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This paper aims to develop a general framework for accurately tracking and quantitatively characterizing multiple cells (objects)
when collision and division between cells arise. Through introducing three types of interaction events among cells, namely,
independence, collision, and division, the corresponding dynamicmodels are defined and an augmented interactingmultiplemodel
particle filter tracking algorithm is first proposed for spatially adjacent cells with varying size. In addition, to reduce the ambiguity
of correspondence between frames, both the estimated cell dynamic parameters and cell size are further utilized to identify cells
of interest. The experiments have been conducted on two real cell image sequences characterized with cells collision, division, or
number variation, and the resulting dynamic parameters such as instant velocity, turn rate were obtained and analyzed.

1. Introduction

Being the fundamental unit of life, cell is a key element
in many biological processes. Researchers have realized the
importance of studying cells motility, deformation or popula-
tion dynamics, and cell to cell interactions inmodern biology.
Understanding the dynamical behaviors of cell of interest
in living cells is essential to the fundamental studies for
discovering effective medical therapy of diseases like cancer,
AIDS, or any inflammatory diseases [1]. Manual analysis of
these images is a tedious process involving many hours of
human inspection. Sometimes, it becomes impossible for the
human observer to accurately follow many different events
over a long sequence, especially when it requires tracking a
large number of cells during long period of time in order to
obtain robust results [2]. This makes automatic cell motion
analysis essential. However, these tasks face several challenges
including the generally poor image quality (low-SIR), the
varying cell populations due to cells entering or leaving

the field of view, and the possibility of irregular interaction
among cells.

Over the past decade, a number of cell tracking algo-
rithms have been proposed (see [3] for a review). These
algorithms concentrate on a variety of cell types and are based
on different trackingmethods.These cell tracking approaches
in the literature can be broadly classified into three categories,
namely, tracking based on detection and segmentation [4–6],
tracking based on evolving model [7–9], and tracking based
on probabilistic approach [10–13].

The first type of approaches is to run a cell detector based
on texture, intensity, or gradient in every frame and then
associate the detected cells between frames [14]. It is noted
that the tracking performance mainly depends on the quality
of detection and segmentation and sophisticated matching
strategies [15–17]. The second approach is to initialize the
features of cells such as shape, position, and boundary and
then track them using an appropriate tracking technique.
Active contour [18, 19], level set [16, 20, 21], and mean-shift
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Figure 1: A block diagram of the proposed cell detection method.

are the examples of this type of approach. As the classicmean-
shift or active contour technique is designed for tracking
single object only, cell clusters may cause matching errors
and inaccurate boundaries when cells move fast. Although
the level set method enables the topological changing for
cell division and details permit the fusion of overlapping
cells, its computation time is expensive [5]. For the third
type of the approaches, the probabilistic framework has also
been increasingly used (see [22–25] for reviews in this area).
Probabilistic tracking methods, that is, Bayesian filtering,
usually construct a motion evolution model described by
a Markov process, and then track multiple cells using the
filtering techniques such as GM-PHD [26] and particle
filter [10]. The first two approaches render more robust
performance than the third approach under low resolution
or SNR scenarios, but more modifications and assumptions
are needed in general.

Inspired by work in [27], where the cell collision is
only considered, we propose a more general framework for
multicell tracking especially when cell collision and division
occur. We first define three typical events to characterize
interaction modes among cells, that is, independence, colli-
sion, and division. Afterwards, the evolving model relevant
to each event is described and an augmented interacting
multiple models particle filter tracking algorithm is proposed
for spatially adjacent cells with varying size. Finally, to reduce
the ambiguity of correspondence and establish trajectories of
interested cells, both cell topological feature and cell motion
feature are used to manage data association problem.

This rest of the paper is organized as follows. Section 2
presents our proposed general framework formulticell track-
ing including cell collision and division. In Section 3, the
experiment results on various real cell image sequences are
presented to demonstrate the effectiveness of our algorithm.
Finally, conclusions are summarized in Section 4.

2. Methods

This section describes our proposed method in detail. In
Section 2.1, a hybrid cell detection algorithm for image
sequences is presented. In Section 2.2, we first define and
analyze three typical interacting events between cells and
the corresponding dynamic model of each cell is formulated.
In Section 2.3, the augmented interaction multiple models
particle filter (AIMMPF) tracking algorithm is proposed to
deal with all interacting cases happening among cells. Finally,
the cell identity management for cell collision and division is
presented in Section 2.4.

2.1. A Hybrid Cell Detection Algorithm for Image Sequences.
The cell detection is a challenging job due to a high noise
level in time-lapse microscopy images and wide ranging in
intensity and shape. Image enhancement removes blurring
and noise, increases contrast, and so forth. After the process
of image enhancement, “a hybrid cell detection algorithm” is
used to segment overlapping or adhesion cells. This combi-
nation method consists of threshold processing, holes filling,
noise removal, image dilation, and shape and boundary
constraint. The overview of the proposed detection method
is given in Figure 1.

2.1.1. A Hybrid Cell Detection Algorithm. During the thresh-
old process, individual pixels in an image are marked as
“object” pixels if their values are greater than some threshold
value (assuming an object to be brighter than the back-
ground) and as “background” pixels otherwise. Typically, an
object pixel is given a value of “1” while a background pixel
is given a value of “0.” Finally, a binary image is created. The
key parameter in the threshold process is the choice of the
threshold value. Since𝐾-means clustering algorithmdoes not
requiremuch specific knowledge of the image and is robust to
image noise, it converts a grayscale image to a binary image.
The description of threshold process can be briefly presented
as follows.

Step 1. An initial threshold (TH) is chosen, and this can be
done randomly or according to any other methods desired.

Step 2. Create two sets

𝐺
1
= {𝑓 (𝑚, 𝑛) : 𝑓 (𝑚, 𝑛) > TH} (Object pixels) ,

𝐺
2
= {𝑓 (𝑚, 𝑛) : 𝑓 (𝑚, 𝑛) ≤ TH} (Background pixels) .

(1)

Note, 𝑓(𝑚, 𝑛) is the value of the pixel located in the 𝑚th
column, 𝑛th row.

Step 3. Compute the average intensity of each set

𝑚
1
= Average intensity value of 𝐺

1
,

𝑚
2
= Average intensity value of 𝐺

2
.

(2)

Step 4. Create the new threshold

TH󸀠 =
(𝑚
1
+ 𝑚
2
)

2
. (3)

Step 5. Go back to Step 2 until convergence is reached.
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Figure 2: Illustration of the adhesion cell detection by proposed method. (a) Original image, (b) the contrast enhancement results on the
whole image, (c) threshold process image, (d) hole-filled image, (e) noise removal image using median filter, and (f) result of our algorithm.

As shown in Figure 2(c), most cell edges are broken and
have holes, to handle this problem the broken mending and
holes filled algorithm is required. The concept of mending
cell edges is that the missed pixel can be retrieved by the
surrounding pixels. Given a binary image, the value of a
single pixel only is taken as 1 or 0. If the sum of all these
3 pixels equals 2 in any direction (horizontal, vertical, or
diagonal), then the centre pixel will be corrected from 0 to 1.
A hole is a set of background pixels (0’s or blacks in binary
image). Holes filled algorithm is to connect background
pixels (0’s) need to be changed to foreground pixels (1’s)
and stopping when it reaches cell boundaries. This can be
achieved using morphological reconstruction which can be
thought conceptually as repeated dilations of an image, called
the marker image, until the contour of the marker image fits
under a second image, called the mask image. We set a pixel
of marker image to 1 if its corresponding background pixel in
mask image cannot be reached by filling background pixels
from borders of mask image. And all other pixels are set
to be 0. Processing repeats until stability; that is, the image
no longer changes. By using this method, only holes in the
foreground are filled.Then we add marker image to the mask

image to get the holes filled image. The zoomed in hole-filled
image is obtained in the testing result as shown in Figure 2(d).

By a careful observation of image, the unexpected high
frequency noise significantly affects the quality of image. A
median filter is employed to perform noise removal. Median
filter runs through the image pixel by pixel and replaces
each pixel with the median of neighbor pixels, which is
also known as a smoothing technique. To minimize the
distortion of edges and remove noise effectively, the value
of threshold should be considered carefully. If the threshold
of median filter is set a bit low from the value, all the noise
can be removed. Figure 2(e) shows after high frequency noise
removal. It is obvious that the cell contour profile is smaller
than normal. So, dilation is proposed to enlarge the cells.

After applying dilation filter, the boundaries of regions
of foreground pixels which are typically bright pixels in
the image are gradually enlarged. The areas of foreground
pixels grow in size. Shape and boundary constraint is finally
proposed and used to discriminate cells. If a component is
either smaller than minimum, or bigger than maximum of
cell size range, it will be removed as a noncell component;
otherwise it will be kept as cell component. After setting up
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Figure 3: An illustration of collision and division cells.

a bounding box to calculate the cells area, we continue to
calculate the “width/height ratio,” and remove the component
whose ratio is either bigger than 5.0 or less than 0.5; both are
determined empirically.

Figure 2(f) shows the result of our algorithm.

2.2. Events and Dynamic Model

2.2.1. Events. In the field of cell tracking, each cell exhibits
various behaviors, such as random moving fluctuation, col-
lision, division, and shape deformation in different frames,
as illustrated in Figure 3, and the last three challenging cases
obviously differ from the general people tracking in computer
vision, which further complicate the multicell accurate and
robust tracking. However, from the perspective of interacting
way among cells, multicell tracking can be explained by
three interacting events among cells; namely, one cell evolves
independently without any interaction with other cells; one
cell collides with other cells for one or more frames; and one
cell or merged cell divides into two or more individual cells
in the next frame. Accordingly, we define three events, that is,
independence event, collision event, and division event.

Independence Event. In terms of the independence event, a
given cell is assumed to move in a random way but does not

undergo collision or division in any frame,which is the simple
and common case in people and/or cell tracking. The state
space tracking techniques, such as the Karman filter and the
particle filter, are the commonly used methods.

Collision Event. Without loss of generality, suppose that a
collision event 𝑐

𝑘
between two cells occurs in frame 𝑘, and

𝑃(𝑐
𝑘
) denotes the probability of the collision event. Consider

morphological features area and distance. Given two inde-
pendent variables 𝛼

𝑘,1
and 𝑑

𝑘−1
, 𝑃(𝑐
𝑘
) can be calculated as

follows:

𝑃 (𝑐
𝑘
) = 𝑓
1
∗ 𝑃 (𝛼

𝑘,1
| 𝑐
𝑘
) 𝑃 (𝑑

𝑘−1
| 𝑐
𝑘
) , (4)

where 𝑓
1
is an adjusted coefficient, 𝛼

𝑘,1
= 𝑠
𝑘
/𝑠
𝑘−1

denotes the
ratio of a given cell area in the current frame 𝑘 to the one in
the previous frame 𝑘 − 1, 𝑠

𝑘
is the detected area of a given

cell in frame 𝑘, and 𝑑
𝑘−1

is the distance of two cells in frame
𝑘−1.𝑃(𝛼

𝑘,1
| 𝑐
𝑘
) defines the probability of area ratio given the

event of collision occurring. For simplicity, we assume that
𝑃(𝛼
𝑘,1

| 𝑐
𝑘
) follows the Gaussian distribution with 𝑃(𝛼

𝑘,1
|

𝑐
𝑘
) ∝ (𝛼

𝑘,1
: 𝜇
1
, 𝜎
2

1
), as shown in Figure 4(a), where the mean

𝜇
1
and 𝜎

2

1
are determined empirically based on cell collision

event. In terms of the probability 𝑃(𝑑
𝑘−1

| 𝑐
𝑘
), due to the fact
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Figure 4: The distribution of two elements of cell collision event.
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Figure 5: The distribution of two elements of cell fission event.

that the distance between two cells will decrease at collision or
increase at splitting, we have 𝑃(𝑑

𝑘−1
| 𝑐
𝑘
) = 𝑒
−𝜎|𝑑𝑘−1|, as shown

in Figure 4(b), where 𝜎 is a constant and obtained according
to the average size of studied cell population.

Division Event. Assume that a cell divides into two cells or
colliding cells split away from one another in frame 𝑘, and
the division event is denoted by 𝛽

𝑘
. Given two independent

variables 𝛼
𝑘,2

and 𝑑
𝑘
, the possibility 𝑃(𝛽

𝑘
) of division event is

calculated as follows:

𝑃 (𝛽
𝑘
) = 𝑓
2
∗ 𝑃 (𝛼

𝑘,2
| 𝛽
𝑘
) 𝑃 (𝑑

𝑘
| 𝛽
𝑘
) , (5)

where 𝑓
2
is an adjusted coefficient, 𝛼

𝑘,2
follows the same

definitions as in (4), and 𝑑
𝑘
is the distance of two cells in the

presence of division event in frame 𝑘. 𝑃(𝛼
𝑘,2

| 𝛽
𝑘
) defines

the probability of area ratio given the division event. Since

the expectation of variable 𝛼
𝑘,2

is equal to 0.5, we model
this as 𝑃(𝛼

𝑘,2
| 𝛽
𝑘
) = 𝑒

−𝐶(𝛼𝑘,2−0.5)
2

, as shown in Figure 5(a),
where 𝐶 is a constant. According to the evolvement of spatial
distance between cells in the division event, we define 𝑃(𝑑

𝑘
|

𝛽
𝑘
) = 𝑒
−𝛾|𝑑𝑘|, as shown in Figure 5(b), where 𝛾 is a constant

and obtained according to the average size of studied cell
population.

2.2.2. Dynamic Model. The IMMPF framework [28, 29]
facilitates multiple models [30] to be combined, with each
model corresponding to a standard particle filter [31]. The
IMMPF is expected to be effective in dealing with nonlinear
cell parameter estimate as multiple motion models can be
accommodated and switching betweenmotionmodels can be
designed using a predefined Markov switching process.
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Assume that there are total 𝐷 cells with the cell set
denoted as Γ

𝐷
:= {1, 2, . . . , 𝐷} and the behaviors of each cell

can be modeled as one of the 𝑛 hypothesized modes. The
mode set is denoted as𝑀

𝑛
:= {1, 2, . . . , 𝑛}. For cell 𝑟 (𝑟 ∈ Γ

𝐷
),

let the probability that the 𝑖th mode is relevant in frame 𝑘 be
denoted by 𝑀

𝑖

𝑘
(𝑟). For the 𝑗th mode, the state dynamics and

measurements of cell 𝑟 (𝑟 ∈ Γ
𝐷
) are modeled as

𝑋
𝑘
(𝑟) = 𝐹

𝑘,𝑗
(𝑟)𝑋
𝑘−1

(𝑟) + 𝐺
𝑘,𝑗

𝑉
𝑘,𝑗

(𝑟) , (6)

𝑍
𝑘
(𝑟) = 𝐻

𝑘,𝑗
(𝑟)𝑋
𝑘
(𝑟) + 𝑤

𝑘,𝑗
(𝑟) , (7)

where 𝑋
𝑘
(𝑟) = [𝑥

𝑘
(𝑟), 𝑦
𝑘
(𝑟), 𝑥̇
𝑘
(𝑟), ̇𝑦
𝑘
(𝑟)]
𝑇 is the state

vector of each cell for each mode is represented by the
position (𝑥

𝑘
(𝑟), 𝑦
𝑘
(𝑟)) and the velocity (𝑥̇

𝑘
(𝑟), ̇𝑦
𝑘
(𝑟)). 𝐹

𝑘,𝑗
(𝑟)

and 𝐺
𝑘,𝑗

(𝑟) are the system matrices when mode 𝑗 is in effect
in frame 𝑘 for cell 𝑟. Both V

𝑘,𝑗
(𝑟) and 𝑤

𝑘,𝑗
(𝑟) are covariance

matrices 𝑄
𝑘,𝑗

and 𝑅
𝑘,𝑗

(same for all cells), respectively. The
switching frommodel𝑀𝑖

𝑘−1
(𝑟) tomodel𝑀𝑗

𝑘
(𝑟) is governed by

a finite-state stationaryMarkov chain (same for all cells) with
known transition probabilities 𝑃

𝑖,𝑗
= 𝑃(𝑀

𝑗

𝑘
(𝑟) | 𝑀

𝑖

𝑘−1
(𝑟)).

2.3. Cell State Evolvement in Augmented IMMPF. In this
section, to characterize cell dynamics and quantitative study
multicell behaviors, we propose an augmented interacting
multiple models particle filter (AIMMPF) tracking algorithm
to accurately estimate the state vectors of multiple cells.

2.3.1. Cell State EvolvingModes. As observed in a series of cell
image sequences, some cells exhibit unpredictable behaviors
when cell collision and division occur, such as sudden change
in motion speed, direction, and size of cell area. To deal with
these uncertainties, we augment the state vectors in (6) by the
unknown cell turn rate 𝜔

𝑘
(𝑟) and cell area 𝑠

𝑘
(𝑟), resulting in

𝑋
𝑘
(𝑟) = [𝑥

𝑘
(𝑟), 𝑦
𝑘
(𝑟), 𝑥̇
𝑘
(𝑟), ̇𝑦
𝑘
(𝑟), 𝜔
𝑘
(𝑟), 𝑠
𝑘
(𝑟)]
𝑇.

We also observe that a successful implementation of
our proposed AIMMPF relies on two aspects, namely, the
determination of turn rate𝜔

𝑘
(𝑟) and the way of modeling cell

interaction modes.
In terms of the turn rate variable 𝜔

𝑘
(𝑟), assume that

system dynamic follows

𝜔
𝑘,𝑚

(𝑟) = 𝜔
𝑘−1,𝑚

(𝑟) + 𝛿
𝑘−1,𝑚

(𝑟) , (8)

where 𝜔
𝑘,𝑚

(𝑟) (𝑚 = 1, 2) is the turn rate in radians/second.
Modes based ondifferent𝜔

𝑘,𝑚
(𝑟) canmatch differentmotions

of a cell. A positive value of 𝜔
𝑘,𝑚

(𝑟) can be assumed for right
turn and a negative value for left turn. 𝛿

𝑘−1,𝑚
is assumed to

be a Gaussian distributed noise with covariance Δ
𝑘−1,𝑚

. In
our algorithm, variable 𝜔

𝑘,𝑚
(𝑟) is determined at the end of

previous 𝑘 − 1 scan upon the base of 𝜔
𝑘−1,𝑚

(𝑟).
Another key issue in our proposed algorithm is how to

determine the evolvement of cell state at each mode.Without
loss of generality, we propose three interaction modes for
cell tracking, namely, augmented variable nearly constant
velocity mode for cell noninteracting (ACV), an augmented
variable coordinate turn mode for cell collision (ACT1), and
an augmented variable coordinate turnmode for cell division
(ACT2).

Mode 1 (ACV). If a given cell does not undergo collision or
division, in other words, it moves smoothly with minimum
appearance change, the following state transition model is
adopted:

𝐹
𝑘,1

(𝑟) =

[
[
[
[
[
[
[
[
[
[
[

[

1 0 𝑇 0 0 0

0 1 0 𝑇 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

]
]
]
]
]
]
]
]
]
]
]

]

, (9)

where 𝑇 denotes the sampling interval, V
𝑘,1

is assumed to
be zero mean Gaussian white noise with 6 × 6 covariance
𝑄
𝑘,1

= diag(𝜎2
𝑥,𝑘,1

, 𝜎
2

𝑦,𝑘,1
, 𝜎
2

̇𝑥,𝑘,1
, 𝜎
2

̇𝑦,𝑘,1
, 𝜎
2

𝜔,𝑘,1
, 𝜎
2

𝑠,𝑘,1
), and the

noise transition matrix is given as

𝐺
𝑘,1

=
[
[

[

1

2
𝑇
2

0 𝑇 0 0 0

0
1

2
𝑇
2

0 𝑇 0 0

]
]

]

𝑇

. (10)

Mode 2 (ACT1). If one cell collides with the other in a given
frame, its motion speed, direction, and area are assumed to
vary accordingly. The current cell turn rate is fluctuant and
unknown to us, but we can use (8) to approximately estimate
the turn rate. Meanwhile, cell area will increase as well, but
it does not exceed the sum of two colliding cells. Thus, the
following state evolvement is formulated as

𝐹
𝑘,2

(𝑟)

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0
sin𝜔
𝑘,1

(𝑟) 𝑇

𝜔
𝑘,1

cos𝜔
𝑘,1

(𝑟) 𝑇

𝜔
𝑘,1

𝑓
11,𝑘

0

0 1
1 − cos𝜔

𝑘,1
(𝑟) 𝑇

𝜔
𝑘,1

sin𝜔
𝑘,1

(𝑟) 𝑇

𝜔
𝑘,1

𝑓
21,𝑘

0

0 0 cos𝜔
𝑘,1

(𝑟) 𝑇 − sin𝜔
𝑘,1

(𝑟) 𝑇 𝑓
31,𝑘

0

0 0 sin𝜔
𝑘,1

(𝑟) 𝑇 cos𝜔
𝑘,1

(𝑟) 𝑇 𝑓
41,𝑘

0

0 0 0 0 1 0

0 0 0 0 0 𝜆
𝑘

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(11)

where the nonlinear system Jacobi term 𝑀
1,𝑘

=

[𝑓
11,𝑘

, 𝑓
21,𝑘

, 𝑓
31,𝑘

, 𝑓
41,𝑘

]
𝑇 [32] is defined in the same way

as

𝑓
11,𝑘

=
𝑥̇
𝑘
(𝜔
𝑘,1

(𝑟) 𝑇 cos𝜔
𝑘,1

(𝑟) 𝑇 − sin𝜔
𝑘,1

(𝑟) 𝑇)

𝜔
2

𝑘,1
(𝑟)

−
̇𝑦
𝑘
(𝜔
𝑘,1

(𝑟) 𝑇 sin𝜔
𝑘,1

𝑇 − 1 + cos𝜔
𝑘,1

(𝑟) 𝑇)

𝜔
2

𝑘,1
(𝑟)

,
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𝑓
21,𝑘

=
𝑥̇
𝑘
(𝜔
𝑘,1

(𝑟) 𝑇 sin𝜔
𝑘,1

𝑇 + cos𝜔
𝑘,1

(𝑟) 𝑇 − 1)

𝜔
2

𝑘,1
(𝑟)

−
̇𝑦
𝑘
(𝜔
𝑘,1

𝑇 cos𝜔
𝑘,1

(𝑟) 𝑇 − sin𝜔
𝑘,1

(𝑟) 𝑇)

𝜔
2

𝑘,1
(𝑟)

,

𝑓
31,𝑘

= −𝑇 (𝑥̇
𝑘
sin𝜔
𝑘,1

(𝑟) 𝑇 + ̇𝑦
𝑘
cos𝜔
𝑘,1

(𝑟) 𝑇) ,

𝑓
41,𝑘

= 𝑇 (𝑥̇
𝑘
cos𝜔
𝑘,1

(𝑟) 𝑇 − ̇𝑦
𝑘
sin𝜔
𝑘,1

(𝑟) 𝑇) .

(12)

In addition, we further assume that 𝜔
𝑘,1

(𝑟) = 𝜔̂
𝑘−1,1

(𝑟) and
𝐺
𝑘,2

(𝑟) = 𝐺
𝑘,1

(𝑟) in our experiment, and V
𝑘,2

is assumed to
be zero mean Gaussian white noise with 6 × 6 covariance
𝑄
𝑘,2

= diag(𝜎2
𝑥,𝑘,2

, 𝜎
2

𝑦,𝑘,2
, 𝜎
2

̇𝑥,𝑘,2
, 𝜎
2

̇𝑦,𝑘,2
, 𝜎
2

𝜔,𝑘,2
, 𝜎
2

𝑠,𝑘,2
). The control

variable 𝜆
𝑘
varies in time and mainly considers the effect of

merging event on the resulting size of cell, which leads to the
value of 𝜆

𝑘
distributed in the range [1, 2] and the centroid

distance between the two cells is approximately equal to the
averaged diameter of cell population. In this way, we define
that the control variable as 𝜆

𝑘
= 1 + 𝑃(𝑐

𝑘
) and the evolving

curve for colliding cells are investigated in the following
experiments.

Mode 3 (ACT2). In frame 𝑘, if a cell is divided into two
cells or the colliding cells split away from one another,
each cell moves independently and appears as an individual
one. Accordingly, both the velocity and area of interested
cells might change from the previous frame to the current
frame. Following the same rule as ACT1, we define the state
transition mode as

𝐹
𝑘,3

(𝑟)

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0
sin𝜔
𝑘,2

(𝑟) 𝑇

𝜔
𝑘,2

cos𝜔
𝑘,2

(𝑟) 𝑇

𝜔
𝑘,2

𝑓
12,𝑘

0

0 1
1 − cos𝜔

𝑘,2
(𝑟) 𝑇

𝜔
𝑘,2

sin𝜔
𝑘,2

(𝑟) 𝑇

𝜔
𝑘,2

𝑓
22,𝑘

0

0 0 cos𝜔
𝑘,2

(𝑟) 𝑇 − sin𝜔
𝑘,2

(𝑟) 𝑇 𝑓
32,𝑘

0

0 0 sin𝜔
𝑘,2

(𝑟) 𝑇 cos𝜔
𝑘,2

(𝑟) 𝑇 𝑓
42,𝑘

0

0 0 0 0 1 0

0 0 0 0 0 𝜅
𝑘

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(13)

In terms of the nonlinear system Jacobi term 𝑀
2,𝑘

=

[𝑓
12,𝑘

, 𝑓
22,𝑘

, 𝑓
32,𝑘

, 𝑓
42,𝑘

]
𝑇, we follow the same formula as (12)

as long as the turn rate 𝜔
𝑘,1

(𝑟) in each corresponding
component is replaced by 𝜔

𝑘,2
(𝑟). Similarly, we have 𝜔

𝑘,2
(𝑟) =

𝜔̂
𝑘−1,2

(𝑟) and 𝐺
𝑘,3

(𝑟) = 𝐺
𝑘,1

(𝑟). V
𝑘,3

is also assumed to be
zero mean Gaussian white noise with 6 × 6 covariance𝑄

𝑘,3
=

diag(𝜎2
𝑥,𝑘,3

, 𝜎
2

𝑦,𝑘,3
, 𝜎
2

̇𝑥,𝑘,3
, 𝜎
2

̇𝑦,𝑘,3
, 𝜎
2

𝜔,𝑘,3
, 𝜎
2

𝑠,𝑘,3
). Note that the time-

varying control variable 𝜅
𝑘
takes into account the effect of

division or splitting event on the resulting cell area, which
leads to the value of 𝜅

𝑘
in the range [0, 1]. In this way, we

directly define that the control variable as 𝜅
𝑘

= 𝑃(𝛽
𝑘
) and

the evolving curve for division cells are investigated in the
following experiments as well.

2.3.2. The Framework of Augmented IMMPF. To view our
proposed cell interaction based AIMMPF tracking algorithm
in a straight way, Figure 6 illustrates our tracking frame work
with three cell interacting modes. The red line feedback
mechanism is introduced via instant turn rate estimate 𝜔̂ and
blue line feedback mechanism is introduced to obtain the
control variables 𝜆

𝑘
and 𝜅

𝑘
, which are drastically different

from traditional IMMPF.

2.4. Cell Correspondence and Label Management. To track
and discriminate simultaneously multiple cells, the corre-
spondence and label management block is required for our
proposed cell interacting based AIMMPF filter. The corre-
spondence aims to introduce the measures to be associated,
whereas identity management focuses on the strategy to
discriminate and label each cell of interest.Therefore, we need
to (1) define a dissimilarity measure between two cells in two
consecutive frames and (2) design an appropriate identity
management strategy.

2.4.1. Dissimilarity Measure. If a cell moves in a smooth way,
which means that the dynamics of the cell can be known a
priori, the position of the cell in the next frame is predicted
and further associated preferably with the available closest
measurement (i.e., nearest neighbor method). In this way,
the obtained distance difference is the smallest one, and such
measure is denoted by

𝑑
distance
𝑘

=
󵄨󵄨󵄨󵄨x𝑘|𝑘−1 (𝑖) − 𝑍

𝑘

󵄨󵄨󵄨󵄨 ,
(14)

where𝑍
𝑘
is the detectionmeasurement vector and x

𝑘|𝑘−1
(𝑖) is

state prediction of cell 𝑖.
This function is independent of the direction of motion

and allows nonsmooth trajectories. It can be seen that the
abovemethod ismainly dependent on the assumed dynamics
of cell, and it often leads to tracking failures in a dense clutter
environment or in the case of cell collision. Thus, we further
introduce anothermeasure, namely, area difference𝑑area

𝑘
.This

parametermeasures the equivalent degree of size between the
predicted area of the cell 𝑖 in frame 𝑘 − 1 and the interested
area corresponding to measurement 𝑗 in frame 𝑘, which can
be denoted by

𝑑
area
𝑘

=
󵄨󵄨󵄨󵄨𝑠𝑘|𝑘−1 (𝑖) − 𝑠

𝑘
(𝑗)

󵄨󵄨󵄨󵄨 , (15)

where 𝑠
𝑘
(𝑗) is interested area corresponding to measurement

𝑗 in frame 𝑘 and 𝑠
𝑘|𝑘−1

(𝑖) is predicted area of the cell 𝑖 in frame
𝑘 − 1.

2.4.2. Scheme. The direct objective in multicell tracking is to
discriminate and record the dynamic parameters and feature
parameters of each cell in each frame for further biological
process analysis. In our study, the cell division and collision
are investigated. Thus the uncertainties in correspondence
increase, which further lead to the difficulty in cell label
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Figure 6: Tracking block of each cell (for simplicity, the superscript of target is omitted).

management. Since our algorithm belongs to the type of
probabilistic approach with reliable detection results, both
the spatiotemporal and feature information could be utilized
as the inputs to correspondence and labelmanagement block.
In the case of cells collision and division, cells are easily
merged in one frame and separated in another frame. As a
result, one of them would be detected as a newly born cell
for cell division and would be assigned a new label as a new
track. In addition, in the case of cell collision, two cells would
be merged as one cell, due to only one detection generated
around the predicted cell state. To solve this problem, three
cases are investigated, and related strategy is adopted as
below.

Case 1. If there is more than one measurement in the
associated gate (𝑑distance

𝑘
< 𝛿
1
, 𝛿
1
is threshold), the cell

feature information, such as the area, is used to be associated
with the predicted state in order to reduce correspondence
uncertainty. As shown in Figure 7, we assume that all cells
do not undergo collision or division in frame 𝑘, and the area
difference 𝑑

area
𝑘

between the areas of the cell 𝑖 in 𝑘 − 1 frame
andmeasurement 𝑗 in frame 𝑘 is calculated according to (15).
If 𝑑area
𝑘

< 𝛿
2
(threshold), the measurement 𝑗 in the current

frame is associated with cell 𝑖 in the previous frame.

Case 2. Suppose that cells 𝑖
1
and 𝑖
2
in frame 𝑘 − 1 collide

and/or merged into one cell 𝑖
1,2

in frame 𝑘; then the merged
cell 𝑖
1,2

splits into cells 𝑗
1
and 𝑗

2
, respectively, in frame

𝑘 + 1. In general, the two splitting cells are very close to
each other, and one of cells would be probably mistaken
as a new one and a new label is assigned accordingly. To
solve this bias, the information of both cell area ratio, that
is, 𝛼
𝑘,1

and 𝛼
𝑘,2
, and cell area difference, that is, 𝑑

area
𝑘

, is
considered. For instance, if 𝛼

𝑘,1
(𝑖
1,2

) ≈ 2, cell 𝑖
1,2

in frame
𝑘 is associated with both cell 𝑖

1
and cell 𝑖

2
in frame 𝑘 − 1.

In frame 𝑘 + 1, if 𝛼
𝑘,2

(𝑗
1
) ≈ 0.5 or 𝛼

𝑘,2
(𝑗
2
) ≈ 0.5, the area

difference 𝑑
area
𝑘+1

is then calculated. Moreover, if 𝑑area
𝑘+1

(𝑗
∙
, 𝑖
∙
) <

𝛿
2
, then cell 𝑗

∙
is associated with cell 𝑖

∙
. Figure 8 illustrates a

successful example of our proposed cell correspondence and
label approach. From Figures 8(b) and 8(c), we can see that
cells 3 and 4 collide in frame 𝑘 and then separate in frame
𝑘 + 1.

Case 3. Without loss of generality, we give an example of cell
division as illustrated in Figure 9. Assume that cell 𝑗 is divided
into two cells 𝑗

1
and 𝑗
2
in frame 𝑘, and the detected area of cell

𝑗
1
or 𝑗
2
is about half of cell 𝑗 in frame 𝑘 − 1. If 𝛼

𝑘,2
(𝑗
1
) ≈ 0.5

or 𝛼
𝑘,2

(𝑗
2
) ≈ 0.5, both cells 𝑗

1
and 𝑗
2
in frame 𝑘 are associated

with cell 𝑗 in frame 𝑘 − 1.
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(a) Frame 𝑘 − 1 (b) Frame 𝑘

Figure 7: No cell collision or division.

(a) Frame 𝑘 − 1 (b) Frame 𝑘 (c) Frame 𝑘 + 1

Figure 8: Cell collision.

(a) Frame 𝑘 − 1 (b) Frame 𝑘

Figure 9: Cell fission.
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Figure 10: The main framework of our proposed algorithm.

The procedure of correspondence and label management
scheme, which is appropriately embedded in our algorithm,
is illustrated in Figure 10(a), and the detailed implementation
flowchart is shown in Figure 10(b).

3. Results and Discussion

In this section, several experiments were conducted on
two real image sequences to verify the effectiveness of our
proposed method for cell tracking. These experiment data
include various challenging scenarios, such as variation in
cell dynamics and population, cell collision, and division in
different frames. Our purpose is to estimate the position,
velocity, turn rate of each cell from available cell detections.
All experiments were implemented inMATLAB on a 1.7 GHz
processor computer with 4G random access memory.

In our experiment, all cells are identified by rectangular
blobs, and three modes in our proposed cell interacting
AIMMPF are adopted, namely, ACV, ACT1, and ACT2.

Scenario 1. This case includes cell collision and variation in
population, and the Markov transition matrix between three
modes is assumed constant and set empirically as 𝑀 =

[
0.8 0.1 0.1

0.1 0.8 0.1

0.1 0.1 0.8

]; 𝑄
𝑘,1

= diag(30, 30, 0.1, 0.1, 0.01, 0.01); 𝑄
𝑘,2

=

diag(4040, 0.1, 0.1, 0.01, 0.01); 𝑄
𝑘,3

= diag(40, 40, 0.1, 0.1,
0.01, 0.01); 𝑅 = diag(1, 1, 1); 𝛿

1
= 25; 𝛿

2
= 8; 𝑇 = 1;

𝑁 = 500; 𝐻
𝑘,∙

= [1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1]
𝑇. The

initial state of cell 𝑖 is represented as X
0
(𝑖) = [𝑥

0
(𝑖), 𝑦
0
(𝑖),

𝑥̇
0
(𝑖), ̇𝑦
0
(𝑖), 𝜔
0
(𝑖), 𝑠
0
(𝑖)]
𝑇, where 𝑥

0
(𝑖), 𝑦
0
(𝑖), and 𝑠

0
(𝑖) were

determined by the initially detected cells.The initial velocities
in 𝑥 and 𝑦 directions were set zero, and we also set 𝜔

0
(𝑖) =

0.8 rad/s. In the IMMPF algorithm, all parameters were set
the same values as those in our proposed approach except
𝜔 = 0.8 rad/s, 𝜆

𝑘
= 1.6, and 𝜅

𝑘
= 0.5.

Figure 11(b) shows the successful tracking results of our
proposed method on the original RGB cell image sequences
(see Figure 11(a)). According to the tracking results, our
algorithm could handle the following challenging cases: cell 3
collides with cell 4 in frame 34 and then splits away in frame
35; cell 3 collides again with cell 4 in frame 37 and splits in
frame 38; cell 1 leaves the field of view in frames 30; cell 6
moves right, partially leaves the field of view in frames 33, and
fully leaves the field of view in frame 34; and new cells 8 and
9 enter the field of view in frame 41. In terms of cell collision,
splitting, and varying number, the performance is degraded
when the general IMMPF is used, as shown in Figure 11(c).
Cell 3 moves closely to cell 4 from frame 30 and two cells are
merged together as a cell in frame 34. A new cell 9 is wrongly
initiated when the detected two cells split away in frame 35,
and the original cells 3 and 4 are merged together as a cell.
Afterwards, the similar results occur in frames 37 and 38.
Figure 11(d) further gives the position estimate of each cell
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Frame 37 Frame 38 Frame 39 Frame 41 Frame 42 Frame 44

(a) Original RGB image sequences

Frame 30 Frame 31 Frame 32 Frame 33 Frame 34 Frame 35
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(b) Tracking results of our proposed algorithm
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(c) Tracking results of IMMPF
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Figure 11: Multicell tracking with colliding and varying number of cells in different frames.
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Figure 12: Instant velocity estimate per frame using various methods.

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Track number

IMMPF
Our algorithm
Manual tracking

X
di

re
ct

io
n 

ve
lo

ci
ty

(𝜇
m
/s
)

−0.2

−0.4

−0.6

−0.8

−1

(a) Cells mean velocity in 𝑥 direction

Track number
0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

Y
di

re
ct

io
n 

ve
lo

ci
ty

(𝜇
m
/s
)

−0.5

−1

−1.5

−2

−2.5

IMMPF
Our algorithm
Manual tracking

(b) Cells mean velocity in 𝑦 direction

Figure 13: Mean velocity estimate of all cells in image using various methods.

in each frame in 𝑥 and 𝑦 directions, respectively, using our
algorithm.

Due to lack of velocity ground-truth data, we evaluated
the performance of our algorithm by comparison with
manual tracking results. Instant velocity estimate of cell 1
per frame among three approaches is shown in Figure 12.
The green dash dot line represents the instant velocity of
the IMMPF, the red dot line plots the instant velocity of the
manual tracking, and the blue solid line shows instant velocity
curve of our proposed algorithm. From this figure we can

see that our tracking method outperforms one that uses the
IMMPF.The difference between our proposed algorithm and
manual tracking is very small.

Mean velocity (the track length is 30 frames) of all
cells for our proposed algorithm versus IMMPF and manual
tracking is shown in Figure 13. The green square shows all
cells mean velocity of IMMPF, the red square presents all
cells mean velocity of manual tracking, and the blue square
describes all cells mean velocity of our proposed algorithm.
The estimate error using the IMMPF is larger than our
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Figure 14: Comparison of cells number estimates by various modes.
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Figure 15: Results of turn rate estimate using our proposed algorithm.

proposed algorithm. It also shows that the mean velocity
precision of our proposed algorithm is higher than that of
IMMPF.

Figure 14 shows the comparison of cells averaged number
computed over 20 simulations by various methods. It can
be seen that the cells averaged number estimated using our
algorithm is close to the performance of the manual tracking
method, whereas IMMPF may cause overestimated number
of cells.

Figure 15 shows the estimate of turn rate of selected cells
4 and 7 using our proposed algorithm. It can be seen that the
cell turn rate changes over time. By comparing Figure 15(a)
with Figure 11(b), it is obvious that when cell 4 colliding

with other cells, turn rate undergoes significantly variations.
Figure 16 illustrates the mode probability of the three modes
of cells 4 and 7. The blue dash dot line represents the mode
probability of the mode ACV, the red dot line describes that
of the mode ACT1, and the green dash line shows that of
the mode ACT2. In theory, the mode probability change is
related to the turn rate. The change of the mode probabilities
in Figure 16 is the same as the change of the turn rate of the
system described in Figure 15. It is obvious that the algorithm
works well and the mode switching is right. Figure 17 shows
the evolving curve of 𝜆

𝑘
and 𝜅
𝑘
of cell 4 from frames 30 to 45.

Observe that, in frames 34, 37, and 44, the variable 𝜆
𝑘
of cell 4

is about 1.67, 1.67, and 1.51, respectively, which are larger than
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Figure 16: Mode probability of three modes.
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Figure 17: The evolving curve of variables 𝜆
𝑘
and 𝜅

𝑘
of cell 4.

those in other frames because cell 4 occludes with cell 3. In
frames 35, 38, and 45, the variable 𝜅

𝑘
is larger than those in

other frames because two cells split away one another.
Scenario 2. In thiscase, the event of cell division is investigated
and the corresponding performance of our algorithm is
evaluated with comparison to other methods as well. The
Markov transition matrix between three modes is assumed
constant and set empirically as 𝑀 = [

0.8 0.1 0.1

0.1 0.8 0.1

0.1 0.1 0.8

]; 𝑄
𝑘,1

=

diag(50, 50, 0.1, 0.1, 0.01, 0.01); 𝑄
𝑘,2

= diag(80, 80, 0.1, 0.1,
0.01, 0.01); 𝑄

𝑘,3
= diag(40, 40, 0.1, 0.1, 0.01, 0.01); 𝛿

1
= 5;

𝛿
2

= 5; 𝐻
𝑘,∙

= [1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1]
𝑇; 𝑅 =

diag(1, 1, 1). The initial state of cell 𝑖 is represented as X
0
(𝑖) =

[𝑥
0
(𝑖), 𝑦
0
(𝑖), 𝑥̇
0
(𝑖), ̇𝑦
0
(𝑖), 𝜔
0
(𝑖), 𝑠
0
(𝑖)]
𝑇; here 𝑥

0
(𝑖), 𝑦
0
(𝑖), and

𝑠
0
(𝑖) were determined by initial detected cells, and for other

parameter initialization we set 𝑥̇
0
(𝑖) = 0.5 𝜇m/s, ̇𝑦

0
(𝑖) =

0.5 𝜇m/s, 𝜔
0
(𝑟) = 0.1 rad/s, 𝑇 = 1, and 𝑁 = 500. In the

IMMPF algorithm, all parameters were set the same values
as those in our proposed approach except 𝜔 = 0.1 rad/s,
𝜆
𝑘
= 1.6, and 𝜅

𝑘
= 0.5.

As shown in Figure 18, there are two cells in initial frame,
and cells 1 and 2 undergo sudden change and start dividing
from frame 320; finally cell 1 divides into two cells (cells
1 and 3) and cell 2 divides into two cells (cells 2 and 4)
completely in frame 323, respectively. Afterward, four cells are
spatially adjacent and move slowly in the following frames.
All cells are successfully tracked by our algorithm, as shown in
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Figure 18: Tracking results on cell division using various methods.

Figure 18(b). The performance is degraded when the general
IMMPF is used, as shown in Figure 18(c). Cells 1 and 2 are
wrongly divided into five cells (cells 1 to 5) in frame 323 and
two cells merge together as a cell in frame 325. A new cell 6 is
wrongly initiated in frame 327. Figure 18(d) gives the position
estimates off our cells in each frame in 𝑥 and 𝑦 directions,
respectively.

Instant velocity estimate for our proposed algorithm
versus manual tracking is shown in Figure 19. The green
dash dot line depicts the instant velocity of the IMMPF,
the red dot line describes the instant velocity of the manual
tracking, and the blue solid line shows instant velocity curves
of our proposed algorithm. It is obvious that the instant
velocity curve of our proposed algorithm fits the ground-
truth data better than those of the IMMPF. Combining the

results illustrated in Figures 18(b) and 18(c), our proposed
algorithm could track accurately each cell in case of division
due to the fact that instant velocity estimate errors using the
IMMPF are larger than those using our proposed algorithm.
Results of turn rate estimate using our proposed algorithm is
shown in Figure 20. It is obvious that the cell turn rate changes
over time. Figure 21 shows mode probability of three modes,
which indicates that the changes inmode probability coincide
with the changes of turn rate estimate.

To get insight into tracking performance, we adopt one
measure criterion, namely, percentage of tracked position
(PAP) [33]. The PAP is defined as the ratio of the number of
correctly tracked positions and the total number of ground-
truth positions. All correctly track reports in each frame are
recorded over 50 Monte-Carlo simulations, and the averaged
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Figure 19: Instant velocity estimate per time step using various methods.
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Figure 20: Results of turn rate estimate using our proposed algorithm.

values are listed in Table 1. According to the statistic results in
Table 1, the averaged PTP are 89.71% and 91.49%, respectively,
using our algorithm. The comparison results demonstrate
that our algorithm outperforms the IMMPF method.

Real-time tracking is required in our studied multicell
tracking approach, so the total processing time must be in
principle less than the interval between consecutive sam-
plings. Computation time using our method is only 3.1129 s
and 1.1930 s for Scenarios 1 and 2 respectively, which is far
less than the sampling interval𝑇 = 60 s for our studied image

sequences. In this sense, our proposed method is applicable
for automated cell real-time tracking.

4. Conclusions

In this paper, through introducing three types of interaction
events among cells, namely, independence, collision, and
division, an augmented interaction multiple models particle
filter tracking algorithm has been presented for spatially
adjacent cells with varying size. To reduce the ambiguity of
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Figure 21: Model probability of three modes.

Table 1: Performance comparison results using two methods.

Method PTP (Scenario 1) PTP (Scenario 2)
IMMPF 77.94% 85.11%
Our method 89.71% 91.49%

correspondence and establish trajectories of interested cells,
both cell topological feature and cell motion feature are used
tomanage data association problem. Simulation experiments
on real image were carried out and the performance com-
parison has been reported. Our proposed algorithm can
successfully track multiple cells of colliding, dividing, or
cells of entering and/or leaving field of view, and so forth.
Furthermore, it can provide accurate dynamic estimate of
each cell, such as position, velocity, and turn rate.
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