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Abstract

Preventing a pest population from damaging an agricultural crop and, at the same

time, preventing the development of pesticide resistance is a major challenge in

crop protection. Understanding how farming practices and environmental factors

interact with pest characteristics to influence the spread of resistance is a difficult

and complex task. It is extremely challenging to investigate such interactions

experimentally at realistic spatial and temporal scales. Mathematical modelling and

computer simulation have, therefore, been used to analyse resistance evolution

and to evaluate potential resistance management tactics. Of the many modelling

approaches available, individual-based modelling of a pest population offers most

flexibility to include and analyse numerous factors and their interactions. Here, a

pollen beetle (Meligethes aeneus) population was modelled as an aggregate of

individual insects inhabiting a spatially heterogeneous landscape. The

development of the pest and host crop (oilseed rape) was driven by climatic

variables. The agricultural land of the landscape was managed by farmers applying

a specific rotation and crop protection strategy. The evolution of a single resistance

allele to the pyrethroid lambda cyhalothrin was analysed for different combinations

of crop management practices and for a recessive, intermediate and dominant

resistance allele. While the spread of a recessive resistance allele was severely

constrained, intermediate or dominant resistance alleles showed a similar response

to the management regime imposed. Calendar treatments applied irrespective of
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pest density accelerated the development of resistance compared to ones applied

in response to prescribed pest density thresholds. A greater proportion of spring-

sown oilseed rape was also found to increase the speed of resistance as it

increased the period of insecticide exposure. Our study demonstrates the flexibility

and power of an individual-based model to simulate how farming practices affect

pest population dynamics, and the consequent impact of different control strategies

on the risk and speed of resistance development.

Introduction

The introduction of insecticides as a method of crop protection over the last 60

years has resulted in the development of many resistance cases amongst pest

insects to several classes of active ingredient [1]. Resistance management aims to

minimise the risk of resistance evolving, and has become a key objective for the

crop protection and farming industries. However, the interacting effects of factors

underlying the evolution of insecticide resistance in the field are not fully

understood, which impedes the development of new efficient resistance

management approaches. What is known is that these interactions are complex,

and that it is extremely challenging to investigate them experimentally across

realistic spatial and temporal scales. Mathematical and simulation models are well

suited to this purpose, capturing the appropriate complexity of resistance systems

to produce verifiable predictions for the evolution of resistance and insights for

how this problem might be managed [2].

Alleles that confer resistance to an insecticide arise spontaneously through

mutation and may already be present prior to insecticide exposure [3]. The

subsequent spread of these alleles through a population exposed to insecticide is

known to be determined by a combination of the biology of the pest and the

prevailing environmental conditions, including the conditions of insecticide

usage, e.g. timing, rate, intensity and duration of effect [4–6]. What are not well

understood is how pest biology and the environment interact in the field and

whether the environment might be manipulated to manage the spread of

resistance.

Biologically, the spread of a resistance allele will depend on the relative fitness

of resistance phenotypes within the mating system, genetic structure, age

distribution, individual behaviour, and abundance of the population under

selection. Stochasticity, particularly that of the individual probability of mating

and mortality, and that occurring predominantly at very low population sizes and

allele frequencies, will affect the overall likelihood of invasion of the allele into the

population [2].

The environment in which pests reside provides the selective landscape across

which individual fitness is modified. Under conditions of uniform and prolonged

insecticide application, the resistance allele might be expected to be strongly
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selected for, and could potentially replace all susceptible alleles. Where the

insecticide application is heterogeneous, however, being made up of a natural or

human-imposed mosaic of sprayed and unsprayed patches, the refuges afforded

by unsprayed patches can allow susceptible alleles to persist [7]. Indeed, under

conditions appropriate in terms of the size of refuges and their arrangement in the

landscape, refuges might also arrest the spread of resistant genotypes. The activity

of natural enemies, working across this mosaic of patches, might also contribute

to pest resistance management by selectively removing resistant genotypes [8].

Previous approaches to modelling insecticide resistance have used deterministic

techniques, such as differential equation models, to investigate the effects of

particular factors or behaviours on pest ecology and genetics [6, 9, 10]. Although

analytical modelling has proved successful at analysing the effects of specific

interactions on population dynamics, it quickly becomes mathematically

intractable where it is necessary to investigate the effects of many factors

simultaneously [11, 12]. To combine and analyse suites of individual properties,

which depend on genetics, age, population density and spatial location, alternative

quantitative approaches are required. With the advent of powerful computers,

simulation approaches that explicitly include the behaviour and properties of each

individual within a population have become viable alternatives. The individual-

based model (IBM) approach emphasises the importance of the individual and

stochasticity, and has shown that the distinctive characteristics of a particular

system may originate directly from individual behaviour [13]. It is thus essential

to understand this behaviour in order to predict the dynamics of the system [14].

This paradigm shift is well suited to answer the recent calls for predictive systems

ecology going beyond reductionist modelling approaches that have dominated the

field [15, 16]. The growing interests in predicting the evolution of ecological

systems, that are complex and influenced by individual behaviour, have made

IBM an increasingly popular approach. The variety of models developed

demonstrates the power and flexibility of IBM. For instance, IBMs have recently

been used to analyse the spatio-temporal spread of pest insects in forests [17–19]

and agricultural landscapes [20–22]. IBMs have also been applied to study the

relation between movements and pesticide exposure of mammals [23, 24] as well

as to study pesticide resistance management strategies, e.g. the efficacy of

fumigation tactics to control pest insects in stored grain [25].

In this paper, we describe a spatially explicit IBM that includes the important

biological and environmental factors which affect the evolution of insecticide

resistance, and which can be tailored to specific resistance problems by adopting

appropriate parameter values. We apply this model to investigate resistance

development to pyrethroid insecticides in pollen beetles, Meligethes aeneus,

infesting oilseed rape (Brassica napus L.) (OSR) crops in the UK. The

parameterised model was used to study the importance of environmental (crop

rotations) and pest management (treatment thresholds) factors on the develop-

ment of resistance in pollen beetle populations.
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Pollen Beetle Biology and Resistance

M. aeneus is one of the most damaging insect pests of OSR [26]. In the UK it

attacks the crop in spring and early summer, and is the major target of spring-

applied pesticides. Adults emerge from overwintering sites in March-April, feed

on pollen from a range of plant families, and then migrate to winter-sown OSR

(WOSR) crops where they mate and lay eggs in the flower buds [26, 27].

Oviposition damage by adults and feeding damage by first instar larvae within the

bud results in bud abscission and loss of yield. Backward WOSR and crops sown

in spring (SOSR) are most at risk as the growth stages most susceptible to damage

by M. aeneus occur after beetles have emerged from overwintering and are seeking

oviposition sites. Females lay up to 200 eggs during the reproduction period

which may last for as long as 2 months [26, 28]. Eggs develop to adults in

approximately 30 to 55 days [28]. From late June, the new generation of adults

feeds on pollen from open flowers before moving to overwintering sites without

mating [26, 27].

Until recently, control of M. aeneus in northern Europe relied almost

exclusively on pyrethroid insecticides. During the spring in the UK, beetles are

often exposed to at least 2 insecticide sprays, 1 applied at the green bud stage and

specifically targeting M. aeneus, and the other applied during flowering, targeted

primarily at a coexisting pest, the seed weevil Ceutorhynchus assimilis [29]. The

pest density thresholds developed as triggers for spraying vary considerably across

Europe. In the UK it is recommended that action be taken when beetle numbers

exceed 15 per plant at green bud stage for a standard WOSR crop, 5 per plants for

a backward WOSR crop (e.g. one that has encountered frost damage), and 5 per

plant for a SOSR crop. In many other countries, spray thresholds are lower

(around 5 per plant for OSR generally), partly as a consequence of a greater

proportion of SOSR crops. In reality, however, many growers are reluctant to

scout for pest numbers and often spray at lower population densities, a practice

encouraged by the very low cost of pyrethroids when these insecticides were still

an effective control option.

Pyrethroid resistance was first reported in 1999 [30] and has since become

widespread across northern Europe [31]. Progressive increases in the frequency

and geographical extent of resistance have been tracked by several laboratories

using a standardised bioassay methodology, yielding one of the most

comprehensive resistance monitoring datasets available [31]. In the UK, resistance

was slower to appear, being first documented in 2005, but has since spread to all

of the major OSR-growing regions in the country [32]. Evolution of resistance has

been accompanied by a progressive decline in control efficacy with pyrethroids,

prompting the rapid registration of alternative classes of insecticides to which no

resistance has been reported to date. There is consequently much interest in

exploring factors that contributed to the appearance and spread of pyrethroid

resistance in M. aeneus and in identifying how best to minimise the risk of

resistance to newer chemicals.
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Model Description

The individual-based model of pest resistance simulates a spatially heterogeneous

agricultural landscape consisting of farmers’ fields and semi-natural habitats.

Farmers manage their fields following a defined sequence of crop rotation. Insects

invade and move around this landscape according to their life cycle, host plant

preferences and dispersal abilities. Individual insects are born, develop, mate,

reproduce and die according to pre-set stochastic rules. Farmers control pests by

applying insecticide according to calendar dates (‘calendar treatment’) or when

pest density exceeds a threshold (‘threshold treatment’). Insects with different

genotypes are not equally susceptible to the chemicals applied. The selection

pressure for resistant genotypes emerges from a combination of landscape

features, control decisions and parameters defining the ecology of the pest and the

properties of resistance genes. The model progresses on a daily time step and

simulations are run over several years with changes in allele frequency tracked

over this period. By varying conditions and repeating simulations, it is possible to

investigate which factors or combinations of factors have most influence on the

risk of resistance development. Potential integrated resistance management (IRM)

strategies can be evaluated and compared in silico.

Landscape structure and cropping patterns

The simulated landscape represents a group of spatially-heterogeneous habitats

divided into a grid of square cells. A cell is the smallest spatial unit and represents

an area of 1 hectare; insect position is not tracked within a cell. Considering the

size of the landscape (100 cells), the same climatic and environmental conditions

(e.g. minimum and maximum daily temperatures, day length) are used in all cells.

A proportion of these cells are set to be uncropped habitats (e.g. woodland) that

serve as overwintering sites for M. aeneus (Fig. 1). The rest of the landscape is

divided between agricultural crops that do (e.g. OSR) and don’t (e.g. cereals) serve

as host plants for M. aeneus. It is also necessary to include non-crop refuge cells

where the pest feeds on pollen before and after hibernation, which are safe from

insecticide exposure. The host range of M. aeneus has been limited in the

simulations to 2 OSR crops, winter and spring, and wild plants attractive to M.

aeneus growing in non-crop refuges. OSR crops are grown in every field (cells

allocated to a farmer) in a strict 4 year rotation. The type of OSR crop is randomly

selected between SOSR and WOSR with probabilities of 5% and 95%, respectively,

representing cropping practices in the UK [33]. The sowing date is set randomly

within a week of 1st April for SOSR and of 1st September for WOSR. Phenological

models for WOSR and SOSR were based on published work [34]. The SOSR

model has a shorter period between emergence to onset of flowering, which is

determined only by thermal time and photoperiod without vernalisation. In non-

crop refuges, wild plants provide pollen and oviposition sites through the year.

The density of plant was kept constant for OSR and wild host at 180 plants/m2

and 150 plants/m2, respectively.
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Population dynamics of M. aeneus
At model initialisation, an adult population is added to the overwintering sites of

the landscape. In spring, when the mean air temperature exceeds 9 C̊

consecutively for 5 days, insects move from their overwintering sites to suitable

host plants (OSR or non-crop plants). These adults feed for a period of 400 day

degrees (base 0 C̊). Then the adults are able to reproduce during a period of 1000

Fig. 1. Schematic representation of a 565 cell landscape for 2 successive years (top) and life cycle of M. aeneus (bottom). Positions of cells (arable
fields in yellow (OSR) or grey (non-OSR crops such as cereals), overwintering sites in green, refuges in purple, empty cells in white) are fixed at the
beginning of the simulation. During the rotation cycle, the location of cells with OSR (yellow) changes as OSR is sown only once every 4 years in a field. In
spring, after hibernation, adults move into refuges for maturation feeding and later colonise OSR crops for mating and oviposition (orange arrows). The next
generation pupates and emerges from the soil in summer, feeds in refuges and finally moves to the overwintering sites at the end of summer (blue arrows).

doi:10.1371/journal.pone.0115631.g001
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day degrees (base 0 C̊). Non-gravid females have a mating probability dependent

on the density of males present in the same cell, i.e.:

P matingð Þ~1{e
{ ln 2ð Þ|density

D50|T50
|Dt ð1Þ

where density is the current adult male density in the cell, T505 3 days and

D505 25 males/m2. This is the expected duration and male density to observe

50% of mated females, respectively. Females only mate once and the partner

genotype is chosen randomly according to the distribution of male genotypes

present in the cell at the time of mating. Gravid females lay 10 batches of eggs

every 85 day degrees (base 0 C̊). Each time, the number of eggs laid is drawn from

a uniform distribution of minimum 15 and maximum 35, i.e. females lay 250 eggs

on average [28]. The genotype of each egg is assigned randomly from the parent’s

offspring genotype table. Eggs develop successively into larvae, pupae and young

adults in 100, 250 and 600 day degrees (base 0 C̊), respectively. The next

generation of adults moves to the overwintering cells in autumn when the mean

air temperature falls below 12 C̊ for 5 days.

During its life cycle, many factors (other than insecticides) influence the

survival of M. aeneus. Very wet conditions can enhance pathogen attack, and

drought can limit larvae survival [35]. Rates of predation and parasitism are

dependent on the location of beetles within a field and the surrounding habitats

[35, 36]. M. aeneus has a number of natural enemies [37] and is part of a complex

food web. In the model, however, the probability of natural mortality (predation,

parasitism, starvation) only depends on the life stage of an individual, the host

type (wild or OSR) and the density of individuals occupying the same ecological

niche (larvae or adults). The overall mortality probability is calculated at each

time step as:

P(death)~1{(1{Pstage)|(1{Pdensity) ð2Þ

where Pstage is the expected mortality from predation and parasitism and Pdensity

the density-related mortality. Pstage is calculated according to the time elapsed

during the simulation step, Dt:

Pstage~1{e
ln 1{Rstageð Þ

Tstage
|Dt

ð3Þ

where Rstage is the expected mortality rate (%) over the stage duration Tstage (day

degrees, base 0 C̊) and Dt the accumulated day degrees (base 0 C̊) during the

simulation step. Density-related mortality only occurs if the current density of

competing individuals in a cell exceeds a threshold dmax, i.e.:
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Pdensity~

0 densityƒdmax

1{e

ln dmax=densityð Þ
Tdensity

|Dt

otherwise

8<
: ð4Þ

where Tdensity (days) is the time required for the population to decline to dmax

and Dt the number of days elapsed during a single simulation step, i.e. 1.

Egg and pupa stages are not subject to density-related mortality. Regg , Rlarva and

Rpupa, i.e. expected mortality rate over egg, larva and pupa stages, were all set to

33% and considered to be independent. So, from birth to the end of the pupa

stage, the mortality from predation and parasitism is expected to be 70%, i.e. 1-

(120.33)3. Larval density mortality parameter dmax was set to 100 and 62 insects/

plant for OSR host and wild host, respectively, to reflect the higher suitability of

OSR crops to the pest. Tdensity was set to 5 days simulating a strong competition

for resources among larvae. With these parameter values and in the absence of

insecticide treatments, the average overall mortality from birth to the end of the

pupa stage recorded in a continuous 300 years simulation with typical weather

generated for Rothamsted was about 75%, within the range of values (66% to

96%) reported in the literature [35, 38]. There is a lack of information from the

literature on the mortality of M. aeneus after pupation. Consequently, from

pupation, the population was controlled with Pdensity rather than Pstage. Density-

related competition among adults was set to occur in 2 phases, before and after

overwintering. Before winter, adult density mortality parameter dmax was equal to

the values for larvae in OSR and wild host. After winter, and for the rest of the

season, dmax was decreased to 70 and 44 insects/plant for OSR host and wild host,

respectively. To decrease the intensity of the competition for adults, Tdensity was set

to 100 and 50 days before and after hibernation, respectively.

Before and after hibernation, dispersal characteristics of M. aeneus adults are

determined by its life cycle and host preference. The frequency of movement is

related to local environmental conditions e.g. host species, plant stage, and insect

density. If an insect resides in a cell without any host plant, the insect is forced to

move, i.e. has a probability of movement set to 1. Otherwise, this probability will

depend upon the host species (OSR or wild) and the density of adults d within the

cell, i.e.:

P(movement)~

Pmax

Pmax{ Pmax{0:05ð Þ| d{Dminð Þ= Dopt1{Dmin
� �

0:05z Pmax{0:05ð Þ| d{Dopt2
� �

= Dmax{Dopt2
� �

0:05

dƒDmin or d§Dmax

dwDmin and dvDopt1

dwDopt2 and dvDmax

otherwise

8>>><
>>>:

ð5Þ

where Pmax is the maximum daily movement probability, set at 0.35 and 0.65

for OSR and wild host, respectively. The probability decreases to a minimum of

0.05 as the density of insects increases from Dmin to Dopt1. The probability then
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remains constant at this minimum until the density exceeds Dopt2. At this point,

the probability increases linearly to Pmax when the density increases to Dmax. For

OSR, the threshold densities Dmin, Dopt1, Dopt2 and Dmax were set to 2.5, 10, 70 and

100 insects/plant, respectively. For wild hosts, the threshold densities Dmin, Dopt1,

Dopt2 and Dmax were set to 1.5, 6.2, 44 and 62 insects/plant, respectively. The

higher probability of movement at low and high densities forces the adults to

move to areas where enough potential mates are found but avoids overcrowding.

Although M. aeneus adults are known to travel upwind to attractive hosts [39],

a simple model relating movements to distance and cell attractiveness (e.g. host

preference) and not accounting for any wind effects was chosen. Once an insect is

set to move within the grid, a distribution of potential destinations is constructed

according to the distance and attractiveness of neighbouring cells:

force z0,z1ð Þ~ attraction(z1)

distance(z0,z1)
ð6Þ

where z0 is the currently occupied cell, and z1 a potential destination. The

distance function is the shortest Euclidean distance between the centres of the cells

arranged in a torus. The value of attraction for a cell depends on the host type

present, i.e. 1 and 0.2 for flowering OSR and wild host, respectively. The

probability for a cell to be selected as destination is proportional to its force:

P(destination~zi)~
force(z0,zi)P

z=z0

force(z0,z)
ð7Þ

The movement is instantaneous and occurs at the end of the simulation step. In

spring, at the end of their period of hibernation, adults are attracted to OSR and

wild hosts following the rule described above. Using the same procedure, young

adults are attracted to nearby overwintering sites before winter where they remain

stationary until next spring. All non-adult life stages are considered immobile.

With this parameterisation, initial runs were made to assess the outcome for

population dynamics (Figs. 2 and 3). Without control, the population reaches

landscape capacity and is limited by density mortality. At such numbers, the

recommended treatment threshold of 15 adults/plant on WOSR for the UK is well

exceeded in the majority of fields throughout the reproductive period. The density

of adults in OSR crops reaches its highest levels at the beginning and end of this

period. First, as more WOSR crops begin flowering, the population has more area

to colonise and the density per field decreases. At the end of the reproductive

period, flowering SOSR gradually disappears from the landscape and this

concentrates the adults in fewer fields and increases their density.

Individual-Based Model of the Evolution of Pesticide Resistance
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Incorporation of insecticide treatments and resistance

Within the model, farmers can decide to treat their crops with an insecticide based

either on calendar dates (e.g. 10 days after onset of flowering) or when the insect

density exceeds a prescribed threshold (e.g. 15 adults/plant). Only 2 treatments

can be applied in 1 season. The model was parameterised for treatment with

lambda cyhalothrin, a pyrethroid insecticide widely used against M. aeneus prior

to the development of resistance to pyrethroids in the UK.

The probability of mortality due to insecticide treatment depends on the

duration of exposure, the degradation profile of the compound and the genotype

of the insect (homozygous-susceptible SS, homozygous-resistant RR or the

heterozygote RS). After application, the chemical gradually loses its effectiveness

due to chemical degradation, weather conditions and plant growth. At each time

step t0,t1½ �, the model computes for each insect the dose it has received by

integrating the treatment efficacy over the time step:

dose(treatment,t0,t1)~

ðt1
t0

efficacy(treatment,t)dt ð8Þ

This follows Haber’s rule [40]. The treatment efficacy at time t is defined as:

efficacy(treatment,t)~

1

1{(t{ta{dc)=dd

0

taƒtvtazdc

tazdcƒtvtazdczdd

otherwise

8><
>: ð9Þ

where ta is the time of treatment application, dc the duration of maximum

efficacy 1, and ddthe duration of declining efficacy from 1 to 0. According to its

susceptibility factor g, the damage from 1 treatment inflicted on an insect is

defined as:

damage(treatment,t0,t1,g)~dose(treatment,t0,t1)|g ð10Þ

Step by step, the damage from encountered treatments accumulates and the

probability of mortality increases:

P(death)~min 1,
X
step

X
treatment

damage(treatment,tstep,tstepz1,g)

 !( )
ð11Þ

where tstep is the time at the beginning of the step. When an insect is no longer

exposed to any insecticides, the damage inflicted on it is reset to 0.

To simulate the selection pressure for resistance, mortality schedules need to be

defined for each of the 3 genotypes representing a monogenic resistance trait.

Unfortunately, these data are not available since it is impractical to rear M. aeneus

Individual-Based Model of the Evolution of Pesticide Resistance
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in the laboratory in order to obtain large numbers of insects of specific genotypes.

Instead, we derived parameters defining the differential effect of the insecticide on

these genotypes using data from field trials at sites with differing frequencies of

pyrethroid resistance (see next section). Susceptibility factors for homozygote-

susceptible and -resistant individuals are described by the parameters gSS andgRR,

respectively. The susceptibility factor for heterozygotes gRS is a weighted average of

the homozygotes:

gRS~
gSSzdR|gRR

1zdR
ð12Þ

where dRis the weight (or dominance) attributed to the R allele.

Calibration of responses to lambda cyhalothrin using field trial

data

Data used for model calibration were combined from 48 independent trials of the

efficacy of lambda cyhalothrin against M. aeneus carried out in 10 countries. In

these trials, fields were divided into plots. Some plots remained untreated (check

plots) and the others were treated with lambda cyhalothrin at field application

rates. The control achieved using the pyrethroid was determined by counting

insects present at regular intervals post-treatment, and calculating the reduction

in insect numbers relative to check plots. Therefore, for a single trial, the

insecticide control was measured at multiple time points and Fig. 4 shows the

daily control averaged from all trials. The results were pooled for 3 categories of

trials, considered to reflect 3 different levels of pyrethroid resistance in the

Fig. 2. Population size and structure in the absence of insecticide treatments. The size of the population
and proportions of insects at different stages of development across the entire landscape were averaged over
300 years of typical daily weather generated for Rothamsted. Green, purple and yellow colours represent
overwintering adults, feeding adults and reproducing adults, respectively. Blue, orange and grey colours
represent: eggs, larvae and pupae.

doi:10.1371/journal.pone.0115631.g002
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locations concerned. These categories were: low resistance (75%–100% control,

Fig. 4A, 23 trials), moderate resistance (35%–75% control, Fig. 4B, 16 trials), and

high resistance (5%–35% control, Fig. 4C, 9 trials). The lambda cyhalothrin

efficacy curve is described by 2 parameters, dc and dd(duration of maximum and

declining efficacy, respectively). The 3 genotype susceptibility factors are described

by 3 parameters, gSS, gRR and dR. To derive these 5 model parameters, we

compared experimental trial data to simulation outputs. In the virtual

experiment, ‘‘fields’’ contained 3 replicate ‘‘plots’’ per treatment (check and

treated plots). Initially, 150,000 insects were randomly placed across the field. The

genotype of these insects was also randomly chosen from the Hardy-Weinberg

distribution according to the level of resistance to lambda cyhalothrin. The

resistance allele frequency was set to 0.5%, 25% and 55% for areas with low,

Fig. 3. Pest pressure and oilseed rape area during the reproductive period. The weekly distributions of
the average number of insects per infested field (A) and the average area of flowering oilseed rape (B) were
derived from a continuous simulation of 300 years of daily weather generated for Rothamsted. In this
simulation, 95% of oilseed rape crops were WOSR and fields were not controlled with insecticides. The
minimum/maximum, 5th and 95th percentiles, 1st and 3rd quarter envelopes are shown in red, blue and green,
respectively. The median of the distribution is shown in black.

doi:10.1371/journal.pone.0115631.g003
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moderate and high resistance, respectively. During the trials, the insects were free

to move between plots, with daily probability of movement fixed at 40%. Their

destination plot was selected at random without accounting for any distance

effect. The model recorded daily control obtained in treated plots relative to the

check plots. These control values were averaged per initial resistance frequency.

These daily averages were then compared to the field data average for the

corresponding initial resistance frequency using normalised Root Mean Square

Error (nRMSE). This error between experimental data and model predictions was

minimised during the parameter calibration process using an evolutionary

algorithm [41]. The parameters were set to the median values of 5 out of 10

independent calibrations giving the lowest nRMSE, i.e. dc54.7 days, dd56 days,

gSS50.86, gRR50.003 and dR548.6.

Simulation of the Impact of Cropping Patterns, Treatment
Decision and Gene Dominance on the Development of
Resistance

Definition of a resistance ‘outbreak’

Adult individuals can be exposed through their lives to a number of insecticide

treatments. The selection pressure for resistance arises from the nature of the

treatments and the difference in fitness of the insects. After a treatment,

susceptible individuals are killed in a greater proportion than the resistant ones,

hence increasing the frequency of a resistance allele. The modelling of these

interactions leading to selection encompasses 2 key stochastic processes. First, the

movement of individual insects across the landscape determines the likelihood

and extent of exposure to insecticide. Second, the mortality following exposure

also includes stochastic elements. Therefore, the frequency of the resistance allele

progresses at a different pace between repetitions of a Monte Carlo simulation

experiment, as illustrated in Fig. 5.

In a single simulation, an outbreak of resistance is defined as the point when the

frequency of the resistance allele exceeds 50% in the population, as in [5] but for

at least 6 months because that frequency might decrease naturally after mating.

For each scenario, e.g. a combination of WOSR proportion and a treatment

decision, the distribution of the number of years before an outbreak of resistance

was computed from 36 single simulations. These 36 repetitions were obtained by

simulating the scenario for all combinations of 6 landscape arrangements and 6

sets of daily weather. The 6 different 10 610 cell landscapes were randomly

generated with a fixed proportion of different cell types: 80 arable fields, 10 non-

crop refuges, 5 overwintering habitats and 5 cells left empty. The 6 sets of 50 years

of daily weather were generated using the LARS-WG weather generator as

described in [42] for Rothamsted and the time period 1980–2010.

For all the simulations of the 8 scenarios described below, an initial population

of 1 billion individuals was generated by placing hibernating adults randomly in

an overwintering cell. The sex of an individual was randomly drawn from a

Individual-Based Model of the Evolution of Pesticide Resistance
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Bernoulli distribution with equal probabilities. The genotype of each individual,

i.e. SS, RS or RR, was randomly assigned from the Hardy-Weinberg distribution

with an initial resistant allele frequency of 0.1%. The initial number of individuals

was chosen below the average number of adults observed in untreated simulations

to allow the population to grow during the first year of the simulation and prevent

early and excessive insecticide applications in threshold scenarios. At the same

time this number should be large enough for a number of heterozygotes

individuals to exist at the initial resistance allele frequency.

Cropping patterns and treatment decisions

Using this approach, we investigated the effect of cropping pattern and treatment

decision on the development of resistance in a full factorial experiment. The two

factors investigated were (1) the proportion of WOSR and (2) the treatment

decision. For the proportion of WOSR, two levels were considered: 95% (W95),

which is representative of UK farming practices, and 75% (W75). These two levels

were combined with 4 control strategies: (C1) 1 calendar treatment 10 days after

the onset of flowering; (C2) 2 calendar treatments 10 and 20 days after the onset

of flowering; (HT) set to the recommended threshold for winter (15 insects/plant)

and spring (5 insects/plant) sown OSR in the UK; and (LT), a lower treatment

threshold on WOSR crops of 5 insects/plant.

Fig. 4. Observed and simulated lambda-cyhalothrin control for 3 levels of resistance. The measure of
control is the reduction in insect number in treated plots relative to untreated plot population. Trials were
pooled to reflect 3 different levels of pyrethroid resistance: (A) low resistance (75%–100% control), (B)
moderate resistance (35%–75% control), and (C) high resistance (5%–35% control). Mean daily observed
values averaged from field trials are shown as blue circles. Average simulated control is shown by the black
line.

doi:10.1371/journal.pone.0115631.g004
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Dominance of resistance allele

During calibration using field trial data, the dominance parameter dR was

optimised along with the other parameters. The resistant allele was found to be

incompletely dominant with dR548.6. However, the simulations were run for 3

modes of inheritance, dominant (dR548.6), intermediate (dR51) and completely

recessive (dR50) in order to compare the speed of resistance development. Other

genetic parameters were kept constant. The control achieved by a single lambda-

cyhalothrin treatment on a population with a resistant allele frequency of 50% is

illustrated for the 3 modes of inheritances in Fig. 6.

Fig. 5. Resistance evolution and resulting distribution of time before resistance outbreak in a Monte
Carlo experiment. Increase in resistance allele frequency (A) and distribution of the number of years for this
frequency to exceed 50% (B) in a Monte Carlo simulation for 2 inheritance modes: dominant (red) and
intermediate (blue). In this scenario, treatment decision followed the recommended high threshold (15 and 5
insects/plant for WOSR and SOSR, respectively) and 95% of oilseed rape was WOSR. The number of
repetition was 36 simulations for both scenarios.

doi:10.1371/journal.pone.0115631.g005
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Results and Discussion

The distributions of the number of years required for a resistance outbreak for all

8 scenarios and with dominant and intermediate modes of inheritance are

presented in Fig. 7. The spread of the resistance allele with recessive inheritance

was very limited, with the frequency of the resistance allele failing to reach even

2% after 50 years under all 8 scenarios. This absence of resistance development

with a recessive mode of inheritance is not surprising, given that at a low starting

frequency most resistance alleles are present in heterozygous condition. The lack

of any selective advantage for heterozygotes is a major constraint on resistance

evolution and underpins strategies for resistance management under conditions

that potentially allow the expression of the heterozygote phenotype to be

manipulated, e.g. in the high dose/refuge strategy for crops genetically engineered

to express insecticidal toxins [43]. With intermediate dominance, heterozygotes

survive exposure with greater probability compared with susceptible homozygotes

and as the frequency of the resistant allele increases, mating between heterozygotes

becomes more frequent. This produces more resistant homozygotes with the most

potent resistance phenotype. As the mode of inheritance approaches complete

dominance, the speed of resistance development is maximised (Fig. 5) [44]. The

difference between a dominant and intermediate mode of inheritance was

consistent across all of the control scenarios investigated (Fig. 7).

In general, differences in the simulated speed of resistance development could

be related to the number of treatments likely to be applied. Scenarios with a single

calendar treatment (W95 C1) and high-threshold-based treatment (W95 HT) led

to the slowest progression of resistance (Fig. 7). The single calendar treatment,

imposed 10 days after the onset of flowering irrespective of the status of M.

aeneus, might not always be synchronous with a high pest density because insects

might leave the field earlier or colonise it later. On the contrary, the high

threshold treatment ensures that a significant number of insects have colonised

the field when the treatment is applied, which means that insecticide is applied

later than under the low threshold (W95 LT) regime. Two applications are

possible with the high threshold treatment but are less likely than with the low

threshold treatment. As a consequence, resistance developed faster under the W95

LT than under the W95 HT and W95 C1 scenarios. However, the highest

frequency of treatments resulting in the fastest resistance spread was achieved in

the double calendar treatment scenario, W95 C2. This supports the argument that

application of pesticides based on pest scouting using realistic and experimentally-

validated pest thresholds contributes to minimising insecticide applications and

delaying the spread of resistance [45].

Interestingly, the scenarios in which the proportion of SOSR was increased

from 5% to 25% increased the speed of resistance development compared to their

W95 counterparts (Fig. 7). The interactions between sowing date and the

population dynamics of M. aeneus are likely to be complex and critically

dependent on the proportion of the two crops that are cultivated. On the one

hand, a large-scale move from WOSR to SOSR could greatly reduce the
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availability of preferred habitat after overwintering leading to suppression of pest

densities, need for insecticide applications and consequently the risk of resistance.

In contrast, a relatively minor change in cropping practice as simulated here

prolongs the period over which favourable hosts are available, thereby increasing

the likelihood of multiple insecticide treatments and the selection pressure for

resistance.

While it might be tempting to relate the predictions to the historical case of M.

aeneus resistance to pyrethroids, the apparent match between the number of years

it took for pyrethroid resistance to become visible in the field (nearly 2 decades,

[32]) and the number of years simulated to reach an arbitrary resistant allele

frequency of 50% is accidental. Important factors that were not modelled here

include long range migrations and the evolution of cropping patterns over the last

decades. The model was designed to provide qualitative comparison between

insecticide resistance management strategies. Therefore, the interpretation and

comparison of simulation results should not be based on statistical tests of

significance which could be achieved by selecting a large enough number of

replicates [46].

The model behaviour was assessed in 3 sensitivity experiments evaluating the

effect of the weather, surface area of refuge, and insecticide efficacy. In these

experiments, the baseline conditions presented in Fig. 7 were altered. The results

for all combinations of resistance inheritance (dominant or intermediate),

proportion of WOSR (W95 or W75), and the 4 treatment decisions (C1, HT, LT,

C2) are given in the supplementary S1 Table. The model responded similarly for

both mode of inheritance and proportion of WOSR, therefore, the results,

presented in Table 1, are focussed on the dominant mode of inheritance and the

W95 level of WOSR.

Fig. 6. Simulated lambda-cyhalothrin control at resistant allele frequency of 50% for dominant,
intermediate and recessive inheritance. The measure of control is the reduction in insect number in treated
plots relative to untreated plot population. The control is simulated for 3 inheritance modes: (A) dominant, (B)
intermediate and (C) recessive. For the 3 modes, the frequency of the resistant allele was set to 50%.

doi:10.1371/journal.pone.0115631.g006
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A spatially-explicit individual-based model of a pest population inhabiting a

heterogeneous environment requires the formulation of behavioural rules applied

at the individual level. Here, the characterisation of movement frequency and

destination is based on a simple model and remains the largest unknown in the

model parameterisation. The actual rules and parameter values were selected by

observing the simulated population patterns of cropped and uncropped cell

occupancy by adult beetles. In [6], the proportion of emigrating individuals and

the maximum distance they travelled were shown to influence strongly the speed

of resistance development. With our model, a similar conclusion will most likely

be reached. Furthermore, while the model mortality rates for egg, larva and pupa

stages have been derived from published materials, the rates for adults have been

chosen in order to obtain around 5% of insects reaching the end of their life cycle,

i.e. dying of old age, in absence of insecticide treatments. The parameters adjusted

Fig. 7. Sensitivity of projected duration before resistance outbreak to sowing practices and treatment
decisions. Box plots of the distributions of the number of years for the resistant allele frequency to exceed
50% with a dominant inheritance (red boxes) and intermediate inheritance (blue boxes) for eight combinations
of treatment (C1: single calendar treatment; C2: double calendar treatment; HT: high threshold treatment; LT:
low threshold treatment) and sowing practices (W95: 95% WOSR; W75: 75% WOSR). Box boundaries show
25th and 75th percentiles, whiskers show minimum and maximum, thick horizontal line shows the median. The
number of repetition was 36 simulations for each combination.

doi:10.1371/journal.pone.0115631.g007
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therefore included the ‘host value’ of cropped and uncropped habitats, e.g. plant

density and density-related mortality thresholds. A constant ratio of 0.625 was

used to define the density thresholds for wild refuges relatively to OSR crops with

the rationale that OSR crops are able to support a greater density of insect as all

plants are potential hosts.

In this model, exposure to insecticide treatments is also sensitive to annual

weather patterns that drive the phenology of both the insects and OSR crops and

as a result their synchronicity. Therefore, we conducted the simulations at two

additional locations, Broom’s Barn (UK) and Berlin (Germany). As for

Rothamsted, the 6 sets of 50 years of daily weather for Broom’s Barn and Berlin

were generated using LARS-WG [42]. Different weather patterns resulted in

different pest dynamic and changed the duration of exposure, which was

prolonged at Broom’s Barn and shortened at Berlin. As a result, a consistent

change across all scenarios was observed. Resistance developed slightly faster at

Broom’s Barn than at Rothamsted, by an average 0.4 years. On the contrary, more

continental weather simulated at Berlin delayed the development of resistance by

1.4 years. The largest differences at Berlin were found for the W95 HT scenarios

where the outbreak of resistance was delayed by 4.2 years.

The proportion of individuals exposed to insecticide treatments is another

critical factor in the development of resistance. The carrying capacity of the

landscape, in terms of number of individuals colonising OSR crops, depends on

the surface area of non-crop refuges where the individuals compete before and

after hibernation. The sensitivity of the model was investigated by varying the

surface area of non-crop refuge. The number of fields and woodlands were kept

constant in all 6 landscapes, but the surface area of non-crop refuge was decreased

to 5 ha by randomly replacing some refuge with an empty cell, or increased to 15

ha by allocating the empty cells as refuges. In this way, the area of OSR remained

constant. Calendar and threshold scenarios responded differently to these changes.

Relative to the baseline simulations, the change in the surface area of non-crop

refuge was positively correlated with the number of years before the outbreak of

resistance in calendar scenarios. For threshold scenarios, the relation was opposite,

i.e. greater surface area of non-crop refuge accelerated the development of

resistance relative to the baseline simulations. The greater surface area of non-crop

Table 1. Sensitivity of projected duration before resistance outbreak to weather, surface of non-crop refuge and compound efficacy.

Weather Non crop refuge Compound

Trigger Baseline Broom’s Barn Berlin 25 ha +5 ha Pymetrozine

C1 16.83 16.28 (20.55) 17.58 (+0.75) 15.61 (21.22) 18.08 (+1.25) 18.36 (+1.53)

HT 15.83 15.69 (20.14) 20.06 (+4.23) 18.89 (+3.06) 14.72 (21.11) 16.64 (+0.81)

LT 14.67 14.36 (20.31) 15.53 (+0.86) 15.69 (+1.02) 14.42 (20.25) 15.28 (+0.61)

C2 12.39 11.97 (20.42) 13.53 (+1.14) 11.58 (20.81) 12.94 (+0.55) 12.75 (+0.36)

Mean number of years for the resistant allele frequency to exceed 50% with a dominant resistance inheritance, 95% of WOSR and 4 treatment decision (C1:
single calendar treatment; C2: double calendar treatment; HT: high threshold treatment; LT: low threshold treatment). Values in brackets indicate relative
change in years from baseline simulations presented in Fig. 7.

doi:10.1371/journal.pone.0115631.t001
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refuge diminished the competition among insect before and after hibernation. For

this reason, OSR crop were colonised in greater numbers and insecticide

treatments were applied more frequently in threshold scenarios, hence the relative

increase in the speed of resistance development. The effect was opposite for

calendar treatments because the number of applications remained the same. In

these scenarios, a larger non-crop refuge sheltered more individuals from

insecticide treatments, as in [5].

A sensitivity experiment was also conducted to analyse model responses to the

efficacy of the compound. The efficacy curve of pymetrozine (dc51.5 days,

dd510.6 days) and the genetic coefficient of susceptible individuals (gSS50.72,)

were calibrated from 43 field trials following the same procedure as for lambda-

cyhalothrin. Pymetrozine has a similar duration of the effect, but a shorter period

at maximal efficacy. The control achieved by pymetrozine was lower than for

lambda-cyhalothrin, which is reflected by a lower calibrated value for pymetrozine

gSS. Observed and simulated controls for the pymetrozine dataset are shown in S1

Fig. Resistance to the compound pymetrozine has never been found in M. aeneus,

therefore, a resistance allele identical to the lambda-cyhalothrin resistant allele

(gRR50.003 and dR548.6) was created for the purpose of evaluating the impact of

insecticide efficacy on the development of resistance. The control achieved by a

single pymetrozine treatment on a population with a resistant allele frequency of

50% is illustrated for 3 modes of inheritances in S2 Fig. As expected, the lower

susceptibility of adults to the pymetrozine compound affected all scenarios in a

similar way by delaying resistance outbreaks [4].

The difference between the scenarios presented here are relatively small. For

instance, the greatest difference between mean numbers of years before resistance

outbreak for the scenarios presented in Fig. 7 is 5.2 years and 9.3 years for the

dominant and intermediate inheritance, respectively. This narrow variation could

be explained by the limited range of crop management options explored in this

study. Greater differences will be expected with more complex scenarios that

include insecticides with different mode of actions (used in mixture or in

alternation) and a heterogeneous community of farmers applying different crop

rotation and protection strategies. The models of pest and farmer behaviours

would benefit from further development. For instance, the spatio-temporal

mosaic of host and non-host cells generated with a simple rule ignores agronomic

constraints at the farm and landscape level. Most aspects of the insect model, such

as dispersal abilities and host preference were left constant and it would be

interesting to study the implications of modelling these as individual and variable

traits. By doing so, a more mechanistic model of intra-species competition for

resources such as oviposition site and food should be considered along with an

individual energy balance model [17]. Further work could also focus on

improving the spatial resolution of the model. A finer scale would be required to

simulate integrated pest management strategies like seed mix refuge (i.e. growers

are given a mixture of traditional and modified seeds) and push-pull strategies

(i.e. the growers exploit host preference and pest behaviour to their advantage

[47]). Push-pull strategies are particularly relevant to the case presented here since
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perimeter turnip rate trap crops have been demonstrated to significantly reduce

the abundance of adult M. aeneus in SOSR crops [29] and IBMs with appropriate

spatial scale are well suited to analyse these strategies [21].

Conclusion

We developed a spatially explicit individual-based model which can be used to

simulate the evolution of resistance in a pest population in heterogeneous

environments. The model incorporates important biological, environmental and

management features that affect the evolution of insecticide resistance. The model

can be tailored to explore specific resistance case studies by calibrating model

parameters for different biological species, agricultural practices, chemical

compounds or resistance management strategies. The model is stochastic in its

nature and allows assessment of the risk of resistance development in response to

numerous drivers. The model delivers a powerful computational tool to evaluate

and compare resistance management strategies in silico, providing a scientific

rationale for adopting the best resistance management practices.

Supporting Information

S1 Fig. Observed and simulated pymetrozine control. The measure of control is

the reduction in insect number in treated plots relative to untreated plot

population. Mean observed values from field trials are shown as blue circles.

Average simulated control is shown by the black line.

doi:10.1371/journal.pone.0115631.s001 (TIF)

S2 Fig. Simulated pymetrozine control at resistant allele frequency of 50% for

dominant, intermediate and recessive inheritance. The measure of control is the

reduction in insect number in treated plots relative to untreated plot population.

The control is simulated for 3 inheritance modes: (A) dominant, (B) intermediate

and (C) recessive. For the 3 modes, the frequency of the resistant allele was set to

50%.

doi:10.1371/journal.pone.0115631.s002 (TIF)

S1 Table. Sensitivity of projected duration before resistance outbreak to

weather, surface area of non-crop refuge and compound efficacy. Mean number

of years for the resistant allele frequency to exceed 50% with dominant and

intermediate inheritance for eight combinations of treatment (C1: single calendar

treatment; C2: double calendar treatment; HT: high threshold treatment; LT: low

threshold treatment) and sowing practices (W95: 95% WOSR; W75: 75%

WOSR). Values in brackets indicate relative change in years from baseline

simulations presented in Figure 7.

doi:10.1371/journal.pone.0115631.s003 (DOCX)
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