter
disease trajectory.

Table 3. Cholesky Decomposition Squared Standardized Path Coefficients, Saturated Modela

bin
(ppm) A1 A2 A3 C1 C2 C3 E1 E2 E3

3.35 0.06 (0.00,
0.53)

0.40 (0.00,
0.62)

0.54 (0.36,
0.75)

0.08 (0.00,
0.57)

0.00 (0.00,
0.21)

0.36 (0.00,
0.62)

0.06 (0.00,
0.23)

0.08 (0.01,
0.22)

0.42 (0.28,
0.60)

0.00 (0.00,
0.38)

0.00 (0.00,
0.18)

0.00 (0.00,
0.17)

0.38 (0.00,
0.57)

0.01 (0.00,
0.15)

0.00 (0.00,
0.12)

0.15 (0.05,
0.33)

0.10 (0.03,
0.22)

0.36 (0.23,
0.52)

2.51 0.05 (0.00,
0.58)

0.47 (0.00,
0.66)

0.48 (0.31,
0.70)

0.00 (0.00,
0.55)

0.04 (0.00,
0.25)

0.42 (0.00,
0.62)

0.00 (0.00,
0.22)

0.05 (0.00,
0.17)

0.49 (0.32,
0.67)

0.01 (0.00,
0.51)

0.02 (0.00,
0.28)

0.00 (0.00,
0.20)

0.42 (0.00,
0.62)

0.00 (0.00,
0.19)

0.00 (0.00,
0.17)

0.06 (0.00,
0.18)

0.02 (0.00,
0.11)

0.47 (0.31,
0.65)

8.83 0.15 (0.00,
0.51)

0.32 (0.02,
0.56)

0.53 (0.35,
0.76)

0.00 (0.00,
0.31)

0.00 (0.00,
0.32)

0.48 (0.03,
0.65)

0.01 (0.00,
0.29)

0.04 (0.00,
0.15)

0.46 (0.31,
0.66)

0.01 (0.00,
0.30)

0.00 (0.00,
0.32)

0.00 (0.00,
0.23)

0.28 (0.00,
0.50)

0.02 (0.00,
0.26)

0.00 (0.00,
0.21)

0.22 (0.08,
0.43)

0.03 (0.00,
0.12)

0.44 (0.28,
0.63)

1.71 0.31 (0.00,
0.73)

0.29 (0.00,
0.64)

0.41 (0.26,
0.60)

0.35 (0.00,
0.67)

0.01 (0.00,
0.21)

0.16 (0.00,
0.58)

0.01 (0.00,
0.21)

0.00 (0.00,
0.06)

0.47 (0.32,
0.65)

0.43 (0.00,
0.75)

0.09 (0.00,
0.34)

0.00 (0.00,
0.25)

0.11 (0.00,
0.58)

0.00 (0.00,
0.28)

0.00 (0.00,
0.22)

0.00 (0.00,
0.06)

0.02 (0.00,
0.09)

0.36 (0.23,
0.54)

7.29 0.16 (0.00,
0.62)

0.33 (0.00,
0.64)

0.50 (0.33,
0.72)

0.10 (0.00,
0.65)

0.23 (0.00,
0.45)

0.18 (0.00,
0.53)

0.03 (0.00,
0.27)

0.10 (0.02,
0.24)

0.35 (0.22,
0.55)

0.00 (0.00,
0.42)

0.02 (0.00,
0.32)

0.00 (0.00,
0.23)

0.23 (0.00,
0.55)

0.11 (0.00,
0.37)

0.00 (0.00,
0.00)

0.11 (0.02,
0.28)

0.13 (0.03,
0.29)

0.40 (0.26,
0.57)

1.19 0.09 (0.00,
0.60)

0.37 (0.00,
0.62)

0.54 (0.37,
0.76)

0.45 (0.00,
0.70)

0.00 (0.00,
0.41)

0.11 (0.00,
0.64)

0.01 (0.00,
0.37)

0.03 (0.00,
0.11)

0.41 (0.27,
0.60)

0.13 (0.00,
0.53)

0.00 (0.00,
0.39)

0.00 (0.00,
0.28)

0.05 (0.00,
0.49)

0.16 (0.00,
0.40)

0.00 (0.00,
0.00)

0.07 (0.01,
0.22)

0.08 (0.01,
0.23)

0.51 (0.35,
0.71)

1.89 0.31 (0.00,
0.71)

0.26 (0.00,
0.62)

0.43 (0.28,
0.64)

0.36 (0.00,
0.63)

0.00 (0.00,
0.25)

0.06 (0.00,
0.50)

0.03 (0.00,
0.24)

0.03 (0.00,
0.14)

0.52 (0.35,
0.71)

0.44 (0.00,
0.64)

0.00 (0.00,
0.29)

0.00 (0.00,
0.00)

0.02 (0.00,
0.43)

0.00 (0.00,
0.23)

0.00 (0.00,
0.18)

0.04 (0.00,
0.16)

0.02 (0.00,
0.11)

0.48 (0.32,
0.67)

9.11 0.14 (0.00,
0.53)

0.32 (0.00,
0.56)

0.54 (0.36,
0.76)

0.01 (0.00,
0.31)

0.02 (0.00,
0.37)

0.40 (0.00,
0.60)

0.00 (0.00,
0.27)

0.07 (0.01,
0.20)

0.50 (0.33,
0.71)

0.07 (0.00,
0.36)

0.01 (0.00,
0.40)

0.00 (0.00,
0.28)

0.25 (0.00,
0.48)

0.00 (0.00,
0.24)

0.00 (0.00,
0.20)

0.24 (0.09,
0.45)

0.01 (0.00,
0.10)

0.41 (0.26,
0.62)

6.91 0.14 (0.00,
0.58)

0.31 (0.00,
0.60)

0.55 (0.37,
0.78)

0.01 (0.00,
0.50)

0.18 (0.00,
0.40)

0.17 (0.00,
0.50)

0.00 (0.00,
0.00)

0.11 (0.02,
0.28)

0.53 (0.35,
0.76)

0.00 (0.00,
0.38)

0.01 (0.00,
0.23)

0.00 (0.00,
0.00)

0.33 (0.00,
0.53)

0.00 (0.00,
0.24)

0.00 (0.00,
0.00)

0.07 (0.01,
0.21)

0.11 (0.02,
0.26)

0.48 (0.33,
0.66)

6.97 0.12 (0.00,
0.58)

0.31 (0.00,
0.58)

0.57 (0.38,
0.80)

0.00 (0.00,
0.47)

0.00 (0.00,
0.31)

0.31 (0.00,
0.51)

0.00 (0.00,
0.28)

0.11 (0.02,
0.28)

0.57 (0.38,
0.76)

0.01 (0.00,
0.52)

0.00 (0.00,
0.31)

0.00 (0.00,
0.02)

0.39 (0.00,
0.58)

0.00 (0.00,
0.00)

0.00 (0.00,
0.16)

0.10 (0.02,
0.25)

0.06 (0.01,
0.17)

0.45 (0.31,
0.61)

aSquared standardized path coefficients and 95% confidence intervals are presented. A1−A3, additive genetic factors; C1−C3, shared
environmental factors; and E1−E3, unique environmental factors. All models were controlled for age and sex. n = 128 individuals.
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Strengths and limitations of this study should be considered
when interpreting the results. This classic twin study cohort
permits analysis of the genetic and environmental factors
influencing variance in traits. Our cohort is healthy, and the
sample size is small; to overcome some limitations, we ensured
that twin assumptions were not violated and incorporated
covariates in all models. Sample numbers must still be
considered when interpreting model estimates. Study design
and sample size permitted controlled sample collection at
multiple time points, reducing the impact of preanalytic sample
collection factors. The metabolomic technique (NMR) used in
this study has high analytical reproducibility and low
interlaboratory variation. However, NMR represents only a
portion of the metabolome and spectral binning was
performed with limitations including reduced resolution and
peaks shifting between bins. We acknowledge that this research
is exploratory and validating results in larger cohorts would
strengthen our findings.
To conclude, this study shows that 20% of the urinary NMR

metabolomic profile is stable over 2 months. The stable urinary
NMR metabolome is influenced by a combination of genetic
and shared environmental factors, which exert a stable and
pervasive influence on metabolomic regions over time. Factors
including age, sex, FFM, and diet quality are associated with
stable metabolomic regions. The stable urinary NMR
metabolome of an individual is recognizable and conserved
over time. If we know an individual’s conserved metabolome,
then deviations from a stable state may be indicative of disease
and potentially provide novel information on biomarkers of
diseases. Further work should try to identify the remaining
influences (e.g., gut microbiota, stress, etc.) contributing
toward conservation of the stable metabolome. This knowl-
edge may inform personalized recommendations that optimize
health and prevent disease based on an individual’s stable
metabolome.
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Table 4. NMR Urinary Metabolomic Conservation Indices

conservation
index
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bins)

weighted metabolomic profile
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n (%) n (%)
1.00 44 (34) 40 (31)
0.90−0.99 51 (40) 55 (43)
0.70−0.89 22 (17) 20 (16)
<0.70 11 (9) 13 (10)
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