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Abstract

Background: γ-Aminobutyric acid sub-type A receptors (GABAARs) are the most prominent inhibitory
neurotransmitter receptors in the CNS. They are a family of ligand-gated ion channel with significant physiological
and therapeutic implications.

Main body: GABAARs are heteropentamers formed from a selection of 19 subunits: six α (alpha1-6), three β (beta1-
3), three γ (gamma1-3), three ρ (rho1-3), and one each of the δ (delta), ε (epsilon), π (pi), and θ (theta) which result
in the production of a considerable number of receptor isoforms. Each isoform exhibits distinct pharmacological
and physiological properties. However, the majority of GABAARs are composed of two α subunits, two β subunits,
and one γ subunit arranged as γ2β2α1β2α1 counterclockwise around the center. The mature receptor has a central
chloride ion channel gated by GABA neurotransmitter and modulated by a variety of different drugs. Changes in
GABA synthesis or release may have a significant effect on normal brain function. Furthermore, The molecular
interactions and pharmacological effects caused by drugs are extremely complex. This is due to the structural
heterogeneity of the receptors, and the existence of multiple allosteric binding sites as well as a wide range of
ligands that can bind to them. Notably, dysfunction of the GABAergic system contributes to the development of
several diseases. Therefore, understanding the relationship between GABAA receptor deficits and CNS disorders thus
has a significant impact on the discovery of disease pathogenesis and drug development.

Conclusion: To date, few reviews have discussed GABAA receptors in detail. Accordingly, this review aims to
summarize the current understanding of the structural, physiological, and pharmacological properties of GABAARs,
as well as shedding light on the most common associated disorders.

Keywords: GABA, GABAAR, Benzodiazepine, Barbiturates, Allosteric modulation, Autism spectrum disorder,
Alzheimer’s disease, Epilepsy, Schizophrenia

Background
γ-Aminobutyric acid (GABA), the primary inhibitory
neurotransmitter in the central nervous system (CNS), is
a key coordinator of brain activity. GABA’s inhibitory ef-
fects are mediated by two types of receptors, GABAA

and GABAB receptors [1]. GABAergic neurotransmis-
sion is critical in neurodevelopmental disorders [2].
GABAAR is one of the most significant drug targets in

the treatment of neuropsychiatric disorders such as epi-
lepsy, insomnia, and anxiety, as well as in anesthesia in
surgical operations [3]. In addition, genetic studies have
documented the relationship between GABAAR subunit
genes and epilepsy [4], eating disorder [5], autism [6, 7],
and bipolar disorders [8]. GABAB receptors are members
of the C family of G protein-coupled receptors (GPCRs),
which are found in the nervous system and have been
linked to some neurological and psychiatric disorders
[9]. They are structurally and functionally distinct from
GABAA receptors and will not be covered in this article.
GABAC receptors are now considered to be part of
GABAA receptor isoforms that are entirely made up of
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rho (ρ) subunits [10]. In this review, we will try to pro-
vide a quick rundown of what we know about GABAA

receptors, including their structure, function, pharmacol-
ogy, and related disorders.

GABAARs structure and gene organization
GABAA receptors are ligand-gated chloride channels
that consist of pentameric combinations of different sub-
units. A total of 19 GABAA receptor subunit genes have
been identified in humans that code for six α (alpha1-6),
three β (beta1-3), three γ (gamma1-3), three ρ (rho1-3),
and one each of the δ (delta), ε (epsilon), π (pi), and θ
(theta) (Fig. 1A; Table 1) [11–13]. The diversity of
GABAA receptors is due to the alternative splicing of
several genes [14]. The GABAA receptor subunit genes
are mainly arranged into four clusters on the human ge-
nome’s chromosomes 4, 5, 15, and X. Four genes, α2,
α4, β1, and γ1 on chromosome 4; four genes α1, α6, β2,
and γ2 on chromosome 5; three genes, α5, β3, and γ3 on
chromosome 15; and three genes, α3, ϵ, and θ on

chromosome X (Table 1) [15]. The receptor composition
and arrangement influence its functional and pharmaco-
logical properties [16, 17].
Each subunit has been thoroughly investigated in

terms of amino acid sequence, level of expression, and
localization in brain tissues, but it is still unclear the
interaction between them to form many different iso-
forms [18]. This variety of isoforms may be present even
in a single cell [10]. However, it is widely assumed that
the main adult isoform is composed of α1, β2, and γ2
subunits which are arranged γ2β2α1β2α1 counterclock-
wise around a central pore as viewed from the cell exter-
ior (Fig. 1B) [19].
GABAAR subunits share a common structure (Fig.

1A). The mature subunit is composed of ∼450 amino
acid residues. It contains N-terminal, a large hydrophilic
extracellular domain (ECD), four hydrophobic trans-
membrane domains (TMD: TM1–TM4) where TM2 is
believed to form the pore of the chloride channel, and
intracellular domain (ICD) between TM3 and TM4

Fig. 1 Schematic representation of GABAA receptor structure. (A) GABAA receptors are heteropentamers that form a chloride-ion-permeable
channel. They are formed by 19 subunits: α1–6, β1–3, γ1–3, δ, ε, θ, π, and ρ1–3. The GABA binding sites are located at the junction of β+/α−,
whereas benzodiazepines (BZs) are located at α+/γ− interface. Anesthetics are located at different sites where barbiturates bind to α+/β−, and
γ+/β− interfaces while etomidate binds to β+/α− interface. The binding site of the neurosteroids is located at α subunit as well as the β+/α−
interface. (B) The most popular GABAAR isoform is composed of α1, β2, and γ2 subunits arranged γ2β2α1β2α1 counterclockwise around the
central pore. (C) The mature subunit contains a large hydrophilic extracellular N-terminal, four hydrophobic transmembrane domains (TMD: TM1–
TM4), and a small extracellular C terminus. TM1 and TM2 are connected by a short intracellular loop while a short extracellular loop connects TM2
and TM3. Besides, TM3 and TM4 are connected by a lengthy intracellular loop that can be phosphorylated
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which is the site of protein interactions and post-
translational modifications that modulate receptor activ-
ity (Fig. 1C) [20, 21]. The neurotransmitter GABA, as
well as psychotropic drugs such as benzodiazepines
(BZDs), bind to the N-terminal at binding sites α-β and
α-γ interfaces, respectively. Neurosteroids and anes-
thetics like barbiturates, on the other hand, are found
within the TMD of α and β subunits (Fig. 1A) [22–25].

GABAARs distribution
In the CNS, some GABAAR subunits possess broad ex-
pression while other subunits exhibit restricted expres-
sion. For example, the α6 subunit is expressed only in
the cerebellum while the ρ subunit is expressed mainly,
but not exclusively, in the retina [26]. GABAA receptors
localized to postsynaptic sites in the brain are mainly
composed of the α1–3, β1–3, and γ2 where GABA
neurotransmitter can bind with and open chloride chan-
nels, thus increasing the anion conductance for a short
period (milliseconds), leading to hyperpolarization of a
depolarized membrane. This type of GABA inhibition
has been termed phasic inhibition. On the other hand,
GABAA receptors composed of the α4–6, β2/3 and δ
subunits can localize to extrasynaptic sites where the
low GABA concentration can open these receptors for a
longer period which is called tonic inhibition [27]. The
most popular isoforms of extrasynaptic GABAARs medi-
ating tonic inhibition are α4βδ receptors in the

forebrain, α6βδ receptors in the cerebellum and α1βδ re-
ceptors in the hippocampus [28]. It has been found that
α2, α3, and β3 subunit-containing receptors are ~100
times more concentrated at synapses than in the extrasy-
naptic membrane [29]. Not all γ2-containing receptors
are concentrated postsynaptic for example, α5βγ2 recep-
tors are found at extrasynaptic sites involved in tonic in-
hibition [28]. Apart from phasic and tonic inhibition, the
γ2 subunit is essential for postsynaptic clustering of
GABAA receptors [30] and the γ3 subunit substitutes γ2
to contribute to the development of the postnatal brain
[31]. On the other hand, outside the CNS, GABAA re-
ceptors have been found in different types of immune
cells [32, 33], liver cells [34], pancreatic islet β-cells [35],
and airway smooth muscle [36]. Despite these observa-
tions, the laws that regulate GABAARs assembly, as well
as the exact process by which GABAAR isoforms are dis-
tributed, remain unknown.

GABA neurotransmission
In 1950, Eugene Roberts and Sam Frankel discovered
the major inhibitory neurotransmitter in the CNS of
mammals, GABA [37]. Glucose is the main precursor
for GABA synthesis, even though other amino acids and
pyruvate act as precursors. The GABA shunt is a closed-
loop system that produces and conserves GABA (Fig. 2).
In GABA shunt, the first step is transamination of α-
ketoglutarate produced from the metabolism of glucose

Table 1 GABAA receptor subunits

Receptor subunit Gene Chromosome Location Reference

GABA-A alpha 1 (α1) GABRA1 5 5q34 Gene ID: 2554

GABA-A alpha 2 (α2) GABRA2 4 4p12 Gene ID: 2555

GABA-A alpha 3 (α3) GABRA3 X Xq28 Gene ID: 2556

GABA-A alpha 4 (α4) GABRA4 4 4p12 Gene ID: 2557

GABA-A alpha 5 (α5) GABRA5 15 15q12 Gene ID: 2558

GABA-A alpha 6 (α6) GABRA6 5 5q34 Gene ID: 2559

GABA-A beta 1 (β1) GABRB1 4 4p12 Gene ID: 2560

GABA-A beta 2 (β2) GABRB2 5 5q34 Gene ID: 2561

GABA-A beta 3 (β3) GABRB3 15 15q12 Gene ID: 2562

GABA-A gamma 1 (γ1) GABRG1 4 4p12 Gene ID: 2565

GABA-A gamma 2 (γ2) GABRG2 5 5q34 Gene ID: 2566

GABA-A gamma 3 (γ3) GABRG3 15 15q12 Gene ID: 2567

GABA-A delta (δ) GABRD 1 1p36.33 Gene ID: 2563

GABA-A epsilon (ε) GABRE X Xq28 Gene ID: 2564

GABA-A pi (π) GABRP 5 5q35.1 Gene ID: 2568

GABA-A theta (θ) GABRQ X Xq28 Gene ID: 55879

GABA-A rho 1 (ρ1) GABRR1 6 6q15 Gene ID: 2569

GABA-A rho 2 (ρ2) GABRR2 6 6q15 Gene ID: 2570

GABA-A rho 3 (ρ3) GABRR3 3 3q11.2 Gene ID: 200959

Data are compiled from NCBI-Gene
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in the Krebs cycle, by GABA-α ketoglutarate transamin-
ase (GABA-T) to produce l-glutamic acid. Glutamic acid
is decarboxylated to GABA by glutamic acid decarboxyl-
ase (GAD). GAD is an enzyme that uses vitamin B6
(pyridoxine) as a cofactor and is only expressed in cells
that use GABA as a neurotransmitter. GABA-T metabo-
lizes GABA to succinic semialdehyde. This transamin-
ation happens when α-ketoglutarate is present, it accepts
the amino group extracted from GABA, and reforms
glutamic acid. Succinic semialdehyde dehydrogenase
(SSADH) oxidizes succinic semialdehyde to succinate. It
can enter the Krebs cycle, thereby completing the loop
[38]. A vesicular transporter helps to package newly syn-
thesized GABA into synaptic vesicles. SNARE complexes
help dock the vesicles into the plasma membrane of the
cell [39]. Presynaptic neuron depolarisation releases
GABA to the synaptic cleft and diffuses toward postsyn-
aptic receptors. It can bind to post-synaptic GABA re-
ceptors (GABAA and GABAB), which modulate ion
channels, hyperpolarize the cell, and prevent action po-
tential transmission. Regardless of binding to GABAA or
GABAB receptors, GABA serves as an inhibitor. In the
case of GABAA ionotropic receptor, the presence of
GABA increases chloride ion conductance into the cell.
Consequently, the increased chloride ion influx results
in membrane hyperpolarization, and neuronal excitabil-
ity is reduced [40]. GABA can then be passed into three
pathways. The first one is that GABA can be degraded
extracellularly by GABA-T into succinate semialdehyde
which then enters the citric acid cycle. The second is
that the GABA can be reuptaken to nerve terminals for
utilization again. The third one is that the GABA can be

reuptaken to the glial cell where it undergoes metabol-
ism to succinic semialdehyde by GABA-T or it becomes
glutamine which is transported to neurones, where it is
converted to glutamate by glutaminase and re-enters
GABA shunt. In glia, GABA cannot be synthesized again
from glutamate due to the absence of GAD [41, 42].

The physiological role of GABA and GABAA

receptors
Certainly, GABA/GABAARs signaling is the most
prominent inhibitory pathway in the CNS. As we dis-
cussed before, there are two forms of GABA inhib-
ition: phasic and tonic inhibition. The transient
stimulation of GABAA receptors by GABA reduces
postsynaptic neuron excitability, resulting in phasic
inhibition [43, 44]. Tonic inhibition, on the other
hand, is thought to be a continuous mechanism of in-
hibition that regulates excitation through long-term
hyperpolarization [45]. Tonic inhibition plays an im-
portant role in synaptic plasticity, neurogenesis [46,
47] as well as cognitive functions [48, 49]. Any dis-
turbance in phasic or tonic inhibition is associated
with many neurological and psychiatric diseases.
Thus, modulating these signals has become the basis
of drug therapy as well as anesthesia [50–55].
Furthermore, the GABAA receptor plays a pivotal role

in neuronal cell proliferation and fate determination. A
pioneering study showed that depolarizing GABA ac-
tions leads to a decrease in both DNA synthesis and the
number of bromodeoxyuridine (BrdU)-labeled cells at
the subventricular zone (SVZ) that mean GABA can
affect the proliferation of progenitor cells in rat

Fig. 2 Schematic illustration of GABA shunt. Transamination of α-ketoglutarate by GABA-α ketoglutarate transaminase (GABA-T) to produce
glutamate which is decarboxylated to GABA by glutamic acid decarboxylase (GAD). GABA-T metabolizes GABA to succinic semialdehyde which is
oxidized to succinate by succinic semialdehyde dehydrogenase (SSADH). Then, succinate can enter the Krebs cycle and complete the loop
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embryonic neocortex [56]. Furthermore, GABA or mus-
cimol, a GABAA receptor agonist, also triggers mem-
brane depolarization and induces proliferation of
postnatal cerebellar granule progenitor cells in the devel-
oping rat cerebellum [57]. In the adult hippocampus, the
neuronal progenitor cells at the subgranular zone (SGZ)
show tonic GABAergic conductance. Impairment of this
conductivity, as well as the increase in newly generated
cells labeled by BrdU, was induced by genetic deletion of
GABAARs containing α4, but not δ subunits [47, 58, 59].
In the postnatal subventricular zone (SVZ), GABA limits
the proliferation of glial fibrillary acidic protein (GFAP)-
expressing progenitors thought to be stem cells (also
called Type 1 cells) [60]. Also, a recent study suggested
that GABAA receptor contributes to determining the cell
fate of neural stem cells [61]. These results indicate that
adult neurogenesis may be influenced by multiple func-
tions of GABAA receptors as well as ambient GABA re-
leased in an autocrine/paracrine manner [62, 63].
Of note, GABAA receptors have additional physio-

logical functions in tissues and organs outside the ner-
vous system [64]. Such as in the pancreatic islet, β-cells
synthesize huge amounts of GABA [35]. Via GABAA re-
ceptors, GABA suppresses glucagon secreted by α-cells
[65], and increases insulin secreted by β-cells [66]. In
addition, GABA stimulates β-cells proliferation and
growth [66, 67]. Therefore, targeting GABA/GABAA sig-
naling is likely to be a part of diabetes treatment [68].

Molecular pharmacology of GABAA receptors
Apart from GABA, a variety of ligands have been discov-
ered that bind to various locations on the GABAAR and
regulate it. Binding sites are located at particular recep-
tor subtypes, and these subtypes determine the recep-
tors’ distinct pharmacological fingerprints [69]. The
GABA-binding site, also known as the active site or
orthosteric site, is where orthosteric agonists and antag-
onists bind. Orthosteric agonists, such as GABA, gabox-
adol, isoguvacine, muscimol, and progabide [70–72],
activate the receptor, resulting in increased Cl− conduct-
ance. By contrast, orthosteric antagonists, such as bicu-
culline and gabazine [73], compete with GABA for
binding, inhibiting its effect and lowering Cl− conduct-
ance. Allosteric modulators, on the other hand, bind
elsewhere on the receptor and exert their effect by caus-
ing conformational changes in the receptor either posi-
tively (PAM) such as barbiturates, benzodiazepines, z-
drugs (nonbenzodiazepines) alcohol (ethanol), etomi-
date, glutethimide, anesthetics, and certain neuroster-
oids, or negatively (NAM) such as pregnenolone sulfate
and zinc [54, 74, 75]. Non-competitive chloride channel
blockers (ex., picrotoxin) are ligands that bind to or near
the central pore of the GABAAR and block Cl− conduct-
ance [76]. Moreover, silent allosteric modulators (SAM)

are a class of GABAAR modulators that can compete
with a PAM or a NAM for the occupation of the binding
site such as flumazenil [75, 77]. The characteristics of li-
gands that contribute to receptor activation are usually
used as anxiolytic, anticonvulsant, sedative, and muscle
relaxant drugs. On the other side, ligands that inhibit re-
ceptor function usually have opposite pharmacological
effects such as convulsion and anxiogenesis [78, 79].
Interestingly, some subtypes of NAM (ex., α5IA) are be-
ing studied for their nootropic properties as well as po-
tential therapies for GABAergic medication adverse
effects [80].

GABA and GABA analogs
Cys-loop receptors typically have their neurotransmitter
binding site at the extracellular interface between two
neighboring subunits. The binding site’s principal face
(+) is made up of three loops (A, B, and C), whereas the
complementary face (−) comprises three β-strands and
one loop (D, E, F, or G) [81, 82]. In GABAARs, αβγ sub-
type (2α:2β:1γ) has two GABA binding sites at the β +/α
− interfaces (Fig. 1A). When GABA occupies just one
site, the channel opens; however, when both sites are oc-
cupied, the chances of channel opening rise dramatically
[83]. Besides, chemicals with similar structures to GABA
can attach to GABA binding sites and give different ef-
fects such as muscimol (agonist), gaboxadol (partial
agonist), and bicuculline (competitive antagonist) [82].
Actually, it is still a mystery how amino acid residues

interact with GABA. However, in a previous study based
on αβγ subtype, GABA formed hydrogen bonds with
α1T129 and β2T202, salt bridges with α1R66 and
β2E155, and cation–pi interaction with β2Y205 [84]. On
the other hand, β +/α− interface has aromatic residues
formed by βY97, βY157, βF200, βY205, and αF64 which
are conserved at the β +/β −, β +/γ −, and β +/δ − inter-
faces. Furthermore, the GABA-binding subunit residues
R131, T129, and L127 are maintained at the equivalent
places in the β, γ, and δ subunits [81, 84, 85]. Future
studies will examine whether GABA and other structur-
ally similar chemicals are attracted to these non-
canonical sites, as well as how these sites may influence
receptor activation.

Benzodiazepines
Benzodiazepines (BZDs) are commonly used in different
treatments related to anxiety, sleep disorders, seizure
disorders, muscle spasms, and some forms of depression
[86]. BZD allosterically modulate GABAAR and give its
therapeutic effect through binding to the α+/γ − inter-
face (Fig. 1A) and increasing Cl− conductance [24, 87].
Interestingly, amino acids involved in the binding sites
of BZDs are homologous to that of the GABA binding
site at the β +/α − interface [88]. Besides, mutations that
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converted histidine to arginine (α1H101R, α2H101R,
α3H126R, and α5H105R) at the β2γ2 subtype of
GABAARs eliminated diazepam activity, while reverse
mutations (from R to H) elicited the diazepam response
[89]. BZD-sensitive GABAARs subtypes are formed of
two α subunits with two β subunits and a γ subunit (Fig.
1A) [90]. Likewise, GABAAR containing α4, α6, and γ2
subunits, potently bind many BZD ligands [91, 92]. But
subtypes containing δ are relative with low abundance,
and the subunits replacing γ and δ, such as ε, are even
rarer [93]. Of note, the GABAAR subtypes containing δ
subunits are located extrasynapically inducing tonic in-
hibitory currents in major cell populations including
cerebellar and hippocampal granule cells [43, 93]. It was
thought that these subtypes are not capable to bind any
BZD ligands, lacking the high-affinity α+/γ− (site 1), but
later it was found to bind some BZD ligands with lower
affinity at distinct other sites on the GABAAR [54].
Benzodiazepines as zolpidem (an imidazopyridine) and

other clinically used hypnotics like zaleplon (a pyrazolo-
pyrimidine) and zopiclone (a cyclopyrrolone), as well as
quinolones, triazolopyridazines, and beta-carbolines
show a higher affinity for α1-containing receptors than
for α2- or α3-containing subtypes, while they do not
affect α5-containing GABAARs [93, 94]. Also, imidazo-
benzodiazepine oxazole derivatives have shown some
α2/α3 selectivity [95]. Pyrazoloquinolinones, which are
examples for BZD site-active PAM in γ–containing sub-
types, demonstrate a wide range of effects as well as se-
lectivity for α and β subunits [54]. Also, BZD-site
ligands have more or less efficacy than traditional BZD
agonists on the traditional BZD-sensitive subtypes, and
unexpected efficacy on the diazepam-insensitive sub-
types like GABAAR containing α4 or α6, or α and β
without γ [96, 97].
Alpha5IA is selective inverse agonists that bind to the

BZD site at the α5 subtype that is highly expressed in
the CA1 region of the hippocampus. It has been sug-
gested to improve cognitive functions [98]. Such α5 in-
verse agonists also reduce side effects of BZDs, general
anesthetics [99], and alcohol [100]. They may be useful
for treating Down syndrome, autism spectrum disorder,
schizophrenia, and affective disorders [101].

Anesthetics
GABAARs are remarkable targets of variable volatile anes-
thetics, intravenous anesthetics, etomidate, and propofol,
as well as steroid anesthetics, barbiturates, and ethanol
[102]. Anesthetic binding sites on the GABAAR can be
identified using site-directed mutagenesis [103],
substituted cysteine modification protection (SCAMP)
[104], or photo-affinity labeling [102, 105]. At higher con-
centrations, some anesthetics, especially the intravenous
anesthetics, etomidate, propofol, and barbiturates, could

directly activate GABAARs in the absence of GABA. Such
direct activation distinguished them as GABA-mimetic
from benzodiazepines which lack this property. Studies
that were based on site-directed mutagenesis produced
several residues of interest, particularly in the trans-
membrane regions of the α and β subunits, for both vola-
tile and intravenous anesthetics [106].
Of note, methionine residues, especially αM236 and

βM286 located in the M1 and M3 domains respectively,
have been shown to be significant determinants of eto-
midate binding and function in experiments that used
mutagenesis and photoreactive etomidate analogs. Based
on crystal structures of GABAARs, αM236 and βM286
are expected to be found at the β +/α − interfaces in the
TMD, below the GABA binding sites (Fig. 1A). Also,
αT237 (M1), αI239 (M1), αL232 (M1), βV290 (M3), and
βF289 (M3) are among the additional residues linked to
etomidate binding and function [107, 108]. Besides, in
α1β3γ2 GABAARs, other anesthetic binding sites includ-
ing α +/β − and γ +/β – interfaces (Fig. 1A) have been
identified using photoreactive analogs of barbiturate
where αA291 (M3), αY294 (M3), βM227 (M1), and
γS301 (M3) were among the binding residues [82, 109].
Moreover, in the TMD of β3 homomeric GABAARs at β
+/β – interface, photoreactive propofol can bind to β (+)
M286, β (+) F289, and β (–) M227 residues inducing
functional activity of the receptor [110–112].
It has been found that β2 and β3 subunits were signifi-

cant for modulation of GABAAR by i.v. anesthetics. In
addition, transgenic mice that were generated through
β2 (N265S) and β3 (N265M) mutations in the GABAAR
became insensitive to the actions of propofol and etomi-
date [113, 114]. The affinity and efficacy of barbiturate
depend on the composition of the subunit, but the α
subunit seems to be more important than β [115]. Re-
cently, it has been suggested that the binding of barbit-
urate, etomidate, and propofol is predominantly at the
αβ+/α−γ interface as well as the α+/β− or α+/γ− TMD
interfaces in α1β2γ2 [69, 116]. Other photo-affinity la-
beling depending studies suggested that binding sites for
barbiturates and etomidate at α4β3δ GABAAR subtypes
at the β+/α–, and β+/β– TMD interfaces, respectively,
were not suitable for binding of delta selective com-
pound 2 (DS2) or alphaxalone [117].

Neurosteroid
Endogenous steroids exhibit GABAAR-mediated neuroac-
tive effects including anesthesia, anticonvulsant, analgesia,
and sedation. The most common examples are allopreg-
nanolone and its synthetic analogs [118]. Although the
exact position of the neurosteroid binding sites has yet to
be determined, many residues in the TMDs have been
shown to impact neurosteroid activity, such as αS240
(M1), αQ241 (M1), αN407 (M4), αY410 (M4), αT236
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(M1), and βY284 (M3) [119–121]. The modulatory
and activation sites are located at the TMDs of α
subunit and β +/α – interfaces respectively (Fig. 1A)
[82, 122].

Flavonoids
Flavonoids are present in most plants and a few micro-
organisms. They have been discovered as modulators of
the BZD-site of GABAARs, but the variability of com-
pounds within this group participated in showing their
potential action at more than one additional binding site
on GABAARs. Flavonoids can act as either negative,
positive, or neutralizing on GABAARs or directly as allo-
steric agonists [123]. Flavonoids share the elementary
structure of a phenylbenzopyran, most commonly of a
flavan (2-phenylchromane). Subgroups contain isofla-
vones, flavonoles, flavones, flavanonole, flavanones, and
flavanoles. Among these groups, isoflavones and flavones
particularly have been found to interact with the binding
site of BZD [124]. Structure-activity experiments have il-
lustrated that flavones have higher potency on BZD radi-
oligand binding than their flavanone or flavonol
counterparts. Besides, glycosylation had a negative influ-
ence on binding [125]. Flavonoids can also interact with
flumazenil-sensitive or -insensitive GABAARs [123].
Some of the flavonoids have shown subtype-selectivity
like flavan-3-ol ester Fa131 [126] or 6,2′- dihydroxyfla-
vone [127]. The flavone hispidulin showed potent activ-
ity in crossing the blood-brain barrier associated with
the α6β2γ2 subtype of GABAARs, which is used to re-
duce the susceptibility of seizures [128].

Cannabinoids
Cannabinoids are chemical substances present in the can-
nabis plant. The phytocannabinoid tetrahydrocannabinol
(THC) is the primary psychoactive compound in cannabis.
Besides, cannabidiol (CBD) is another significant compo-
nent of the plant [129]. It has been found that CBD has
sedative, anxiolytic, and anticonvulsant effects and has
been suggested for treating pediatric epilepsies such as
Dravet syndrome [130]. CBD, also, showed a low affinity
for the main cannabinoid receptor and exhibits an activity
profile similar to that of GABA PAMs inducing anxiolytic
and anticonvulsant effects [131].
Endocannabinoids, such as 2-Arachidonoylglycerol (2-

AG), 2-Arachidonyl glyceryl ether, N-Arachidonoyl
dopamine (NADA), Arachidonoylethanolamine (AEA),
and Lysophosphatidylinositol (LPI) [132], are substances
produced in the body activating cannabinoid receptors
(CB1, CB2) [133, 134]. Additionally, they have been
identified as positive modulators for GABAAR subtypes
[135]. Studies on recombinant receptors showed that 2-
AG increases GABAAR activity at low non-saturating
GABA concentrations while decreasing the activity at

high saturating GABA concentrations. Therefore, the
impact of endocannabinoids on GABAAR depends on
the regulation of GABA inhibition [136].

Picrotoxin
Picrotoxin is a plant-derived product, with a universal effi-
cacy as GABAAR’s chloride channel blocker. Picrotoxin is
found naturally in the Anamirta Cocculus plant, although it
can be synthesized chemically [137, 138]. It has been uti-
lized as a CNS stimulant, and antidote for poisoning by
CNS depressants and barbiturates [139]. However, due to
the toxicity of picrotoxin, it is currently used only in re-
search. Furthermore, numerous studies indicated that a
wide range of molecules from various chemical families had
an affinity for picrotoxin-binding sites such as t-butylbicy-
clophosphorothionate (TBPS), t-butylbicycloorthobenzoate
(TBOB), pentylenetetrazole, and some insecticides (ex.,
dieldrin and lindane) [140–142]. A study by Othman et al.
(2012) [143] found that low concentrations of GABA in-
crease picrotoxin and TBPS binding affinity to GABAAR
containing α1β2γ2, while application of GABA at high con-
centration reduces their binding affinity to the receptor re-
ducing channel blocking activity. This indicates that
picrotoxin and ligands of picrotoxin-binding sites are highly
dependent on the regulation of GABA inhibition.

Pharmacology of δ-containing GABAARs
The unique role of the δ subunit in extra-synaptic
GABAARs, a group of receptors responsible for tonic
GABAergic inhibition has generated immense therapeutic
and research interests. However, the complicated proper-
ties of the δ subunit assembly and the rarity of δ-selective
ligands are the main reasons hindering progress in
pharmacological studies of these receptors. Variable com-
pounds have been claimed to be selective for the δ
subunit. The hypnotic drug THIP (4,5,6,7-tetrahydroisox-
azolo[5,4-c]pyridin-3-ol) and gaboxadol are examples of
compounds that are known by their direct activation of
αβδ with higher efficacy and potency than αβγ but does
not discriminate between αβ and αβδ receptors [144, 145].
Similar to THIP, anesthetics, as well as neurosteroids, also
show more pronounced action at δ-containing GABAARs,
but their activity is independent of subunit composition,
these compounds are not considered to be δ-selective. In
contrast, 4-chloro- N-(2-thiophen-2-ylimidazo[1,2-a]
pyridin-3-yl) benzamide which was found to be a positive
modulator at α4/6βδ, has limited efficacy at αβγ and is in-
active at αβ GABAARs [146].

GABAA receptor dysfunction and neuro-
psychiatric disorders
Epilepsy
Epilepsy is a neurological disease characterized by fre-
quent and unexpected seizures caused by abnormal
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brain electricity, which results in loss of consciousness
and unusual behaviors [147]. Around 65 million people
are affected worldwide, of all ages and genders [148]. An
imbalance between excitation and inhibition induced by
impaired GABAergic signaling can trigger various forms
of epilepsy [149, 150]. Several studies have demonstrated
the importance of GABAA receptors as targets for anti-
epileptic drugs [45, 151, 152]. Mutations in GABAA re-
ceptor subunit genes have been linked to several types of
idiopathic epilepsy in which the pathophysiological con-
sequences of the mutations are impairments in the gat-
ing characteristics of the channel or receptor trafficking
[4]. The severity of the disorder appears to depend on
the type of mutation (nonsense, missense, or frameshift),
its location in the gene (promoter or protein-coding re-
gion), the affected region of the encoded protein (intra-/
extracellular or transmembrane) and the affected subunit
gene [4]. Some mutations in genes encoding the α1, α6,
β2, β3, γ2, or δ subunits of GABAARs have been de-
tected in both animal models of epilepsy and patients
with epilepsy [153, 154]. Likewise, Dravet syndrome, also
known as severe myoclonic epilepsy in infancy (SMEI),
is a form of epilepsy that affects children at the age of
approximately 1 year as a result of mutations in genes
encoding the α1, β1, β2, and γ2 subunits of GABAARs
[4, 155]. Of note, several GABAAR mutations associated
with epilepsy lead to abnormal trafficking of the recep-
tors and thus partially or completely impair their expres-
sion on the synaptic plasma membrane [155, 156].
Likewise, a study by Dejanovic et al. [157] discovered a
missense mutation in GPHN gene, the gene encoding
the gephyrin protein, in a patient with Dravet syndrome.
Gephyrin is the main protein that clusters and stabilizes
GABAARs at the inhibitory postsynaptic membranes of
the central nervous system [158]. Moreover, during the
epileptogenic period, expression of the gephyrin protein
decreases gradually in the neocortex before returning to
baseline during the chronic phase [159]. These findings
suggest that the downregulation of GABAAR subunits or
their interactors that play a functional role in receptor
activity, such as gephyrin, maybe the origin of the dis-
ease and thus could be used as drug targets.

Alzheimer’s disease
Alzheimer’s disease (AD) is one of the primary diseases
that cause neurodegeneration. Clinically, AD is marked
by significant cognitive deficits and regarded as the most
common cause of dementia. The aggregation of mis-
folded amyloid-beta (Aβ) protein, which forms amyloid
plaques in the gray matter of the brain, is the origin of
AD pathophysiology. Amyloid plaques, neuronal dys-
function, and tangles of neural fibers are major patho-
logical features of the disease [160, 161]. Several
experiments, in both AD patients and mice, have shown

that accumulation of misfolded Aβ interferes with
GABAergic interneuron activity, causing impaired syn-
aptic communication and loss of neural network activity,
which eventually leads to cognitive dysfunction [162–
165]. A recent study showed transcriptional downregula-
tion of α1, α2, α3, α5, β1, β2, β3, δ, γ2, γ3, and θ sub-
units of GABAA receptors, and GAD enzyme in the
middle temporal gyrus (MTG) of post-mortem brain
samples from AD patients. These alterations impair the
balance between excitatory and inhibitory pathways that
may lead to cognitive dysfunction in AD [166]. Likewise,
in biochemical studies, GABA neurotransmitter levels
were substantially lower in the CSF as well as the tem-
poral cortex of Alzheimer’s patients, implying impaired
synaptic activity and neuronal transmission [44, 167–
169]. Also, a study by Limon et al. [170] showed that
most aspects of the GABA system were impaired in the
brains of AD patients, such as GABAergic neural circuit,
GABA levels, and expression levels of GABAA receptors.
Furthermore, in AD mice, activating GABAA receptors
with baicalein (positive allosteric modulator of the
benzodiazepine site of the GABAAR) for 8 weeks signifi-
cantly reduced Aβ production, improved cognitive func-
tion, and decreased pathological features [171]. As a
result, GABAA receptors seem to be a potential thera-
peutic target in the treatment of AD.

Cervical dystonia
Cervical dystonia (CD) is the most frequent type of
adult-onset focal dystonia. It is a neurological disorder
marked by involuntary and prolonged muscle contrac-
tions that cause irregular postures and neck tremors
[172–174]. Studying the pathophysiology of isolated cer-
vical dystonia using different methods such as magnetic
resonance spectroscopy (MRS), positron emission tom-
ography (PET), and functional magnetic resonance im-
aging (f-MRI) demonstrated an alteration in the GABA-
mediated inhibitory signaling pathway in the cortical,
cerebellar, and basal ganglia regions of the brain [175].
Similarly, a significant number of functional defects have
been identified in the thalamus of patients with CD
[176], and blocking GABAA receptors in the thalamus
triggered CD-like symptoms in monkeys [177]. Accord-
ing to a recent study, GABA levels in the right thalamus
were decreased in a sample of adult-onset CD patients,
and the availability of GABAA receptors was negatively
correlated with disease duration and the severity of dys-
tonia [178].

Brain injury
Several studies investigated whether GABA signaling
pathways are involved in several forms of brain injuries
using different stroke mice models. As reported in earl-
ier studies, increasing GABA inhibition has shown a

Ghit et al. Journal of Genetic Engineering and Biotechnology          (2021) 19:123 Page 8 of 15



neuroprotective role at stroke onset. In contrast, in-
creased GABAergic tonic inhibition at extrasynaptic
GABAA receptors would adversely affect and exacer-
bate stroke pathology. Also, these findings were in
line with study results obtained from knockout mice
models lacking either α5-GABAA or δ-GABAA recep-
tors, which have revealed better recovery from stroke
than healthy mice models because of GABAergic sig-
naling remission [179, 180].

Autism spectrum disorder
Autism spectrum disorder (ASD) has three characteristic
behavioral features: impaired communication and social
deficits, and repetitive behaviors. Several studies con-
cluded an imbalance in the glutamatergic/GABAergic
signaling pathways and neuroinflammation process were
associated with ASD pathophysiology and were also de-
tected in several ASD mice models [181]. Earlier studies
reported the presence of molecular-level cortical abnor-
malities related to GABAergic signaling dysfunction in
the brains of ASD. The excitatory and inhibitory signal-
ing imbalance caused by variations in GABA levels rep-
resents one of the characteristic features behind
behavioral deficits in autism [182]. Mendez et al. [183]
conducted a PET imaging study using a radioactive lig-
and [11C]-Ro15–4513 VT for tracing levels of GABAA

receptor α5 subunits in ASD. The results showed a re-
duction in GABAA receptors in the brain’s two limbic
areas (amygdala and nucleus accumbens) of autism pa-
tients. Contrary to previous findings, a recent study
demonstrated that the impairment in the GABAergic
system in ASD mouse models and autistic patients was
not associated with alterations in GABA receptor num-
bers between healthy and ASD controls, as concluded by
an earlier study [184]. Also, a recent meta-analysis was
conducted to verify earlier findings supporting the asso-
ciation between different genetic variants of GABAA re-
ceptor subunits and the risk of developing autism in
children. In conclusion, the study showed no association
between GABA receptor subunits (β3, α5, and α3) and
child autism [185].

Schizophrenia
Schizophrenia is a multifactorial major psychiatric dis-
order whose etiology has been associated with hundreds
of protein-coding genes reported by different genome-
wide association studies. Changes in post-translational
modifications of various proteins including GABAA re-
ceptors and their contribution to schizophrenia patho-
physiology were reported [186]. A previous study
showed glycosylation changes in multiple protein recep-
tor subunits in the brains of schizophrenic patients, such
as AMPA and GABAA receptor subunits [187].

Specifically, several post-mortem brain studies con-
ducted using lectin affinity analysis and enzyme de-
glycosylation of GABAA receptors of superior tem-
poral gyrus of schizophrenic brains demonstrated a
decrease in high-mannose N-glycans residues of
GABA-associated proteins in individuals with schizo-
phrenia that were specific to different GABAA recep-
tor subunits on the ɑ1, ɑ4, β1, β2, and β3 subunits;
increased high- mannose N-glycans on β1 subunit;
decreased high-mannose N-glycans on ɑ1 subunit; al-
tered total N-glycans on β2 subunits. These N-
glycosylation alterations were further associated with
abnormal trafficking and localization of β1/ β2 sub-
units leading to an aberrant inhibitory signaling sys-
tem observed in schizophrenia [188, 189].
Furthermore, Marques and his co-workers [190] inves-

tigated the availability of α5-GABAA receptors in the
hippocampus using PET imaging for hippocampal re-
gions schizophrenic and healthy controls. The study re-
sults demonstrated a reduction of [11C]-Ro15–4513 VT
([11C]-Ro15–4513), which is a radioactive tracer used by
PET scans to assess the total volume of distribution for
α5-GABAA receptors in the hippocampus of untreated
schizophrenic patients versus healthy controls. In con-
trast, there were no differences between healthy control
and the second cohort of patients treated with antipsy-
chotics. These findings were also positively correlated
with scaling using PANSS (Positive and Negative Syn-
drome Scale) scores (i.e., is a medical scale system that
measures the severity of schizophrenic symptoms).

Depression
Major depression is one of the debilitating diseases that
leads to neurons’ anatomical and functional changes in
the brain’s prefrontal cortex and is induced by chronic
stress. Earlier studies had concluded that dysfunction in
monoaminergic signaling was the main contribution to
depression pathophysiology. Lately, accumulating evi-
dence has suggested the potential role of GABAergic sig-
naling dysfunction in predispositions of depression as it
has been reported that both depression and chronic
stress are associated with an imbalance in inhibition,
and excitation of neuronal signaling resulted from a defi-
ciency in neuronal transmission onto the brain’s pre-
frontal cortex (PFC). This imbalance resulted from the
deficient transmission of GABAergic inhibitory signals
onto the brain’s excitatory glutamate interneurons. In
this context, several studies were conducted to demon-
strate the correlation between GABAergic dysfunction
and depression. For instance, a study showed using mag-
netic resonance imaging established decreased GABA
and GAD67 levels and alterations in distinct types of
GABA receptor subunits in the brains of depressed pa-
tients and stressed mice models. Studies conducted on
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genetically modified depressed mice models lacking spe-
cific GABA receptors showed depressive mice behaviors
[191].
Data from magnetic resonance imaging MRI studies

reported a reduction in hippocampal volume of the
brain of depressed patients, which leads to alterations in
neural circuits of different areas of the brain related to
emotionality, such as amygdala and prefrontal cortex.
Interestingly, study results using depressed mice models
lacking GABAA receptors showed that any alterations in
the brain’s GABAergic system were presented by cogni-
tive, neuroanatomical, and behavioral deficits like signifi-
cant depression disorder symptoms presented by
depressed animal models. Accordingly, it is now pre-
sumed that the GABAergic system plays a vital role in
controlling neuronal transmission in neuronal matur-
ation in the hippocampus. Therefore, it is considered a
therapeutic target for potential antidepressant drugs [28,
192].

Attention and social behavior
Several studies have shown that inhibiting cortical
GABAA receptors causes impaired attention [16, 193–
197], social behavior [198], and decision-making [199].
Recently, it has been demonstrated that mice models
having impaired 5-alpha GABAA receptors were pre-
sented with behavioral deficits like symptoms associated
with attention and social disorders [194].

Conclusion
Deep insights into the different GABAA receptor iso-
forms’ composition, arrangement, subunit interactors,
and molecular pharmacology will give us a clear vision
to understand alterations that may lead to CNS disor-
ders. In our view, these discussions are of vital import-
ance in drug discovery and development in the future.
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