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Quantum Topological Atomic 
Properties of 44K molecules
Brandon Meza-González1, David I. Ramírez-Palma   2, Pablo Carpio-Martínez3, 
David Vázquez-Cuevas2, Karina Martínez-Mayorga2 & Fernando Cortés-Guzmán1 ✉

We present a data set of quantum topological properties of atoms of 44K randomly selected molecules 
from the GDB-9 data set. These atomic properties were obtained as defined by the quantum theory 
of atoms in molecules (QTAIM) within an atomic basin, a region of real space bounded by zero-flux 
surfaces in the electron density gradient vector field. The wave function files were generated through 
DFT static calculations (B3LYP/6-31G), and the atomic properties were calculated using QTAIM. The 
calculated atomic properties include the energy of the atomic basin, the electronic population, the 
magnitude of the total dipole moment, and the magnitude of the total quadrupole moment. The atomic 
properties allow one to understand the chemical structure, reactivity, and molecular recognition. They 
can be incorporated into force fields for molecular dynamics or for predicting reactive sites. We believe 
that this data set could facilitate new studies in chemical informatics, machine learning applied to 
chemistry, and computational molecular design.

Background & Summary
The current use of artificial intelligence (AI) results from the combined availability of databases, algorithms, 
and computing power. Interest has emerged from every corner of scientific research. However, knowing the 
strengths and limitations of the data and methods gives a proper perspective of what to expect. Molecular data-
bases have been constructed and utilized in Chemistry and Biology for several decades. Thousands of descrip-
tors can be automatically calculated with commercial and open-source software packages. Descriptors based on 
two-dimensional representations of the molecules are independent of geometry and conformation and are easy 
to calculate. In turn, descriptors obtained from the three-dimensional representations of the molecules are com-
monly obtained from energy-minimized structures using molecular mechanics (MM) or quantum mechanics 
(QM) methods. The descriptors obtained from the MM and QM methods have also been developed for dec-
ades1. The structures given from the QM calculations allow us to obtain the distribution of electrons within the 
molecules, which can be used to develop models to predict reactivity2. The description of molecules (and atoms) 
with quantum chemical topological properties allows for the analysis of the reactivity and spectral properties

The quantum theory of atoms in molecules (QTAIM)3, developed by Bader, defines an atom within a mole-
cule and allows one to calculate atomic properties based on the electron density topology. In QTAIM, an atom is 
defined as a region of real space bounded by zero-flux surfaces in the electron density gradient vector field called 
an atomic basin4. An atomic property P(Ω) of an atom, i.e., atomic property (AP), is defined as the expectation 
value of an effective single-particle density equation (1) in its atomic basin Ω. Two essential properties of the 
AP are additivity and transferability due to the recoverability of the functional group and the total molecular 
quantities. One important feature of the QTAIM partition is the recovery of the harpoon mechanism of electron 
transfer in forming molecules like LiF5.

∫ ρ τΩ =
Ω

Ω
�P P dr( ) ( ) (1)

 The partition of molecular properties into their atomic contributions helps us to understand the chemical struc-
ture, reactivity, and molecular recognition. Furthermore, physical and chemical molecular properties can be 
predicted using AP as descriptors. Several groups around the world have used molecular features and machine 
learning methods to predict AP, mostly atomic charges and moments, using QTAIM, Hirshfeld, or molecular 
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orbital partitions6–12. Hirshfeld and Molecular orbital partitioning schemes provide useful atomic information 
with moderate computational demands. As they are cheaper methods, they can be more easily used for faster 
data generation and ML processing. On the other hand, the QTAIM partitioning method represents the most 
detailed scheme. Detailed electron density and atomic interaction analysis offer meaningful information that 
can be used in more specific ML procedures, but at a higher computational cost. This makes it less feasible for 
very large datasets. It is for this reason that the AIMEl dataset represents a significant impact in ML model and 
force field generation processes. In this way, predicted AP can be included in the force fields used in molecu-
lar dynamics simulations13 or to predict reactive sites14. This is especially important since several studies on 
predicting chemical reactivity use machine learning tools. Examples include predicting physical properties by 
considering molecules as graphs in convolutional neural networks15,16, property prediction using deep neural 
networks6, as well as predicting the products of chemical reactions17. In these works, the representation of mole-
cules is derived from structural information: the chemical environment, atomic bonds in a molecule, and other 
physicochemical properties. Consequently, a database containing AP information based on electronic density 
is invaluable. Moreover, the understanding that these properties indicate an atom’s reactivity within a molecule 
further enriches the data for training cutting-edge machine learning algorithms. However, the training data sets 
associated with the earlier studies are not publicly available. Calculating public data sets of atomic properties is 
essential to train models using machine learning approaches. This paper presents a public data set of the quan-
tum topological properties of atoms within 44K molecules randomly selected from the GDB-9 data set18. The 
data set includes electrostatic atomic properties, such as atomic charge and moments, based on our working 
hypothesis that the reactivity of an atom depends on its electron population and the way it polarizes within the 
atomic basin, described by atomic electrostatic moments14. There are diverse datasets widely used in bench-
marking, molecular discovery, and reactivity studies. Table 1 shows some of these databases. Although some 
sets, such as PubChemQC19 and ANI-120, provide quantum chemical calculations for organic molecules, there 
is no public data set that contains data on atomic properties. On the other hand, data sets such as Pistachio21 
and ORD22 contain many reactions published in patent databases. Nevertheless, they do not present reactivity 
descriptors based on atomic properties. This highlights the relevance of AIMEl as a valuable data set for advanc-
ing the understanding of chemical reactivity.

Methods
Figure 1 illustrates the data acquisition process. We subtracted 44K molecules from the 134K molecules con-
tained in the GDB-9 data set, also called QM918, (https://springernature.figshare.com/collections/Quantum_
chemistry_structures_and_properties_of_134_kilo_molecules9789044), each molecule contains up to nine 
atoms (CONF) without considering hydrogen atoms. This subset of 44K molecules was randomly chosen, 
excluding those containing fluorine atoms. Furthermore, a scaffold analysis of the QM9 database was conducted 
to include at least one molecule from each Murcko scaffold23. This approach ensures that the AIMEl database 
encompasses the structural diversity of the QM9 set.

The Cartesian coordinates of the molecules were extracted as XYZ files. Single-point energy calculations were 
performed at the theoretical level of B3LYP / 6-31G (2df, p) to obtain molecular orbitals using Gaussian 1624. 
The base set and the functional combination are the same as those used to build the GDB-9 database. The atomic 
properties were then integrated using the AIMAll package25. Molecules that presented spurious non-nuclear 
attractors were discarded. Outliers were removed on the basis of four atomic properties (See Table 2). The atomic 
properties were extracted from the AIMAll output files and collected in CSV files. The characterization of the 
database was performed using in-house-written Python scripts.

Fig. 1  Overview of the data generation process. We carefully selected 44K molecules from the GDB-9 (QM9) 
dataset. These chosen molecules were randomly extracted, and we purposely excluded any containing fluorine, 
and included all QM9 scaffolds. We then put these molecules through a thorough process that involved 
Cartesian coordinate extraction, single–point calculations, and meticulous refinement. This included the 
integration of atomic properties using the AIMALL package and utilizing Python scripts to organize them into 
CSV files to create the AIMEl database.
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Atomic Properties.  We focussed on four APs, notably the energy E(Ω), population (N(Ω)), dipole moment 
(μ(Ω)) and quadrupole moment (Q(Ω)). E(Ω) is obtained within the virial approach as a scaled atomic kinetic 
energy, E(Ω) = (1 − γ)T(Ω), where γ is the virial ratio between the molecular potential energy (V) and the kinetic 
energy (T), that is, γ = V/T26. The atomic population is simply the average number of electrons obtained by 
integration of ρ(r)dτ into the atomic basin Ω (see Equation (2)). The atomic dipole moment μ(Ω) measures the 
extent and direction of displacement between the centroid of the negative charge and the position of the nucleus. 
Its components along the coordinates x, y, and z are represented as μα(Ω) with directions α = x/y/z (see Equation 
(3)) while the corresponding magnitude is denoted as ∣μ(Ω)∣ (see Equation (4)). In turn, the quadrupole moment 
tensor comprises the matrix elements Qαβ(Ω) (see equation (5)) with directions α = x/y/z and β = x/y/z. Its sub-
sequent diagonalization leads to quadrupole moments along a specific direction, i.e., Qxx(Ω), Qyy(Ω), and Qzz(Ω), 
which measure the increase or decrease of the electronic density along a specific axis. Thus, if any of the diagonal 
elements of the quadrupole moment tensor is lower than zero, it implies a concentration of the electronic density 
on that axis. Equation (6) shows the magnitude of the quadrupole moment. Both quantities, |μα(Ω)| and |Qαβ(Ω)|, 
describe the deviation of the electron density relative to a spherically symmetric electron distribution.

N dr( ) ( ) (2)∫ τρΩ =
Ω

∫ τμ ρΩ = −α
α

Ω
Ω dr r( ) ( ) (3)
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Data Records
The entire AIMEl database, including atomic coordinates and properties of each molecule, is publicly accessible in 
a Zenodo repository27. Input and output files for Gaussian 16 as well as output files from AIMAll software are pro-
vided. Data set aimel_merged_44k.csv comprises 802,870 rows representing individual atoms, collectively 
forming 44,470 molecules. Each row is identified by the file column, which matches the index in the GDB-9 data-
set18. Additionally, the database provides Cartesian coordinates for all atoms within each molecule, along with their 
respective atomic properties. The median number of atoms for each molecule in the database is 18, while the medi-
ans for the other atoms are H = 9, C = 7, N = 1, and O = 1. In particular, the predominant atomic composition in 
most molecules includes one nitrogen atom and one oxygen atom. The general distribution is visualized in Fig. 2.

File format.  The aimel_merged_44k.csv file contains column names as headers. The columns included 
in this file are presented in Table 2. The subsequent rows following the header contain the properties of the atoms 
within the molecule. The first column is reserved for the molecule index, aligned with the GDB-9 data set. The 

Fig. 2  Distribution of the chemical elements constituting the database. The bins have been adjusted to ensure 
that the total sum of bar heights equals 1.
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second column denotes the name of each atom in the format “Xn,” where X represents the element name and n 
represents the sequential index of the atom within the molecule. Following these columns, three columns present 
Cartesian coordinates for each atom. Subsequently, four columns encompass electronic properties, including 
population (N(Ω)), dipole moment magnitude (∣μ(Ω)∣), quadrupole moment magnitude (∣Q(Ω)∣), and atomic 
energy (E(Ω)). (See Table 2 for more details). Furthermore, for each of the 44,470 molecules, four types of files 
are provided: G16 input .com, output .log, and wave function .wfx files; and AIMAll output .sumviz files. 
These files were no longer processed.

Technical Validation
Comparison to QM9 database.  Since the AIMEl database described here is a subset of the QM9 database, 
validation is carried out by comparing typical molecular properties: total mole weight, count of H acceptors, H 
donors, electronegative atoms, rotatable bonds and small rings, partition coefficient between n-octanol and water 
cLogP, and total surface area. The analysis is presented in Fig. 3. The median and mean values are represented in 
red lines and white triangles. Since the AIMEl subset was randomly selected, substantial overlap was expected 
compared to the QM9 property set. Interestingly, the data sets present nearly identical median and mean values 

Fig. 3  Comparison of molecular properties between QM9 and AIMEl databases.

Database Number of molecules Molecules type Method Annotations Goal

QM932 134 K Diverse B3LYP/6-31G(2df,p) Includes 15 physical chemistry properties Benchmarking

ANI-120 20M Diverse ωB97X/6-31G(d) Off-equilibrum conformations for organic 
molecules Fitting ML potentials

PubChemQC19 86M Diverse PM6//B3LYP/6-31G* Includes electronic structure outputs Molecular discovery

QMugs33 665K Druglike ωB97X-D/def2-SVP Includes electronic structure and 
spectroscopical data Bioactivity

Pistachio21 13.3M Diverse Experimental Focused on reactions extracted from USPTO, 
EPO and WIPO patents. Reactivity

ORD22 2M Diverse Experimental Open-acces project, focused on reactions from 
USPTO and contributions from users Reactivity

USPTO-50K34 50K Diverse Experimental 50K randomly selected reactions from USPTO, 
classified into 10 reaction classes Reactivity

AIMEl-DB27 40K Diverse B3LYP/6-31G(2df,p)//QTAIM Includes atomic properties using QTAIM 
theory Reactivity

Table 1.  Comparison of some popular databases.

https://doi.org/10.1038/s41597-024-03723-0
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for most properties. In turn, the number of rotatable bonds is the most notable discrepancy. Although the mean 
values are very close, the median in AIMEl is zero, while a value of one is presented in QM9. However, the 
AIMEl data set shows diverse structures that feature molecules with two or more rotatable bonds. The original 
QM9 database included unstable structures. As a first filter, only chemically sound molecules were maintained. 
For instance, non-bonded atoms and overly strained ring structures were eliminated. This refinement led to the 
elimination of 13, 402 molecules, leaving a total of 45, 900. However, after eliminating the molecules that included 
NNA, the data set comprises 44,470 molecules.

Column name Units Content

file — Molecule index sourced from the GDB-9 dataset

a_name — Atom name in Xn format

position_x Å Cartesian x coordinate

position_y Å Cartesian y coordinate

position_z Å Cartesian z coordinate

N e Atomic Population

∣mu∣ ea0 Magnitude of the total dipole moment

∣Q∣ ea0
2 Magnitude of the total quadrupole moment

E Eh Atomic Energy

Table 2.  Atomic parameters and properties in the aimel_merged_44k.csv file.

Fig. 4  Error distributions for the molecules in the AIMEl dataset. The absolute error is presented in (A). 
Here, molecules with larger energy differences appear, ranging from −3000.0 to −2000.0 kcal/mol. In (B), the 
distribution shows that the highest number of occurrences oscillates around 0.00 kcal/mol.

Fig. 5  Correlation matrix between atomic properties presented in the database.
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Validation of QTAIM calculations.  To check the integrity of the data generated using AIMAll, we per-
formed an error analysis for the energy of the system. We compare the total molecular energy E(mol) obtained 
from the calculation of the electronic molecular structure with the sum of the atomic energies for each molecule, 

E( )N∑ ΩΩ
Ω . NΩ represents the total number of atoms. The difference between E(mol) and E( )N∑ ΩΩ

Ω  shows the quality 
of the atomic integration process. For this reason, the error (E(mol) − E( )N∑ ΩΩ

Ω ) is a useful quantity to validate the 

Property MAE RMSE

N(Ω) 0.011 0.029

∣μ(Ω)∣ 0.076 0.215

∣Q(Ω)∣ 0.014 0.319

E(Ω) 0.007 0.033

Table 3.  Comparison of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) of QTAIM properties 
between the wB97XD/6–31G(2df, p) and B3LYP/6–31G(2df, p) levels of theory for a subset of 4,397 molecules.

Fig. 6  Histograms of properties. Atomic population, N(Ω); Magnitude of the total dipole moment, ∣μ(Ω)∣; 
Magnitude of the total quadrupole moment, ∣Q(Ω)∣; d) Atomic Energy, E(Ω) The bins have been adjusted to 
ensure that the total sum of bar heights equals 1.
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calculated atomic properties. In Fig. 4 the error distributions are presented. Figure 4A shows a direct comparison 
between E(mol) and E( )N∑ ΩΩ

Ω . The results reveal that molecules with larger errors (>∣0.80∣ kcal/mol) are observed 
within the range of −3000.0 to −2000.0 kcal/mol. The complete collection of molecules contained in the AIMEl 
data set presents error values below 1.0 kcal/mol. These errors follow a normal distribution, as shown in Fig. 4B.

S. Senthil et al.28 have studied the lack of chemical sense in molecules within the QM9 dataset. They found 
that the use of ωB97XD/6-31G(2df, p) leads to geometrically stable structures. In this work, we have found that 
using a σ±x 4  approximation refines the chemical structures, filtering out molecules with geometric instabili-
ties. Besides, to compare our results with this level of theory, we carried out single-point calculations on a vali-
dation subset of 4,397 molecules and obtained their QTAIM descriptors. The results are shown in Table 3. There 
are no meaningful discrepancies in this comparison. Although more significant differences are observed in the 
magnitude of the dipole and quadrupole moments, the metrics for atomic population and energy are close. The 
higher differences in the dipole and quadrupole magnitudes can be attributed to the nature of these properties, 
as a small perturbation in electronic density can lead to a significant change in those properties.

Database characterization.  Figure 5 presents the correlation matrix between the atomic properties. This 
matrix shows a strong correlation between atomic energy E(Ω) and the atomic population N(Ω). This relationship 
is interesting because we can obtain the energy of an atomic basin considering only its atomic population; that is, 
the stabilization of the atom correlates directly with its electronic population. The weakest correlations occur with 
the quadrupole moment, ∣Q(Ω)∣ followed by ∣μ(Ω)∣, which implies that these properties can be used to character-
ize the distribution of the data set.

We present the normalized histograms of the properties studied for atoms H, C, O, and N in Fig. 6. The values 
are presented by filtering the entire database, where each property of each atom is selected using a σ±x 4  
approximation. x  and σ represent the mean and standard deviation of the sample. In the case of the atomic pop-
ulation, H and C present many instances centered around 1 and 6 a.u. corresponding to their respective atomic 
numbers. In contrast, for O and N, the distributions are broader and skewed toward larger atomic populations, 
which could be related to their electronegative nature. Similarly, lower atomic dipoles are observed for H and C, 
for which most cases range from 0 to 5 a.u. For the case of N and O, the atomic dipoles span a wider range of 
values (0 to 15 a.u.). This observation can be attributed to the generally higher reactivity of the N and O atoms29. 
Concerning the atomic quadrupole moment, the histograms span different range values depending on the atom, 
and no clear structural distributions are observed. However, in the cases of N and O, the values exhibit distinct 
regions in the broader range, reflecting the possible diversity of structures within the database. Finally, the 
atomic energies briefly resemble the population distributions. Hydrogen and carbon are centered around 

Fig. 7  3D distribution of the calculated atomic properties, grouped by atom kind. All properties are presented 
in atomic units.
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approximately −0.62 Ha and −38.0 Ha, respectively, accounting for the small spread in population values for 
these two atoms. Nitrogen and oxygen exhibit a more diverse distribution with at least two observed peaks, 
ranging from approximately −55.5 to −54.5 Ha for N and approximately −76.2 to −75.6 Ha for O.

Finally, a three-dimensional visualization is presented in Fig. 7, which shows three electronic properties: 
N(Ω), ∣Q(Ω)∣, and ∣μ(Ω)∣. The colors represent atom types. As expected, the atomic population groups atoms 
by kind. In this regard, N(Ω) can characterize atoms within a molecule, since there is no wide data distribution. 
In contrast, the dipole and quadrupole magnitudes show a wider distribution, which captures the diversity of 
atoms in each group. Therefore, ∣Q(Ω)∣ and ∣μ(Ω)∣ can be used to characterize the diversity of the database and 
illustrate the broad reactivity of the analyzed molecules.

This study introduces a novel data set of atomic properties for approximately 44K organic molecules. The 
data provide fundamental information on the atomic properties based on the Quantum Theory of Atoms in 
Molecules (QTAIM). In particular, the data set includes atomic basin energies, populations, dipole moments, 
and quadrupole moments. The data set can enable powerful new machine-learning models for predicting atomic 
properties and chemical reactivity directly from molecular structure. The public availability of this large data-
base could facilitate new studies in chemical informatics, machine learning applied to chemistry, and computa-
tional molecular design.

Code availability
The processing of molecular structures and input generation was performed using OpenBabel30. All analyzes were 
performed using the Python programming language, version 3.9.13. Datawarrior was used for the calculation of 
molecular properties and chemical space visualization31. All quantum mechanical calculations were performed 
with Gaussian 1624. The QTAIM analysis was performed using the AIMAll package25. No custom code was 
generated for this work.
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