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A B S T R A C T   

Graphitic carbon nitride (g-C3N4) has been extensively investigated over the past decade for its 
potential utilizations in photocatalytic energy generation and pollutant degradation. To better 
meeting the requirements for practical utilizations, it is crucial to address the issue of poor charge 
separation properties in g-C3N4, which origin from the strong interactions in photogenerated 
electron-hole pairs. In this review, we summarized the pertinent studies on developing strategies 
to promote the charge separation properties of g-C3N4. The strategies can be categorized into two 
categories of promoting the surface migration of charge carriers and prolonging the lifetime of 
surface charge. Finally, we present potential challenges in promoting charge separation and offer 
feasible suggestions to face these challenges.   

1. Introduction 

The burgeoning industrial and agricultural technologies has brought on a continuous exhaustion traditional fossil fuel energy 
resource, along with series of enormous pollution problems, such as air and water contaminations [1–6]. The progress of novel 
eco-friendly renewable energy sources is thus extremely urgent for solving these energy and environmental problems. Solar energy 
utilization by photocatalytic has caught much public attention as a hopeful technique for solving these problems since it was first 
developed by Fujishima and Honda in 1972 [7–10]. With the advantages of non-metal, visible-light absorption, 2D structure, easily 
preparation and etcetera, graphitic carbon nitride has shown its excellent potential in the field of photocatalysis and has become a hot 
material among varies of photocatalysts during recent years ever since it was first applied as a photocatalyst in 2009 by Xinchen Wang 
and his collaborators [11–17]. 

However, the photocatalytic performance of pristine g-C3N4 prepared by the traditional method of calcining raw materials directly, 
including urea, dicyandiamide, and melamine, is always at a low level and far below the requirement for practical applications. 
Therefore, series of works about g-C3N4 based modification materials have been carried out to improve its photocatalytic activities, 
such as element doping, surface modification and composite constructing [18–24]. In general, the photocatalytic reaction process can 
be divided into three parts from the perspective of basic photocatalytic mechanism: light absorption, separation of photogenerated 
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charges and catalytic reaction triggered by charge carriers, and thus the performance of photocatalytic reaction depends on their 
efficiencies (as shown in Fig. 1). Unfortunately, g-C3N4 always suffer from low photogenerated charge separation efficiency along with 
short charge carrier lifetime due to the interactions between photogenerated electrons and holes in polymeric semiconductor pho
tocatalysts are much strong [25–28]. The weak charge separation property will make an enormous impact on the photocatalytic 
properties of g-C3N4. Therefore, for solving energy and environmental problems by photocatalysis technique, it is of great scientific 
significance and enormous application value to develop g-C3N4 based photocatalytic materials with good charge separation property. 
In this paper, we concentrate on strategies aimed at enhancing the charge separation of g-C3N4 for its application in photocatalysis. We 
categorize the relevant studies into two primary directions: promoting the surface migration of charge carriers and prolonging the 
lifetime of surface charge carriers, and an initial figure is provided for explaining the flow of this review article (as shown in Fig. 2). At 
last, we suggest some potential challenges on enhancing the charge separation property of g-C3N4. 

2. Strategies on promoting surface migration of charge carriers 

From the basic photocatalytic mechanism shown in Fig. 1 one can see that it is a valuable approach for enhancing its charge 
separation property by promoting more photogenerated charge carriers migrating to the surface of the catalyst and series of related 
research have thus been done based on this. 

2.1. Reducing transmission distance of charge carriers 

To decrease the distance of charge transmission from the charge generation site to the catalyst surface is obviously a promising way 
to promote surface migration of charge carriers because of the decreased body recombination phenomenon (as shown in Fig. 3). To 
decrease the thickness of g-C3N4 seems to be a very feasible and easy way for shorting the charge transmission distance and related 
works have thus been carried out [29,30]. 

Mao et al. [31] successfully synthesized thin-layer g-C3N4 through the method of first treated bulk g-C3N4 using oxalic acid solution 
followed by a sonication treatment. In this work, the charge separation property of the as prepared thin-layer g-C3N4 has been proved 
to be enhanced compared with the bulk one via photoluminescence spectrum and the charge lifetime is prolonged from 4.737 ns to 
5.053 ns which is tested by time resolved photoluminescence. Furthermore, the enhanced charge separation property and better 
electronic efficiency are also proved by photo-current test and the electrochemical impedance spectroscopy results. In the study of Li 
and his co-workers [32], it is found that to introduce B and P into the raw material of g-C3N4 can break part of the hydrogen bonds 
within the layers and decrease the van der Waals interactions between the neighbor layers of g-C3N4. Under the above influences, the 
ultrathin g-C3N4 nanosheets is successfully synthesized. The charge separation property of the ultrathin g-C3N4 nanosheets is proved to 
be enhanced as prepared to the bulk one according to its sharply decreased photoluminescence signal and greatly enhanced 
photo-current intensity. Yang et al. [33] develop a hydrothermal treatment method using ammonium nitrate as the treating agent and 
finally get some thin nanosheets on the surface of bulk g-C3N4. As a result, the photoluminescence intensity of g-C3N4 greatly decreased 
and the photoluminescence lifetime prolonged after treating with ammonium nitrate comparing with the blank sample which indicates 
that the charge separation ability of the sample become better after the formation of thin nanosheets. This result is also supported by 
the electrochemical impedance spectroscopy and photo-current test. 

Some studies pointed out that to introduce porous structure into g-C3N4 is also a feasible structure modification method for pro
moting its charge separation property [34,35]. For example, Yin et al. [36] prepared porous g-C3N4 via a self-assembly method 
employing sodium persulfate as the modifier. Through photoluminescence spectroscopy, electrochemical impedance spectroscopy, 
and transient photocurrent response, it has been demonstrated that the porous structure confers enhanced charge separation properties 

Fig. 1. Basic process of semiconductor-based photocatalytic reaction.  
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to g-C3N4, thus improving its photocatalytic H2 evolution performance. Liu et al. [37] successfully synthesized mesoporous g-C3N4 
with a horn-like hollow morphology through initially forming a horn-like Br-containing intermediate, subsequently undergoing 
decomposition transformation via co-pyrolysis of melamine and a significant amount of NH4Br. The final sample is proved to exhibit 
enhanced charge separation property along with improved H2 evolution activity. From my point of view, as g-C3N4 is a natural sheet 
structural material and its mainly charge transmission is along the direction which perpendicular to the sheet layers [38], it is deduced 
that the localized thickness decrease of g-C3N4 is also the fundamental reason for shortening the charge transmission distance by 
constructing porous structure (as shown in Fig. 4). 

Another strategy taken out by some studies for shorting the charge transfer distance from the photogenerated charge separation 
position to the surface of g-C3N4 is to decrease the distance between the neighboring layers (as shown in Fig. 5). 

Chen and the co-workers [39] used the solution of urea and thiourea dissolved in isopropanol as precursor, then treat it with a 
hydrothermal process to ignite the pre-polymerization of urea and thiourea following by the polymerization process through calci
nation treatment. Finally, they successfully synthesized g-C3N4 with shortened interlayer distance. Compared with the normal 
interlayer distance g-C3N4, this g-C3N4 shows much weaker photoluminescence intensity, increased photoluminescence lifetime and 

Fig. 2. Initial figure for the flow of this review article.  

Fig. 3. Charge separation comparison between thin and thick g-C3N4.  

Fig. 4. The contribution mechanism of hole structure construction to decrease the thickness of g-C3N4.  
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smaller arc radius in electrochemical impedance spectroscopy, which can prove the enhanced charge separation property of the 
interlayer distance shortened g-C3N4 from the point of physics. Further measurements of photo-current test based on the photo
chemical experiment, superoxide radical test and hydroxyl radical test based on the electron spin resonance measurement are also 
carried out for better support the charge separation enhancement from the point of chemistry. The interlayer distance shortened 
g-C3N4 is proved to have better charge separation property based on these results. Shi and the co-workers [40] prepared a nitrogen 
deficient g-C3N4 by using tartaric acid and dicyandiamide as precursors, and proved that the layer stacking distance is decreased by 
this method which is beneficial to the mobility of charge carriers to surface of the material. Besides, by doping potassium into the 
framework can also decrease the interlayer distance of g-C3N4, which is reported in the work of Kang et al. [41]. 

2.2. Accelerating migration speed of charge carriers 

Even though decreasing the distance of charge migration is an effective strategy for promoting photogenerated charge carriers 
transfer to the surface of the g-C3N4, it is suggested that to accelerate the charge carrier migration speed will make it more sufficient 
and related strategies about promoting the charge migration have thus been developed. To provide some charge transmission channels 
which are valuable for the photogenerated charges to go through (as shown in Fig. 6) is supposed to be an effective strategy for 
accelerating the charge migration speed [42–45]. 

Xiong et al. [42] prepared K-doped g-C3N4 via a method of directly calcinating the pre-mixed precursor. By means of many 
measurements, including DFT calculations, XRD test, XPS technique, photoelectrochemical test, steady-state photoluminance and 
transient-state photoluminance, it is demonstrated that the doped K will be inserted into the g-C3N4 interlayer and thus linking the 
layers, which is favorable to the photogenerated charge transfer between adjacent layers. In their subsequent study [44], the K and Cl 
co-doped g-C3N4 was further prepared via the same method, and the K and Cl is proved to be the transmission channel for electrons and 
holes, respectively. The resultant sample exhibits enhanced charge separation property and better photocatalytic performance for NOx 
removal as compared to both the pristine g-C3N4 and K-doped g-C3N4. Li and the co-workers [43] synthesized Rb-doped g-C3N4 and 
Cs-doped g-C3N4, which exhibits enhanced NO removal performance and promoted charge separation property as compared to the 
pristine one, through a facile co-pyrolysis method. The Rb and Cs. By means of DFT calculation, in-situ ESR spectroscopy and 
transient-state photoluminance, the mechanism for the enhanced charge separation property is investigated. The doped Rb and Cs 
atoms in the g-C3N4 interlayers provide vertical channels and promote electron migration, leading to better charge separation 
property. 

2.3. Decreasing body recombination of charge carriers 

To promote the migration of charge carriers to the surface of g-C3N4, it is imperative to address the body recombination of electron- 

Fig. 5. Schematic diagram of shorting charge transfer distance by decreasing the distance between the neighboring layers.  

Fig. 6. Mechanism schematic of charge transmission channels providing strategy.  
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hole pairs. Suppression of the bulk charge carriers recombination will result in a prolonged lifetime for photo-induced electrons and 
holes, thereby increasing their opportunity of diffusion to the material surface (as shown in Fig. 7). Investigations aimed at suppressing 
the bulk charge recombination have thus been studied to facilitate photogenerated electron-hole pairs migrating from the bulk of the 
catalyst to its surface. 

Bellamkonda et al. [46] also introduced benzene rings into the molecular skeleton of g-C3N4 by copolymerizing melamine and 1,3, 
5-triaminobenzene. Through the DFT calculations, photoluminescence spectra, electron paramagnetic resonance spectra, photocur
rent measurement and electrochemical impedance spectra results, it is demonstrated that the charge separation property of g-C3N4 is 
enhanced by introducing benzene rings, and its mechanism is suggested that the charge densities over the valence band maxima and 
conduction band minima were localized in different parts of heptazine rings, resulting in the reduced recombination rate of charge 
carriers. Liang and the co-workers [47] prepared tin-doped g-C3N4 through the calcination of a precursor derived from the evaporation 
of a homogeneously pre-mixed solution containing urea and (NH4)2SnCl6. By mean of photoluminescence spectra, time-resolved 
fluorescence spectra, photocurrent density, electrochemical impedance spectra and DFT calculation of the samples, it is indicated 
that the photogenerated holes tend to migrate to the N–Sn bonds and separated with the photogenerated electrons, the recombination 
of charge carrier is thus suppressed and the holes on N–Sn bond will participate in the oxidation reaction, while the electrons will 
participate in the production of H2. Yang et al. [48] engineered structural defects within g-C3N4 by substituting a portion of the ni
trogen atoms at the edges of the heptazine units with oxygen atoms and by introducing cyano group into the g-C3N4 plane. Through 
various of measurements, such as photoluminescence emission spectra, time-resolved photoluminescence decay spectra, electron 
paramagnetic resonance spectra, electrochemical impedance spectroscopy and photoelectrochemical performances, it is suggested 
that the introduced structural defects act as traps for photogenerated electrons, redistributing these electrons within the melon units. 
This facilitates the migration and transference of electrons across the plane, consequently leading to a suppressed charge carrier 
recombination. Liang et al. [49] successfully synthesized Sb-doped g-C3N4 by employing a calcination process on the pre-mixed 
precursors utilizing NaSbO3 and urea as the raw materials. By means of DFT calculations and related experimental analyses, it has 
been confirmed that the Sb doping results in the formation of N–Sb bonds, subsequently introducing two impurity energy levels, 
designated as EN and ES, which function as a hole-capture center and an electron-capture center respectively, this doping of Sb thus 
significantly enhances the charge separation properties of g-C3N4. 

Several related works about promoting charge separation property of g-C3N4 by the above-mentioned strategies have been sum
marized in Table 1. 

3. Strategies on prolonging lifetime of surface charge carriers 

Based on the above description, varies of strategies developed can promote charge carriers migrating to the surface of the catalyst 
effectively. However, the problem of quickly recombination between photo-induced electrons and holes on the surface of the catalyst is 
seriously influencing the lifetime of surface charge carriers. As the chemical reaction usually happens at the timescale of microsecond 
while the recombination of photoexcited electron-hole pairs occurs at a faster timescale, it is important to prolong the lifetime of 
surface charge carriers for enhancing the charge separation property of g-C3N4, and spatial separation of electron-hole pairs to 
decrease their recombination possibility is thus necessary. According to the above description, developing strategies to promote the 
spatial separation of surface photoexcited electron-hole pairs for prolonging their lifetime is essential for enhancing the charge sep
aration property of g-C3N4. 

3.1. Surface modification 

From the perspective of semiconductor physics, it is proposed that achieving charge transfer through the modification of certain 
functional groups with the ability of accepting photoexcited electrons or holes on the surface of photocatalysts constitutes a feasible 
strategy for prolonging the lifetime of photogenerated charges as this transference can facilitate the spatial separation of electrons and 
holes (as shown in Fig. 8). Consequently, related studies have been conducted based on this strategy. 

Some studies focusing on modulating the photogenerated electrons have been carried out. Wang et al. [62] successfully synthesized 
carbon-modified g-C3N4 through a facile one-step pyrolysis process, which involved the direct thermal treatment of a blended mixture 
of melamine and soybean oil. Based on the electrochemical impedance spectroscopy and photoluminescence spectroscopy results, it 

Fig. 7. Mechanism schematic of promoting charge separation by suppressing the bulk recombination of photogenerated electron-hole pairs.  
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Table 1 
Works on promoting surface migration of charge carriers.  

strategy Method Application Reaction situation Performance Ref. 

Reducing 
transmission 
distance of 
charge carriers 

Dop B and P H2 evolution Arc lamp (λ ≥ 400 nm), 
triethanolamine as sacrificial 
agent, Pt as co-catalyst. 

10877.4 μmol h− 1 

g− 1 
[32] 

Same as above NH4HCO3 as template H2 evolution, RhB 
degradation 

H2 evolution: 300 W Xe lamp (λ ≥
420 nm), lactic acid as sacrificial 
agent, Pt as co-catalyst. 
RhB degradation: 500 W Xe lamp 
(λ ≥ 420 nm), 0.02 mM of RhB, 1 
mg mL− 1 of photocatalyst. 

H2 evolution: 1216 
μmol h− 1 g− 1 

RhB degradation: 
0.92 h− 1 

[34] 

Same as above NH4NO3-assisted hydrothermal 
treatment 

H2 evolution 300 W Xe lamp (λ ≥ 420 nm), 
triethanolamine as sacrificial 
agent, Pt as co-catalyst. 

11817.9 μmol h− 1 

g− 1 
[33] 

Same as above Hydrothermal and thermal etching 
treatments 

Disinfection of 
Escherichia coli, 
methylene blue 
degradation 

Disinfection: 500 W Xe lamp (λ ≥
420 nm), 5 × 106 cfu mL− 1 of 
Escherichia coli, 0.4 mg mL− 1 of 
photocatalyst. 
Degradation: 500 W Xe lamp (λ ≥
420 nm), 1.2 × 10− 5 M of 
methylene blue, 0.2 mg mL− 1 of 
photocatalyst. 

Disinfection: 100 % 
at 4 h 
Degradation: 0.551 
h− 1 

[35] 

Same as above Ultrasonic exfoliation Aflatoxin B1 

degradation 
500 W Xe lamp (λ ≥ 400 nm), 0.5 
μg mL− 1 of Aflatoxin B1, 0.1 mg 
mL− 1 of photocatalyst. 

70.2 % at 120 min [31] 

Same as above Co-pyrolysis of melamine and 
ammonium bromide 

H2 evolution, CO2 

reduction 
H2 evolution: 300 W Xe lamp (λ ≥
420 nm), Pt as co-catalyst. 
CO2 reduction: 300 W Xe lamp. 

H2 evolution: 1354 
μmol h− 1 g− 1 

CO2 reduction: 
10.8 μmol h− 1 g− 1 

(CO) 

[37] 

Same as above Na2S2O8 regulated self-assembly of 
melamine 

H2 evolution 300 W Xe lamp (λ ≥ 420 nm), 
triethanolamine as sacrificial 
agent, Pt as co-catalyst. 

604 μmol h− 1 g− 1 [36] 

Same as above KCl and LiCl modulated quench method H2 evolution, H2O2 

production 
H2 evolution: 300 W Xe lamp (λ ≥
420 nm), triethanolamine as 
sacrificial agent, Pt as co-catalyst. 
H2O2 production: 300 W Xe lamp 
(λ ≥ 420 nm), isopropanol as 
sacrificial agent. 

H2 evolution: 
10600 μmol h− 1 g− 1 

H2O2 production: 
6600 h− 1 g− 1 

[30] 

Same as above HCl and NH4Br modulation H2 evolution, RhB 
degradation 

H2 evolution: 300 W Xe lamp (λ ≥
420 nm), triethanolamine as 
sacrificial agent, Pt as co-catalyst. 
RhB degradation: 500 W Xe lamp 
(λ ≥ 420 nm), 10 mg L− 1 of RhB, 
0.4 mg mL− 1 of photocatalyst. 

H2 evolution: 1412 
μmol h− 1 g− 1 

RhB degradation: 
1.34 h− 1 

[50] 

Same as above Recalcination treatment and 
Hexamethylenetetramine-assisted 
tertiary calcination 

H2 evolution 300 W Xe lamp, triethanolamine 
as sacrificial agent, Pt as co- 
catalyst. 

27035.23 μmol h− 1 

g− 1 
[29] 

Same as above Tartaric acid assistant thermal 
polymerization of dicyandiamide 

CO2 reduction 300 W Xe lamp (λ ≥ 400 nm), 
methyl cyanide solution contains 
triethanolamine, bipyridine and 
CoCl2. 

56.94 μmol h− 1 g− 1 

(CO) 
[40] 

Same as above isopropanol assisted solvothermal- 
copolymerization 

H2 evolution, RhB 
degradation 

H2 evolution: 300 W Xe lamp (λ ≥
420 nm), triethanolamine as 
sacrificial agent, Pt as co-catalyst. 
RhB degradation: 500 W Xe lamp 
(λ ≥ 420 nm), 10 mg L− 1 of RhB, 
0.5 mg mL− 1 of photocatalyst. 

H2 evolution: 
3643.3 μmol h− 1 

g− 1 

RhB degradation: 
7.2 h− 1 

[39] 

Same as above Treatments of molecular assemble, 
alcohol molecules intercalation, 
thermal-induced exfoliation and 
polycondensation 

H2 evolution 300 W Xe lamp, triethanolamine 
as sacrificial agent, Pt as co- 
catalyst. 

7990 μmol h− 1 g− 1 [51] 

Accelerating 
migration speed 
of charge 
carriers 

Dop K NO removal Air flow rate: 2.4 L min− 1, NO 
(100 ppm) flow rate: 15 mL 
min− 1, 150 W tungsten halogen 
lamp (λ ≥ 420 nm), 0.2 g of 
sample. 

36.8 % [42] 

Same as above Dop Cs NO removal Air flow rate: 2.4 L min− 1, NO 
(100 ppm) flow rate: 15 mL 

48.23 % [43] 

(continued on next page) 
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has been confirmed that the photogenerated electrons in g-C3N4 are transferred to the modified carbon, thereby facilitating an efficient 
separation from the photogenerated holes, which consequently leads to a significantly enhanced photogenerated charge separation 
efficiency. Wang et al. [63] prepared single Ni atom decorated g-C3N4 via a boric-acid mediated method. By means of steady-state 
photoluminescence, hydroxyl radical test, transient absorption spectra, transient-state surface photovoltage analysis, steady-state 
surface photovoltage spectroscopy and transient-state photoluminescence analysis, it has been demonstrated that the single Ni sites 
which anchored on the g-C3N4 surface will effectively capturing the photoelectrons, leading to a facilitated charge separation property 
and prolonged charge lifetime. Xue et al. [64] successfully synthesized a molecularly engineered g-C3N4 by utilizing 
anthraquinone-2-carboxylic acid as the modifier, wherein the peptide bond is formed through the reaction between the –COOH group 
in anthraquinone-2-carboxylic acid and the –NH2 group in g-C3N4, serving as the linking mechanism. Through DFT calculations and 

Table 1 (continued ) 

strategy Method Application Reaction situation Performance Ref. 

min− 1, 150 W tungsten halogen 
lamp (λ ≥ 420 nm), 0.2 g of 
sample. 

Same as above Dop KCl NO removal Air flow rate: 2.4 L min− 1, NO 
(100 ppm) flow rate: 15 mL 
min− 1, 150 W tungsten halogen 
lamp (λ ≥ 420 nm), 0.2 g of 
sample. 

38.4 % [44] 

Same as above Intercalate atomic Pd into the adjacent 
layers 

H2 evolution 300 W Xe lamp. ≈6500 μmol h− 1 

g− 1 
[52] 

Same as above Intercalation of K⁺ and NO3⁻ species NO oxidation 150 W tungsten halogen lamp, 
0.2 g of sample, 500 ppb 
continuous flow. 

41.93 % [45] 

Decreasing body 
recombination 
of charge 
carriers 

Dop Mn CO2 reduction 300 W Xe lamp, water as 
sacrificial agent. 

47 μmol h− 1 g− 1 

(CO) 
[53] 

Same as above Implant carbon quantum dot H2 evolution 300 W Xe lamp (λ ≥ 400 nm), 
methanol as sacrificial agent, Pt as 
co-catalyst. 

3538.3 μmol h− 1 

g− 1 
[54] 

Same as above Dop benzene molecule H2O2 production 300 W Xe lamp (λ ≥ 420 nm), 
ethanol as sacrificial agent, 0.5 g 
L-1 of photocatalyst. 

≈300 μM at 3 h [55] 

Same as above Dop phosphorus H2 evolution 300 W Xe lamp (λ ≥ 420 nm), 
triethanolamine as sacrificial 
agent, Pt as co-catalyst. 

2610.80 μmol h− 1 

g− 1 
[56] 

Same as above Dop manganese RhB degradation, 
MO degradation 

500 W Xe lamp (λ ≥ 420 nm), 10 
mg L− 1 of pollutant, 0.4 mg mL− 1 

of photocatalyst. 

RhB degradation: 
3.46 h− 1 

MO degradation: 
0.0417 h− 1 

[57] 

Same as above Dop benzene H2 evolution 300 W Xe lamp (λ ≥ 450 nm), Pt 
as co-catalyst. 

140 μmol h− 1 g− 1 [46] 

Same as above Dop tin H2 evolution 300 W Xe lamp (λ ≥ 420 nm), 
triethanolamine as sacrificial 
agent, Pt as co-catalyst. 

1690 μmol h− 1 g− 1 [47] 

Same as above Ascorbic acid assisted method to 
introducing oxygen element and cyano 
group into g-C3N4 nanosheets 

H2 evolution 300 W Xe lamp (λ ≥ 420 nm), 
triethanolamine as sacrificial 
agent, Pt as co-catalyst. 

1336.8 μmol h− 1 

g− 1 
[48] 

Same as above In-plane implant carbon rings Naproxen degradation 500 W Xe lamp (λ ≥ 420 nm), 20 
mg L− 1 of naproxen, 60 mg L− 1 of 
photocatalyst. 

100 % in 1 h [58] 

Same as above Graft 2-hydroxy-4,6- 
dimethylpyrimidine 

Oxytetracycline 
degradation, H2O2 

production 

Oxytetracycline degradation: 300 
W Xe lamp (λ ≥ 420 nm), 20 mg 
L− 1 of oxytetracycline, 0.3 mg 
mL− 1 of photocatalyst. 
H2O2 production: 300 W Xe lamp 
(λ ≥ 420 nm), isopropanol as 
sacrificial agent, 1 mg mL− 1 of 
photocatalyst. 

Oxytetracycline 
degradation: 1.74 
h− 1 

H2O2 production: 
174 μmol h− 1 g− 1 

[59] 

Same as above Dop basic fuchsin H2 evolution 300 W Xe lamp (λ ≥ 420 nm), 
triethanolamine as sacrificial 
agent, Pt as co-catalyst. 

1619 μmol h− 1 g− 1 [60] 

Same as above Dop benzene H2 evolution 300 W Xe lamp (λ ≥ 420 nm), 
triethanolamine as sacrificial 
agent, Pt as co-catalyst. 

12543 μmol h− 1 g− 1 [61] 

Same as above Dop Sb H2 evolution 300 W Xe lamp (λ ≥ 420 nm), 
triethanolamine as sacrificial 
agent, Pt as co-catalyst. 

1750 μmol h− 1 g− 1 [49]  
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related experimental analyses, including photoluminescence spectroscopy, time-resolved fluorescence spectra, electron paramagnetic 
resonance analysis, electrochemical impedance spectroscopy and electrochemical measurements, it has been demonstrated that the 
modified molecule works as an electron acceptor, thereby enhancing the efficiency of electron-hole separation and prolonging the 
lifetime of charge carriers. 

Some studies focusing on modulating the photogenerated holes have been reported. Liu et al. [65] successfully modified 1, 
1′-ferrocene dicarboxylic acid on the surface of g-C3N4 utilizing a facile sonication attaching and anchoring method. Based on pho
toluminescence spectroscopy, time-resolved fluorescence response, transient photocurrent response and electrochemical impedance 
spectroscopy, it has been demonstrated that the photogenerated holes can be effectively transferred from g-C3N4 to the modified 1, 
1′-ferrocene dicarboxylic acid groups, thereby suppressing the recombination of charge carriers and prolong the charge lifetime. 
Cl-modified g-C3N4 was successfully synthesized by Li et al. using a wet-chemical method [66]. Various characterization techniques, 
including steady-state surface photovoltage spectroscopy, atmosphere-controlled time-resolved surface photovoltage technique, 
photoluminescence spectroscopy, and hydroxyl radical tests, were employed to verify its charge separation properties. The results 
conclusively demonstrate that the introduction of Cl on the surface of g-C3N4 leads to effective modulation of photogenerated holes, 
resulting in a notable decrease in the recombination of electron-hole pairs and consequently prolonging the lifetime of the charge 
carriers. Zeng and the coworkers [67] achieved successful construction of a g-C3N4 material grafted with poly-ethylenimine molecules 
using a pH-modulated electrostatic attraction method. Extensive investigations using DFT calculations and various experimental 
techniques, such as photoelectrochemical analysis, electrochemical impedance spectroscopy, surface potential mapping analysis, and 
electron paramagnetic resonance test, have convincingly shown that the presence of poly-ethylenimine effectively traps the photo
induced holes, thus inhibiting charge recombination. 

Efforts have also been made to explore the simultaneous modulation of photogenerated electrons and holes. Ren et al. [68] suc
cessfully fabricated Ag and BN quantum dots co-modified g-C3N4 through photo-reduction and wet chemical synthesis techniques. By 
means of photoluminescence spectroscopy, time-resolved fluorescence response, photo-current response, and electrochemical 
impedance spectroscopy, it has been evidenced that the strategically modified Ag and BN quantum dots on the g-C3N4 surface 
independently capture photo-induced electrons and holes, consequently prolonging the lifetime of the charge carriers. Zhang and 
colleagues successfully synthesized Co and Ni co-modified g-C3N4 utilizing a facile in-situ pre-assembly method [69]. Employing 
various of charge separation property analysis techniques, including photoluminescence spectroscopy, steady-state surface photo
voltage spectroscopy, time-resolved fluorescence decay response, and transient-state surface photovoltage response, it has been 
revealed that the modified Co will accept the holes while the modified Ni will accept the electrons generated by g-C3N4, thereby to 
prolong the lifetime of the charge carriers. 

Fig. 8. Mechanism schematic of accelerating charge separation by accepting photoexcited electrons or holes.  

Fig. 9. Mechanism schematic of the charge transfer in type-II and Z-scheme structures.  

S. Chen et al.                                                                                                                                                                                                           



Heliyon10(2024)e35098

9

Table 2 
Works on prolonging lifetime of surface charge carriers.  

strategy Method Application Reaction situation Performance Ref. 

Surface 
modification 

Integrate the metal alloy of Pt and Au H2 evolution 300 W Xe lamp, Na2SO3 and Na2S as sacrificial agent. 1009 μmol g− 1 h− 1 [80] 

Same as above Anchor single Ni atoms CO2 reduction 300 W Xe lamp, water as sacrificial agent. 22.1 μmol g− 1 h− 1 (CO) 
8.7 μmol g− 1 h− 1 (CH4) 

[63] 

Same as above Modify red phosphorus H2 evolution 300 W Xe lamp (λ ≥ 400 nm), triethanolamine as sacrificial agent, Pt as co- 
catalyst. 

2565 μmol h− 1 g− 1 [81] 

Same as above Dop potassium and modify 1,2- 
benzisothiazolin-3-one 

H2 evolution 300 W Xe lamp (λ ≥ 365 nm), triethanolamine as sacrificial agent, Pt as co- 
catalyst. 

21350 μmol h− 1 g− 1 [82] 

Same as above Embed carbon H2 evolution 300 W Xe lamp (λ ≥ 420 nm), triethanolamine as sacrificial agent, Pt as co- 
catalyst. 

718.1 μmol h− 1 g− 1 [83] 

Same as above Anchor 2,4,5-trichlorophenoxyacetic 
acid 

H2 evolution 300 W Xe lamp (λ ≥ 420 nm), triethanolamine as sacrificial agent, Pt as co- 
catalyst. 

1845 μmol h− 1 g− 1 [84] 

Same as above Introduce carbon CO2 reduction 500 W Xe lamp, H2O as sacrificial agent. 22.6 μmol g− 1 h− 1 (CO) 
12.59 μmol g− 1 h− 1 (CH4) 

[62] 

Same as above Introduce MoP H2 evolution 300 W Xe lamp (λ ≥ 400 nm), triethanolamine as sacrificial agent. 3868 μmol g− 1 h− 1 [85] 
Same as above Modify Pd nanoparticles H2 evolution 300 W Xe lamp (λ ≥ 400 nm), triethanolamine as sacrificial agent. 5358 μmol g− 1 h− 1 [86] 
Same as above Modify RhPx nano-species H2 evolution 300 W Xe lamp (λ ≥ 420 nm), triethanolamine as sacrificial agent. 3055.9 μmol g− 1 h− 1 [87] 
Same as above Implant carbon quantum dot Tetracycline degradation, 

RhB degradation 
Tetracycline degradation: 40 W LED lamp, 40 mL of tetracycline solution 
(40 mg L− 1), 20 mg of photocatalyst. 
RhB degradation: 40 W LED lamp, 40 mL of RhB solution (10 mg L− 1), 10 
mg of photocatalyst. 

Tetracycline degradation: 1.20 h− 1 

RhB degradation: 2.04 h− 1 
[88] 

Same as above Dop carbon species and introduce N 
defects 

Sulfamethazine degradation 300 W Xe lamp (λ ≥ 420 nm), 30 mL of RhB solution (30 mg L− 1), 10 mg of 
photocatalyst. 

1.662 h− 1 [89] 

Same as above Introduce carbonized poly-(furfural 
alcohol) 

H2 evolution 300 W Xe lamp (λ ≥ 400 nm), triethanolamine as sacrificial agent, Pt as co- 
catalyst. 

584.7 μmol g− 1 h− 1 [90] 

Same as above Modify anthraquinone-2-carboxylic acid H2O2 production 300 W Xe lamp (λ ≥ 420 nm), isopropanol as sacrificial agent. 36.41 mM h− 1 g− 1 [64] 
Same as above in situ surface P-N bond modulation H2 evolution 300 W Xe lamp (λ ≥ 400 nm), triethanolamine as sacrificial agent, Pt as co- 

catalyst. 
1800 μmol g− 1 h− 1 [91] 

Same as above Introduce 1,1′-ferrocenedicarboxylic 
acid 

H2 evolution 300 W Xe lamp (λ ≥ 420 nm), triethanolamine as sacrificial agent, Pt as co- 
catalyst. 

1558.2 μmol g− 1 h− 1 [65] 

Same as above surface polarization by introducing 
halogen elements 

CO2 reduction, 
2, 4-DCP degradation 

CO2 reduction: 300 W Xe lamp, H2O as sacrificial agent. 
2, 4-DCP degradation: 150 W Xe lamp, 0.15 g of photocatalyst, 60 mL of 
2,4-DCP (10 mg L− 1). 

CO2 reduction: 14 μmol g− 1 h− 1 (CH4) 
2, 4-DCP degradation: ≈40 % at 1.5 h 

[66] 

Same as above Incorporate para-phenylene H2 evolution 300 W Xe lamp (λ ≥ 420 nm), triethanolamine as sacrificial agent, Pt as co- 
catalyst. 

386 μmol g− 1 h− 1 [92] 

Same as above Introduce nickel complex and NiOx H2 evolution 300 W Xe lamp (λ ≥ 420 nm), triethanolamine as sacrificial agent. 524.1 μmol g− 1 h− 1 [93] 
Same as above Graft cationic polyethyleneimine H2O2 generation, 1000 W m− 2 with AM 1.5 air filter. 208.1 μmol g− 1 h− 1 [67] 
Same as above Introduce BN quantum dots and Ag 

nanoparticles 
Tetracyclines degradation, 
Cr (VI) reduction 

Tetracyclines degradation: 300 W Xe lamp (λ ≥ 420 nm), 50 mg of sample, 
100 mL of pollutant solution (10 mg L− 1). 
Cr (VI) reduction: 300 W Xe lamp (λ ≥ 420 nm), 50 mg of sample, 100 mL 
of Cr (VI) solution (5 mg L− 1) 

Tetracyclines degradation: 2.01 h− 1 

Cr (VI) reduction: 2.412 h− 1 
[68] 

Same as above Modify Co and Ni species CO2 reduction 300 W Xe lamp, H2O as sacrificial agent. ≈2.4 μmol g− 1 h− 1 (CO) [69] 
Same as above Modify Mn and Cu species CO2 reduction 300 W Xe lamp, H2O as sacrificial agent. ≈2.3 μmol g− 1 h− 1 (CO) [94] 
Composite 

construction 
Couple with NH2-UiO-66(Zr) CO2 reduction 300 W Xe lamp (λ ≥ 400 nm), triethanolamine and H2O as sacrificial agent. 31.7 μmol g− 1 h− 1 (CO) [95] 

Same as above Combine with Ba5Nb4O15 H2 evolution Four 3 W LED lamp (420 nm), oxalic acid as sacrificial agent, Pt as co- 
catalyst. 

2670 μmol g− 1 h− 1 [96] 

Same as above Combine with copper phosphide H2 evolution Four 3 W LED lamp (420 nm), triethanolamine as sacrificial agent. 277.2 μmol g− 1 h− 1 [97] 

(continued on next page) 
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Table 2 (continued ) 

strategy Method Application Reaction situation Performance Ref. 

Same as above Couple with nanodiamond H2 evolution 300 W Xe lamp (λ ≥ 420 nm), triethanolamine as sacrificial agent, Pt as co- 
catalyst. 

1182 μmol g− 1 h− 1 [98] 

Same as above Modify Cu2MoS4 H2 evolution 300 W Xe lamp (λ ≥ 420 nm), triethanolamine as sacrificial agent. 2170.5 μmol g− 1 h− 1 [99] 
Same as above Couple with perylene diimide Phenol degradation, 

Oxygen evolution, 
Staphylococcus aureus 
disinfection 

Phenol degradation: 500 W Xe lamp (λ ≥ 420 nm), 25 mg of sample, 50 mL 
of pollutant solution (5 ppm). 
Oxygen evolution: 300 W Xe lamp (λ ≥ 420 nm), 25 mg of sample, 100 mL 
of AgNO3 solution (10 mM). 
Staphylococcus aureus disinfection: 00 W Xe lamp (λ ≥ 420 nm), 0.2 g L− 1 of 
photocatalyst, 1 × 107 cfu mL− 1 of staphylococcus aureus. 

Phenol degradation: 0.164 h− 1 

Oxygen evolution: 3.75 μmol at 2 h 
Staphylococcus aureus disinfection: 
≈96.6 % at 3 h 

[71] 

Same as above Combine with TiO2 nanosheets H2 evolution 300 W Xe lamp, triethanolamine as sacrificial agent, Pt as co-catalyst. 18200 μmol g− 1 h− 1 [100] 
Same as above Couple with NiAl-LDH CO2 reduction 300 W Xe lamp (λ ≥ 420 nm), H2O as sacrificial agent. 8.2 μmol g− 1 h− 1 [101] 
Same as above Couple with TiO2 meso-crystals H2 evolution 300 W Xe lamp with an AM 1.5 filter (λ ≥ 420 nm), methanol as sacrificial 

agent. 
1200 μmol g− 1 h− 1 (CO) [102] 

Same as above Decorate cobalt (II) meso- 
tetraphenylporphine 

H2 evolution 300 W Xe lamp (λ ≥ 420 nm), triethanolamine as sacrificial agent, Pt as co- 
catalyst. 

938.6 μmol g− 1 h− 1 [103] 

Same as above In-situ combine with nitrogen-doped 
hollow-TiO2 

H2 evolution 300 W Xe lamp with an AM 1.5 filter (λ ≥ 420 nm), methanol as sacrificial 
agent. 

296.4 μmol g− 1 h− 1 [104] 

Same as above Combine with oxygen vacancy rich TiO2 

quantum dots 
CO2 reduction 300 W Xe lamp (λ ≥ 400 nm), 4 mL of methyl cyanide solvent, 1 mL of 

triethanolamine, 10 mmol/L bipyridine and 25 μL of 20 mmol/L CoCl2 

solution. 

77.8 μmol g− 1 h− 1 (CO) [105] 

Same as above Introduce 11,11,12,12-tetracyanonaph 
tho-1,4-quinodimethane 

RhB degradation 500 W Xe lamp, 50 mg of sample, 50 mL of pollutant solution (10− 5 mol 
L− 1). 

≈19 h− 1 [106] 

Same as above Couple with covalent triazine-based 
frameworks 

Sulfamethazine decomposition 500 W Xe lamp, 10 mg of sample, 50 mL of sulfamethazine solution (10 
ppm). 

95.8 % at 3 h [72] 

Same as above Combine with one-dimensional Ni2P- 
Cd0.9Zn0.1S 

H2 evolution 300 W Xe lamp (λ ≥ 420 nm), Na2S and Na2SO3 as sacrificial agent. 2100 μmol g− 1 h− 1 [107] 

Same as above Combine with ZnO RhB degradation Sunlight irradiation, 0.1 g of photocatalyst, 100 mL of RhB solution (5 
ppm). 

99 % at 20 min [108] 

Same as above Combine with Ti3+ doped TiO2 RhB degradation 30 W LED lamp, 40 mg of photocatalyst, 10 mg L− 1 RhB aqueous solution. 2.136 h− 1 [109] 
Same as above Couple with α-Ni(OH)2 H2 evolution 300 W Xe lamp (λ ≥ 400 nm), triethanolamine as sacrificial agent, Pt as co- 

catalyst. 
4764.9 μmol g− 1 h− 1 [70] 

Same as above Combine with WO3 and carbon dots CO2 reduction 300 W Xe lamp, H2O as sacrificial agent. 31.04 μmol g− 1 h− 1 [110] 
Same as above Couple with RGO and Bi2WO6 CO2 reduction 300 W Xe lamp (λ ≥ 420 nm), H2O as sacrificial agent. 15.96 μmol g− 1 h− 1 [111] 
Same as above Introduce CeO2 quantum dots Sterilization of Staphylococcus 

aureus 
150 W Xe lamp (λ ≥ 420 nm), 10 μg as prepared photocatalysts, 1 mL liquid 
bacterial broth (1 × 105 CFU per mL). 

88.1 % at 15 min [112] 

Same as above Couple with MnIn2S4 Tetracycline hydrochloride 
degradation, 
H2 evolution 

Tetracycline hydrochloride degradation: 30 mg of photocatalyst, 30 mL of 
tetracycline hydrochloride solution (50 mg L− 1). 
H2 evolution: 300 W Xe lamp (λ ≥ 400 nm), Na2S and Na2SO3 as sacrificial 
agent. 

Tetracycline hydrochloride degradation: 
≈100 % at 90 min 
H2 evolution: 200.8 μmol h− 1 g− 1 

[113] 

Same as above Combine with WO3 nanosheets and load 
Pt 

H2 evolution 300 W Xe lamp (λ ≥ 420 nm), triethanolamine as sacrificial agent. 17240 μmol h− 1 g− 1 [75] 

Same as above Couple with Ni(OH)2 H2 evolution 300 W Xe lamp, triethanolamine as sacrificial agent. 4360 μmol h− 1 g− 1 [114] 
Same as above Introduce CdS and Fe3O4 Tetracycline decomposition 300 W Xe lamp (λ ≥ 420 nm), 100 mL of antibiotic solution (20 mg L− 1), 

0.05 g of photocatalyst. 
6.9 h− 1 [115] 

Same as above Couple with Cu3P H2 evolution 300 W Xe lamp (λ ≥ 420 nm), triethanolamine as sacrificial agent. 808 μmol h− 1 g− 1 [116] 
Same as above Combine with Co3O4 H2 evolution 300 W Xe lamp (λ ≥ 400 nm), triethanolamine as sacrificial agent, Pt as co- 

catalyst. 
37000 μmol g− 1 h− 1 [117] 

Same as above Couple with oxygen defective ZnO 
nanorods 

4-chlorophenol degradation, 
H2 evolution 

4-chlorophenol degradation: 300 W Xe lamp (λ ≥ 420 nm), 0.1 g of the 
photocatalyst, 100 mL of 4-CP aqueous solution (10− 4 mol L− 1). 

4-chlorophenol degradation: 3.051 h− 1 

H2 evolution: 322 μmol g− 1 h− 1 
[118] 

(continued on next page) 
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Table 2 (continued ) 

strategy Method Application Reaction situation Performance Ref. 

H2 evolution: 300 W Xe lamp (λ ≥ 420 nm), triethanolamine as sacrificial 
agent, Pt as co-catalyst. 

Same as above Couple with CoAl-layered double 
hydroxide nanosheets 

Methyl orange degradation 300 W Xe lamp (λ ≥ 420 nm), 100 mL methyl orange solution (20 mg L− 1), 
30 mg of photocatalyst. 

5.74 h− 1 [119] 

Same as above Modify Pt and couple with WOx H2 evolution, 
CO2 reduction, 
Benzene oxidation 

H2 evolution: 300 W Xe lamp, triethanolamine as sacrificial agent. 
CO2 reduction: 300 W Xe lamp (λ ≥ 420 nm), H2O as sacrificial agent. 
Benzene oxidation: 300 W Xe lamp (λ ≥ 420 nm), 20 mg of photocatalyst, 
6 mL of acetonitrile, 0.4 mL of benzene, and 6 mL of H2O2 (25 %). 

H2 evolution: 5267 μmol g− 1 h− 1 

CO2 reduction: 5.89 μmol g− 1 h− 1 (CO) 
and 3.12 μmol g− 1 h− 1 (CH4) 
Benzene oxidation: 89.0 % at 12 h with 
the selectivity of 98.2 % 

[120] 

Same as above Decorate Ni and couple with Bi2WO6 Photothermal conversion of 
CO2 and H2O to syngas 

300 W Xe lamp, heating temperature of 250 ◦C. 4493 μmol g− 1 h− 1 (CO), 
9191 μmol g− 1 h− 1 (H2) 

[73] 

Same as above Anchor nickel stannate perovskite H2 evolution Two tungsten-halogen lamps (250 W each), triethanolamine as sacrificial 
agent, Pt as co-catalyst. 

646 μmol g− 1 h− 1 [121] 

Same as above Couple with ZnIn2S4 H2 evolution 300 W Xe lamp (λ ≥ 420 nm), triethanolamine as sacrificial agent, Pt as co- 
catalyst. 

1650 μmol g− 1 h− 1 [122] 

Same as above Introduce Ta4+ doped Ta2O5 quantum 
dots 

H2 evolution, 
RhB degradation 

H2 evolution: 300 W Xe lamp (λ ≥ 420 nm), triethanolamine as sacrificial 
agent, Pt as co-catalyst. 
RhB degradation: 300 W Xe lamp (λ ≥ 420 nm), 0.1 g of photocatalyst, 10 
mg L− 1 of RhB solution. 

H2 evolution: 624.99 μmol g− 1 h− 1, 
RhB degradation:9.072 h− 1 

[123] 

Same as above Couple with Cu2MoS4 nanosheets H2 evolution 300 W Xe lamp (λ ≥ 400 nm), Na2S and Na2SO3 as sacrificial agent. 2385 μmol g− 1 h− 1 [124] 
Same as above Introduce CdS and MoS2 RhB degradation 300 W Xe lamp (λ ≥ 420 nm), 0.01 g of photocatalyst, 50 mL of RhB 

solution (10 mM). 
3.198 h− 1 [77] 

Same as above Combine with BiOI and AgI Tetracycline degradation 300 W Xe lamp (λ ≥ 420 nm), 50 mg of photocatalyst, 50 mL of tetracycline 
solution (20 mg L− 1). 

2.334 h− 1 [125] 

Same as above Introduce CoO and Co3O4 Nitrobenzene degradation, 
Tetracycline degradation 

Nitrobenzene degradation: 500 W Xeon lamp, 30 mg of photocatalyst, 50 
mL of nitrobenzene solution (5 mg L− 1). 
Tetracycline degradation: 500 W Xeon lamp, 30 mg of photocatalyst, 50 
mL of tetracycline solution (10 mg L− 1). 

Nitrobenzene degradation: 1.02 h− 1 

Tetracycline degradation: 1.26 h− 1 
[126] 

Same as above Couple with MIL-53(Fe) and α-Bi2O3 Amido black 10 B degradation 35 W Xenon lamp, 20 mg of photocatalyst, 50 mL of amido black 10 B (10 
mg L− 1). 

5.06 h− 1 [127] 

Same as above Combine with Ag3PO4 and AgI NTP degradation, 
RhB degradation 

NTP degradation: 300 W Xe lamp (λ ≥ 420 nm), 25 mg of photocatalyst, 50 
mL of NTP solution (5 ppm). 
RhB degradation: 300 W Xe lamp (λ ≥ 420 nm), 25 mg of photocatalyst, 50 
mL of RhB solution (20 ppm). 

NTP degradation: 45.6 h− 1 

RhB degradation: 22.8 h− 1 
[78] 

Same as above Introduce CeCO3OH and CeO2 nitrogen fixation 500 W Xenon lamp, 30 mg of the photocatalyst, water as sacrificial agent. 1160 μmol g− 1 h− 1 [79]  
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3.2. Composite construction 

Viewed through the perspective of prolonging the charge carrier lifetime in g-C3N4 by promoting the spatial separation of 
photoexcited electron-hole pairs, building composite structure with other semiconductors presents a promising strategy that enables 
the efficient transfer of charge carriers across the compounds. Owing to the negative positions of the conduction and valence bands of 
g-C3N4, scholarly research concerning composite-construction predominantly concentrate on the type-II and Z-scheme structures (as 
shown in Fig. 9). 

In the type-II mechanism, electrons from the surface of material A spontaneously transfer to material B, for which the conduction 
band of material A is more negative than B. Meanwhile, the holes from the surface of material B transfer to material A, for which the 
valence band of material B is more positive than A. Consequently, the electrons and holes will be located on different components of 
the composite, thereby suppressing the recombination of the charge carriers, and prolonging their lifetime. The works focus on the 
type-II structure have thus been reported. Yang et al. [70] fabricated Ni(OH)2/g-C3N4 nanocomposite through an in-situ growth 
approach. Through DFT calculations, electron paramagnetic resonance, photoluminescence spectroscopy, time-resolved fluorescence 
decay spectroscopy, electrochemical impedance spectroscopy and electrochemical analyses, it has been demonstrated that the 
photo-generated electrons from Ni(OH)2 are transferred to the conduction band of g-C3N4, concurrently, the photo-induced holes from 
g-C3N4 migrate to the valence band of Ni(OH)2, thereby result in an promoted charge separation and an prolonged charge lifetime. Gao 
et al. [71] introduced self-assembled perylene diimide nanofibers onto the surface of g-C3N4 through an in-situ method. Through a 
comprehensive suite of analytical techniques, including photoelectrochemical analysis, electrochemical impedance spectroscopy, 
surface photovoltage spectroscopy, photoluminescence spectroscopy, time-resolved fluorescence decay spectroscopy, and electron 
spin resonance technique, it has been illustrated that the composite exhibits superior charge separation capabilities compared to 
pristine g-C3N4, a phenomenon attributed to the enhanced lifetime of charge carriers facilitated by the type-II charge transfer 
mechanism. Cao and the co-workers fabricate the composite consist of covalent triazine-based frameworks and g-C3N4 via a 
wet-chemical method [72]. From the results of charge separation property related measurements, including photoelectrochemical 
analysis, electrochemical impedance spectroscopy, photoluminescence spectroscopy, time-resolved fluorescence decay spectroscopy, 
and electron spin resonance, it has been elucidated that g-C3N4-generated photo-electrons are transferred to the conduction band of 
covalent triazine-based frameworks, whereas the holes migrate in a reverse fashion. This charge transfer process significantly aug
ments the photo-induced charge separation efficiency and extends the life of charge carriers. 

In the Z-scheme mechanism, electrons on the surface of material B, which has a more positive conduction band, recombine with 
holes on the surface of material A, which has a more negative valence band. As a result, the electrons and holes with higher energy are 
left separated on materials A and B. This spatial separation effectively prolongs the lifetimes of the electrons and holes. Some studies 
focusing on the Z-scheme have thus been carried out. Wu et al. [73] synthesized a composite of g-C3N4 and Bi2WO6 employing an 
in-situ growth strategy, which encompasses a sequential hydrothermal procedure followed by a calcination process. As evidenced by a 
suite of techniques, including electron paramagnetic resonance spin, X-ray photoelectron spectroscopy, photoluminescence spec
troscopy, Nyquist analysis, transient photocurrent measurement, and time-resolved fluorescence spectroscopy, it has been confirmed 
that a Z-scheme heterojunction is successfully fabricated, in which the photo-holes generated by g-C3N4 recombine with the 
photo-electrons generated by Bi2WO6, thereby facilitating the preservation of charge carriers with high energy and prolong their 
lifetime. Xu et al. [74] have successfully fabricated a composite consisting of perylene diimide and g-C3N4 for the purpose of cleaving 
lignin models. The composite was synthesized via a facile solvent evaporation wet-chemical method. The results of DFT calculations 
and measurements related to charge separation and transfer behavior, encompassing transient photocurrent response, electrochemical 
impedance spectroscopy, time-resolved fluorescence decay spectroscopy, and electron spin resonance, reveal that the enhancement of 
charge separation can be attributed to the Z-scheme charge transfer process which effectively prolongs the lifetime of photogenerated 
charge carriers. Liu et al. [75] successfully synthesized a compound comprising of WO3 and g-C3N4 through a wet-chemical method, 
with the aim of generating H2. Various characterization techniques, including electron spin resonance, photoluminescence spec
troscopy, UV-vis adsorption spectroscopy, electrochemical impedance spectroscopy, photo-induced current density test, and 
time-dependent fluorescence decay responses, were employed to investigate the charge separation and carrier lifetime properties of 
the composite. The experimental results demonstrate that the composite exhibits enhanced charge separation and prolonged lifetime 
of charge carriers compared to pristine g-C3N4. The mechanism underlying this enhancement has been identified as the Z-scheme, 
wherein electrons generated by WO3 can recombine with holes generated by g-C3N4, while leaving electrons and holes separately 
localized on the surfaces of g-C3N4 and WO3. 

Many studies have also focused on constructing ternary compound systems, such as dual type-II composites and dual Z-scheme 
composites. These approaches aim to achieve improved separation of photogenerated electron-hole pairs. Yang et al. [76] employed a 
facile impregnation method to introduce WS2 and TiO2 onto the surface of g-C3N4. Through a comprehensive analysis including 
electron paramagnetic resonance measurement, photoluminescence spectroscopy, time-resolved fluorescence measurement, electro
chemical impedance spectroscopy, and transient photocurrent response, they demonstrated that the co-introduction of WS2 and TiO2 
effectively enhances charge separation and prolongs charge lifetime by establishing a type-II charge separation mechanism. Zhang 
et al. [77] utilized a simple wet-chemical method to fabricate a composite consisting of MoS2, CdS, and g-C3N4. This composite 
exhibited enhanced charge separation properties due to the formation of a dual type-II charge transfer mechanism. Tang et al. [78] 
employed an in-situ ion exchange method to simultaneously combine Ag3PO4 and AgI on g-C3N4. Through various charge 
separation-related experimental techniques, such as photoluminescence spectroscopy, transient photocurrent measurement, electro
chemical impedance spectroscopy, electron spin resonance measurement, and radical-related fluorescence spectroscopy, they 
demonstrated that the composite exhibits enhanced charge separation properties compared to the pristine material. This enhancement 
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is attributed to the photogenerated charge carriers transferring through a dual Z-scheme mechanism. In their study, Feng et al. [79] 
successfully synthesized a composite of CeCO3OH, CeO2 and g-C3N4 using a facile in-situ self-sacrificing hydrothermal method for 
photocatalytic nitrogen fixation. Through analyses including photocurrent spectroscopy, time-resolved fluorescence spectroscopy, and 
electron paramagnetic resonance measurement, they discovered that the prolonged lifetime of charge carriers can be attributed to the 
formation of a dual Z-scheme mechanism consisting of CeCO3OH/g-C3N4 and CeO2/g-C3N4 in the composite. 

Several related works about promoting charge separation property of g-C3N4 by the above-mentioned strategies have been sum
marized in Table 2. 

4. Conclusions and perspectives 

Over the past few years, g-C3N4 has received significant attention as a promising photocatalyst for its beneficial properties, such as 
non-metal component, low cost, earth abundant, and two-dimension structure. Nonetheless, the unsatisfactory charge separation 
property hinders its photocatalytic performance. This review systematically categorizes the methods aimed at enhancing the charge 
separation property of g-C3N4. These strategies can be categorized into two major directions: promoting the surface migration of 
charge carriers and prolonging the lifetime of surface charge carriers. Despite significant efforts, the application of g-C3N4-based 
photocatalytic materials in industrial settings is still a distant prospect. Hence, we propose several potential reference schemes aimed 
at enhancing charge separation to facilitate the further development of g-C3N4-based photocatalytic materials.  

(1) Indeed, achieving a high specific surface area is crucial for promoting charge separation in g-C3N4. The theoretical specific 
surface area of g-C3N4 can reach 2500 m2/g, while existing methods struggle to achieve such levels. Therefore, it is necessary to 
develop simple preparation strategies that enable the preparation of g-C3N4 with a very high specific surface area. Currently, g- 
C3N4 preparation is mainly based on the polymerization reaction of small precursor molecules, which is a bottom-up synthesis 
process that is difficult to control. However, recent works have shown that self-assembly of the precursor can improve the 
specific surface area by transforming the process into a top-down approach and effectively increased the surface area. 
Nevertheless, in this self-assembly process, there is an issue of imbalanced transformation from bulk to nanosheets, leading to 
the decomposition of some of the transformed g-C3N4 nanosheets. This limitation hinders the effective expansion of the specific 
surface area. To overcome this challenge, adjusting the size of the precursors could potentially help achieve a more balanced 
transformation process, facilitating the transition from blocks to nanosheets and solving this problem.  

(2) In the current complex construction strategies, the construction of a type II structure may result in the sacrifice of electron and 
hole energy, and electrons can still recombine with holes through the Z-type path. Additionally, in the Z-type structure, elec
trons tend to spontaneously transfer to the band position with lower energy. This means that the residual electrons on A in Fig. 9 
can easily transfer to the conduction band of B and subsequently recombine with holes, thereby affecting the effective pro
motion of charge separation. To conquer this challenge, it is significant to develop a more effective composite model to achieve 
effective spatial separation of photogenerated electrons and holes, such as accelerating charge transfer between composites 
through constructing electron bridges, constructing multiple heterojunctions, and surface engineering. 
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