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Humans, birds, and some primates do not express the uric 
acid degrading enzyme urate oxidase (UOX) and, as a result, have 
plasma uric acid concentrations higher than UOX expressing 
animals. Although high uric acid concentrations are suggested 
to increase the antioxidant defense system and provide a health 
advantage to animals without UOX, knockout mice lacking 
UOX develop pathological complications including gout and 
kidney failure. As an alternative to the knockout model, RNA 
interference was used to decrease UOX expression using stable 
transfection in a mouse hepatic cell line (ATCC, FL83B). Urate 
oxidase mRNA was reduced 66% (p < 0.05) compared to wild 
type, as measured by real time RT-PCR. To determine if UOX 
knockdown resulted in enhanced protection against oxidative 
stress, cells were challenged with hexavalent chromium (Cr(VI)) 
or 3-morpholinosydnonimine hydrochloride (SIN-1). Compared 
to wild type, cells with UOX knockdown exhibited a 37.2 ± 3.5% 
reduction (p < 0.05) in the electron spin resonance (ESR) signal 
after being exposed to Cr(VI) and displayed less DNA frag-
mentation (p < 0.05) following SIN-1 treatment. Cell viability 
decreased in wild type cells (p < 0.05), but not cells with UOX 
knockdown, after treatment with SIN-1. These results are consis-
tent with an increased intracellular uric acid concentration and 
an increased defense against oxidative stress.

Introduction

In the genomes of both prokaryotes and eukaryotes lies the 
gene for the uric acid degrading enzyme, urate oxidase (UOX, 

EC 1.7.3.3.), however, not all organisms express this gene. Among 
those organisms in which its expression is silenced are humans, 
birds, some primates, terrestrial reptiles and most insects. In these 
organisms, uric acid is excreted as the terminal product of purine 
degradation. In UOX expressing animals, UOX further degrades 
uric acid to allantoin, the terminal product of purine degradation. 
When UOX is expressed, the plasma concentration of uric acid is 
much lower than in those animals that do not express the enzyme. 
For example, in humans the normal range of serum uric acid is 
200 to 400 μM, which is similar to that found in birds1 and 10 to 
20 times that found in UOX expressing animals. Without UOX, 
humans have achieved a state of hyperuricemia that approaches 
the saturation point2,3 and, as a result, gout is a prevalent disease 
in humans.

The association of hyperuricemia with hypertension4 and 
cardiovascular disease (CVD)5 in humans, as well as the patho-
logical complications resulting from uric acid crystallization in the 
kidneys and joints makes the functional advantage of a lack of UOX 
expression unclear. One widely accepted theory is that increased 
serum uric acid may provide humans with an increased antioxidant 
capacity for free radical scavenging, which may reduce the accumu-
lation of oxidative damage and extend the life span.6 Supporting 
this theory is the positive correlation between plasma urate and 
life span among the primate species.7 Also, numerous reports 
cite the ability of uric acid to protect cellular components from 
reactive oxygen and nitrogen species,8,9 which may contribute to 
animal longevity. However, uric acid exhibits pro-oxidant10,11 and 
pro-inflammatory12 properties when concentrations are elevated, 
suggesting that hyperuricemia may be involved in the onset and/
or exacerbation of diseases associated with high levels of oxidative 
stress, like CVD,13,14 hypertension15,16 and ischemic stroke.17

To further understand the potential role that uric acid has in 
longevity, disease development and disease treatment, a mouse 
model for hyperuricemia was created that lacks urate oxidase 
expression.18,19 These mice were severely hyperuricemic, exhib-
iting serum uric acid concentrations ten times higher than that 
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found in the wild type mice and twice that found in humans. Uric 
acid crystals developed in the kidneys and led to urate nephropathy 
and nephrogenic diabetes insipidus, resulting in dehydration and 
death of most mice within several weeks of birth. The extreme 
hyperuricemia and resultant pathological complications obviate 
the use of these mice, therefore a more appropriate animal model 
of human hyperuricemia should be established. Using RNA inter-
ference to reduce UOX expression in mice may elevate serum uric 
acid without it reaching the lethal concentrations observed in the 
knockout model, thereby potentially providing an effective experi-
mental model of human hyperuricemia.

The objective of this study was to utilize RNA interference to 
“knockdown” UOX expression in a mouse hepatic cell line and 
to determine the effects on the oxidative stress response. This will 
provide a direct link between reduced UOX expression 
and the resultant increased protection this affords from 
oxidative damage by reactive species. The advantage of 
using small interfering RNAs is that this approach affords 
an element of control over UOX gene expression and 
subsequently the degree to which serum uric acid concen-
trations are elevated.

Results

There was a 66% knockdown in UOX mRNA (Fig. 1) 
(p < 0.05) in the cell line expressing shRNA sequence 1. 
This was the numerically greatest level of UOX knock-
down among the cell lines expressing shRNA sequences 
that target UOX. The reduction of UOX mRNA in the 
cell lines expressing shRNA sequences 2–4 ranged between 
0% and 60% of wild type levels (data not shown). No 
difference in UOX mRNA abundance between the wild type cell 
line and the cell line serving as the negative control was detected 
(p > 0.05).

Representative ESR spectra are shown in Figure 2. This spectrum 
consists of a 1:2:2:1 quartet with hydrogen and nitrogen splitting 
constants of aH = aN = 14.9 G. Based on these splitting constants, 
the quartet was assigned to a DMPO/-OH adduct, which can also 
be generated by decomposed superoxide free radicals. There was no 
measurable signal in cells not exposed to Cr(VI). When exposed 
to Cr(VI), cells with UOX knockdown exhibit a 37% smaller  
(p < 0.05) free radical signal than wild type cells.

Data presented in Figure 3 were tested for fit to a linear regres-
sion line to determine if SIN-1 exposure had an effect on cell 
viability. In both the wild type and negative control cell lines, cell 
viability decreased with increasing concentrations of SIN-1 (p < 
0.01). However, no significant decrease in cell viability occurred 
in the cell line with UOX knockdown (p = 0.99). Across all cells 
lines, after 24 hours of exposure to 1,000 μM SIN-1, there was no 
cell survival (data not shown).

Tail length, which was measured in arbitrary units and indicative 
of the extent of DNA fragmentation, from all cell line by treat-
ment combinations was quantified and is presented in Figure 4. 
Analysis of variance indicated a main effect of cell line and SIN-1 
concentration, as well as a cell line by SIN-1 concentration interac-
tion, on tail length (p < 0.05). Pooled across all cell lines, comet 

tail length increased with an increase in SIN-1 concentration (p < 
0.05). Across SIN-1 concentrations, the overall tail length of wild 
type cells and the negative control cell line was 27.5 ± 0.9 and 27.0 
± 0.9, respectively, which were longer (p < 0.05) than the 22.0 
± 0.9 overall tail length in the cells with UOX silencing. There 
was no difference in tail length between cell lines not exposed to 
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Figure 1. Urate oxidase mRNA abundance in wild type cells, negative 
control cells, or cells with urate oxidase (UOX) knockdown. Urate oxidase 
mRNA abundance is scaled to wild type levels, which is set at 100%. Bars 
represent means ± SEM, n = 2. Different letters indicate differences (p < 
0.05) between cell lines.

Figure 2. Electron spin resonance in wild type and cells with urate oxidase (UOX) 
silencing. Spectra (A and B) were generated in the presence of wild type cells and 
spectra (C and D) were generated in the presence of cells with urate oxidase knock-
down. Only cells in spectra (A and C) were exposed to Cr(VI) at 200 μM.

Figure 3. Cell viability of wild type (diamonds), negative control (squares) 
and urate oxidase (UOX) knockdown (triangles) cell lines exposed to vari-
ous concentrations of 3-morpholinosydnonimine hydrochloride (SIN-1) for 
24 hours. Data points represent means ± SEM, n = 2. Data within each 
cell line were scaled to the viability of cells exposed to 0 μM SIN-1, which 
was set at 100% viability. The regression line for each cell type is indi-
cated. Wild type: p < 0.0001, R2 = 0.78; Negative Control: p < 0.0001, 
R2 = 0.51; UOX Knockdown: p > 0.9, R2 < 0.1.
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toxicity is from inhalation of the molecule, which is most apparent 
in the increased rate of lung,22 kidney, prostrate and bladder 
cancers23 and mental illness22 in those exposed in the workplace. 
Once in the cell, Cr(VI) is reduced by intracellular antioxidants 
like glutathione, ascorbic acid and cysteine or through the inter-
mediates Cr(V) and Cr(IV) to trivalent chromium (Cr(III)).24 
Trivalent chromium can interact with DNA to form Cr-DNA 
adducts,25 which can induce apoptosis or mutagenesis. Interaction 
of the hexavalent chromium with cellular components can induce 
production of hydroxyl and superoxide free radicals detected by 
ESR, inducing oxidative stress and causing oxidative damage.26,27 
The present study indicates that cells with UOX silencing are 
exposed to less reactive oxygen species than wild type cells when 
treated with Cr(VI). This supports an existing theory that, in 
vitro, uric acid was effective at reducing DNA damage induced 
by Cr(III) exposure.28 The probable increase in the intracellular 
concentration of uric acid either contributes to greater free radical 
scavenging or reduces the rate of free radical production, or a 
combination of both, thus protecting cellular components from 
Cr(VI)-induced reactive oxygen species damage. This raises the 
possibility that uric acid may be a therapeutic agent for Cr(VI) 
exposure, a concept that warrants further investigation.

In addition to Cr(VI), SIN-1 was used in the present experi-
ment to induce oxidative stress. Decomposition of SIN-1 in 
solution at pH > 5 causes production of superoxide and nitric 
oxide. Together, these chemicals spontaneously form peroxynitrite, 
which is detected both in the media29 and inside cells.30 It has 
been well established in numerous cell types that treating cells 
with SIN-1 causes intracellular oxidative stress and accumulation 
of intracellular markers of oxidative damage in a dose-dependent 
manner, resulting in a reduction in cell viability.

Exposure of human lymphoid blastoma cells to SIN-1 concentra-
tions between 1 mM and 5 mM caused a dose-dependent increase 
in cell death.31 This is supported by data in human premonocytic 
cells where a reduction in viability was found after treatment of cells 
with 1 mM and 2 mM SIN-1.32 Interestingly, rodent cell culture 
exhibits a lower tolerance to SIN-1-induced reduction in viability. 
In the present experiment, wild type cell viability began to decrease 
when the SIN-1 concentration in the media was 100 μM and 
decreased to approximately 50% viability when the concentration 
reached 500 μM, while a 1 mM concentration resulted in no viable 
cells after 24 hours. The 50% reduction in cell viability at 500 μM 
was also observed in rat adrenal gland cell culture.33 Biological fluids 
have a quenching effect on reactive species produced by SIN-1,34 so 
the origin of animal sera used to supplement growth media likely 
influences SIN-1-induced peroxynitrite exposure.

Incubating cells with antioxidants or antioxidant enzymes 
reduces the toxicity of SIN-1 in cell culture. Exposure to 1 mM or 
5 mM uric acid31,33 or a combination of catalase and superoxide 
dismutase31 limited the reduction in cell viability or cell death 
caused by SIN-1. In the present experiment, the maintenance of 
cell viability between 100 μM and 500 μM SIN-1 that occured 
with UOX silencing supports the concept that intracellular uric 
acid is increased in these cells, protecting the cellular components 
from oxidative damage that leads to cell death.

SIN-1. The UOX knockdown cells had a significantly shorter tail 
length (p < 0.05) than both wild type and negative control cells at 
250 μM and 1,000 μM SIN-1. When exposed to 500 μM SIN-1, 
cells with UOX knockdown had shorter tails (p < 0.05) than only 
the negative control cell line.

Discussion

In the present experiment, short interfering RNAs were used to 
silence UOX mRNA approximately 66% compared to wild type. 
Exposure to Cr(VI) resulted in a less intense ESR signal in cells 
with UOX silencing, indicative of lower hydroxyl and/or super-
oxide radical concentrations. In wild type and negative control 
cells, cell viability decreased with increasing concentrations of 
the peroxynitrite producing chemical, SIN-1, up to the 500 μM 
level. This relationship was not observed in cells with urate oxidase 
silencing. The comet assay, used to detect DNA fragmentation 
induced by SIN-1, indicated that cells with UOX silencing had less 
DNA denaturation when exposed to SIN-1. These aforementioned 
findings are consistent with increased protection from oxidative 
damage in UOX silenced cells.

The effect of reducing UOX mRNA on intracellular uric 
acid concentrations is unknown. Attempts were made to assess 
concentration differences but technical difficulties prevented 
accurate quantification. However, because of existing differences 
in the physiological responses to oxidative stimuli between the cell 
lines, it is likely that an increase in the intracellular concentration 
of uric acid occurred with UOX mRNA silencing. Additionally, 
neither the transfection conditions nor the expression of the 
shRNA affected the handling of oxidative stress, since the effects 
of oxidative stress in the negative control cell line remain similar 
to wild type cells. Reducing UOX activity levels with oxonic acid, 
a competitive inhibitor of the enzyme, is effective in increasing 
circulating uric acid concentrations.20 Therefore, assuming the 
intracellular concentration of uric acid is increased in cells with 
UOX silencing, these results support the role of uric acid as an 
antioxidant.

Hexavalent chromium is a carcinogen in both human and 
animal models.21 The most documented evidence of Cr(VI) 

Figure 4. Comet tail length (arbitrary units) of the wild type (black bars), 
negative control (gray bars) and urate oxidase (UOX) knockdown (white 
bars) cell lines exposed to various concentrations of 3-morpholinosyd-
nonimine hydrochloride (SIN-1). Bars represent means ± SEM. Letters 
represent significant differences (p < 0.05) between cell lines within the 
same concentration of SIN-1.
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Manasass, VA) supplemented with 10% fetal bovine serum and 
500 I.U. penicillin/mL, and 500 μg streptomycin/mL. On the day 
of transfection, 6 x 104 cells were plated per well with antibiotic-
free growth media in a 24-well plate with 48.5 μL Opti-MEM 
media (Invitrogen), 1.5 μL XP-sport (Ambion) and 0.5 μg 
pSilencer4.1-CMVneo with the shRNA to either UOX or the 
nonsense sequence per transfection reagent protocol. The transfec-
tion was completed for each of the four shRNA sequences for UOX 
knockdown and the nonsense shRNA sequence. Six hours post-
transfection, the media was replaced with antibiotic containing 
growth media. Twenty-four hours post-transfection, cells were 
expanded to a 60-mm cell culture dish with growth media supple-
mented with 900 μg G418/mL media. Cells were exposed to G418 
and surviving colonies were selected and expanded.

Real time RT-PCR. Real time RT-PCR was used to analyze 
mRNA knockdown in cell lines using acidic ribosomal protein 
(ARP) as a reference gene. A T-75 flask of cells was washed with 
5 mL of cold Hanks balanced salt solution and layered with  
3 mL Trizol LS (Invitrogen) and RNA was isolated according to 
manufacturer’s protocol. RNA was quantified and the quality was 
determined using A260:A280. Two μg of RNA was reverse tran-
scribed using oligo-dT primers (Promega) and MMLV (Promega) 
per manufacturer’s protocol. Complementary DNA was diluted 
1:4 with nuclease free water and 10 μL (for UOX PCR) or 5 μL 
(for ARP PCR) was used in a 50 μL PCR reaction with 25 μL 
2X SYBR Green Supermix (BioRad, Hercules, CA), 1.25 μM 
forward ARP primer (5'-CAA CCC AGC TCT GGA GAA AC-3') 
and 1.25 μM reverse ARP primer (5'-GTG AGG TCC TCC 
TTG GTG AA-3') or 1.25 μM forward UOX primer (5'-TGG 
AGA CTT CAA CGG CTT CT-3') and 1.25 μM reverse UOX 
primer (5'-TGG CCC ATA GAT CTC CTT TG-3'). The real 
time RT-PCR protocol was performed on a BioRad iCycler IQ 
Detection System (Hercules, CA). The protocol began with a 
“hot-start” at 95°C for 5 minutes, followed by a cycle of 95°C for 
15 seconds, 60°C for 30 seconds and 72°C for 30 seconds. The 
cycle was completed forty times, followed by melt curve analysis. 
Real-time RT-PCR data was analyzed using the efficiency corrected 
relative expression method.48 The cell line demonstrating the 
greatest UOX knockdown, the negative control cell line, and the 
wild type cell line were used in subsequent experiments to investi-
gate the oxidative stress response.

Electron spin resonance. Electron spin resonance (ESR) spin 
trapping was used to detect short-lived reactive oxygen intermedi-
ates using an established method.49 All ESR measurements were 
conducted using a Bruker EMX spectrometer (Bruker Instruments 
Inc., Billerica, MA) with a flat cell assembly and an Acquisit 
program was used for data acquisition and analysis. The ESR spec-
trometer settings were: receiver gain, 5.02 x 104; time constant, 
40.96 ms; modulation amplitude, 0.50 G; scan time, 41.94 s; 
magnetic field 3480 ± 100 G. Experiments were performed at 
room temperature, under ambient air. Signal intensity was quanti-
fied by measuring average distance (mm) using the peak to peak 
method. Each sample (500 μL) contained 5 x 105 cells in phos-
phate buffered saline, 200 mM 5,5-dimethyl-1-pyrroline-N-oxide 
(DMPO), and 0.0 or 200 μM hexavalent chromium (Cr(VI)) to 

One of the specific sites of SIN-1 induced oxidative damage 
is denaturation of genomic DNA. The data presented here agrees 
with numerous reports utilizing the comet assay as an indicator of 
DNA damage induced by SIN-1 in human lymph cells29,31 and 
Chinese hamster fibroblasts35 that was preventable by inclusion of 
catalase,29 lycopene or β-carotene35 in the cell culture media. The 
ability of antioxidants or antioxidant enzymes to limit the strand 
breaks implies that an increased antioxidant capacity is present in 
cells with UOX silencing and presumably this is an increased uric 
acid concentration.

As demonstrated in this study, RNA interference can be used 
in a mouse-derived cell culture system to reduce UOX expression, 
which resulted in increased protection against oxidative stress. 
Additionally, the results in the present study suggest that intra-
cellular uric acid concentration was not increased to a level that 
became pro-oxidative. The next logical experiment would be to 
apply this concept in a living mouse. The advantage of retaining 
a certain level of UOX expression, as opposed to eliminating it 
completely as in the knockout models, is that the elevation of 
uric acid to lethal levels can be avoided. Therefore, moderate to 
dramatic increases in circulating uric acid concentrations would 
likely occur proportional to the degree of UOX knockdown which 
would allow for further investigation into the role that uric acid 
may play in disease treatment and prevention.

Several reports have established an association between serum 
uric acid and death due to cardiac mortality36-38 and some 
evidence indicates that hyperuricemia can predict development of 
hypertension,39,40 obesity,41 kidney disease42 and diabetes.43,44 It 
has been suggested that treating hyperuricemia with allopurinol 
in combination with anti-hypertensive drugs and lipid-lowering 
therapies may synergistically act to reduce the risk of cardiovas-
cular disease.45 Additionally, using allopurinol to reduce uric acid 
exerts beneficial effects on inflammatory indices in patients with 
ischemic stroke.46,47 Therefore, mice exhibiting hyperuricemia via 
UOX knockdown would help to better understand the associations 
between uric acid and diseases that are characterized by excessive 
oxidative stress.

Materials and Methods

Plasmid construction. Plasmid pSilencer4.1-CMVneo (Ambion, 
Austin, TX), was selected for stable expression of short hairpin 
RNA (shRNA) sequences in mammalian cells while conferring 
resistance to antibiotics. Sequences used for RNA interference 
were generated against mouse UOX and the following four sense 
sequences were chosen (1) 5'-AGC CUU CCG AAC AUU CAC 
U-3', (2) 5'-ACC UCA AGG UCU UGA AAA C-3', (3) 5'-GGA 
CUG AUC AAC AAG GAA G-3' and (4) 5'-ACC UAC ACG 
GUG AUA AUU C-3'. The loop sequence, TTCAAGAGA, joined 
the sense and antisense sequences in the hairpin structure. An addi-
tional “scrambled” shRNA sequence that was designed by Ambion 
to have limited similarity to the mouse genome database served as 
a negative control and was ligated into pSilencer4.1-CMVneo.

Cell culture and transfection conditions. A mouse hepatic cell 
line was purchased from ATCC (designation: FL83B, Manasass, 
VA) and grown per supplier’s instructions in F-12K media (ATCC, 
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induce radical formation. Samples (n = 5) were incubated for 37°C 
for five minutes before loading into the flat cell assembly for free 
radical detection.

Cell viability. Cell viability was used to determine the ability 
of the cells to survive a reactive nitrogen species challenge. On 
day one, 1 x 104 cells were plated in a well of a 96-well plate and 
grown overnight. On day two, duplicate wells, the media was 
replaced with 100 μL media containing various concentrations 
of 3-morpholinosydnonimine hydrochloride (SIN-1). After 24 
hours of SIN-1 exposure the cell viability was determined using 
the MTT assay (Cayman Chemical, Ann Arbor, MI) per manu-
facturer’s protocol.

DNA fragmentation. Cells were seeded, 1.5 x 105 per well, in 
a 12-well plate and allowed to grow overnight. On day two, media 
was replaced with media that contained various concentrations of 
SIN-1. After three hours, cells were harvested and resuspended in 
500 μL of ice-cold PBS. Fragmented DNA was detected using the 
Comet Assay per manufacturer’s protocol (Trevigen, Gaithersburg, 
MD). The extent of DNA fragmentation was determined by 
measuring tail length beginning at center of the cells to the left 
rim of SYBR green fluorescence using Optimas 6.5 Image analysis 
software (Media Cybernetics, Silver Spring, MD).

Statistics. Data were analyzed by linear regression analysis or 
analysis of variance with PC-SAS general linear models procedure 
for significant differences among treatment means. In the event 
of a significant F value, the LSD procedure was used for means 
comparisons. Differences were considered significant at p < 0.05.
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