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Hepatic gluconeogenesis from amino acids contributes significantly to diabetic hyperglycemia, 

but the molecular mechanisms involved are incompletely understood. Alanine transaminases 

(ALT1 and ALT2) catalyze the interconversion of alanine and pyruvate, which is required 

for gluconeogenesis from alanine. We find that ALT2 is overexpressed in the liver of diet-

induced obese and db/db mice and that the expression of the gene encoding ALT2 (GPT2) 

is downregulated following bariatric surgery in people with obesity. The increased hepatic 

expression of Gpt2 in db/db liver is mediated by activating transcription factor 4, an endoplasmic 

reticulum stress-activated transcription factor. Hepatocyte-specific knockout of Gpt2 attenuates 

incorporation of 13C-alanine into newly synthesized glucose by hepatocytes. In vivo Gpt2 
knockdown or knockout in liver has no effect on glucose concentrations in lean mice, but 

Gpt2 suppression alleviates hyperglycemia in db/db mice. These data suggest that ALT2 plays 

a significant role in hepatic gluconeogenesis from amino acids in diabetes.

Graphical Abstract

In brief

Martino et al. find that alanine transaminase 2 (ALT2), which is encoded by Gpt2, is increased 

in liver of mice and people with obesity by activating transcription factor 4. Suppression of Gpt2 
expression in obese, but not lean mice, lowers blood glucose by suppressing alanine-mediated 

gluconeogenesis.
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INTRODUCTION

Glucose production from precursor substrates, such as amino acids or lactate/pyruvate 

(gluconeogenesis), is a critical adaptation to exercise and prolonged fasting, but dysregulated 

liver gluconeogenesis can contribute to hyperglycemia in diabetes. Indeed, the first-line 

antidiabetic agent, metformin, lowers blood glucose by suppressing liver glucose production 

(Foretz et al., 2010; Madiraju et al., 2014). In addition, genetic or chemical targeting of 

the mitochondrial pyruvate carrier (MPC) (Gray et al., 2015; McCommis et al., 2015) or 

pyruvate carboxylase (Cappel et al., 2019) in liver can suppress hyperglycemia in mouse 

models of obesity and diabetes by limiting the flux of pyruvate into new glucose. Amino 

acids, such as alanine or glutamine, are significant substrates for de novo synthesis of 

glucose, and gluconeogenesis from amino acids is known to be increased in diabetes 

(Chan et al., 1975; Snell and Duff, 1980; Yang et al., 2009) and obesity (Chevalier et 

al., 2006). However, relatively little is known about the effects of attenuating hepatic amino 

acid-mediated gluconeogenesis on hyperglycemia.

In conditions where gluconeogenic flux is high, skeletal muscle efflux of the gluconeogenic 

amino acids alanine and glutamine is increased disproportionate to their relative abundance 

in skeletal muscle protein (Felig et al., 1970; Felig and Wahren, 1971). Indeed, although 

some alanine is generated by proteolysis, much of the alanine released from muscle is 

generated by transamination of pyruvate; an alternative fate to pyruvate reduction to lactate. 

Muscle-synthesized alanine is subsequently delivered to the liver (Ruderman, 1975; Snell, 

1980; Snell and Duff, 1980) where the alanine is re-converted to pyruvate, which can then 

enter the gluconeogenic pathway. This cycle is known as the Cahill cycle and serves to 

supply carbons from amino acids to the gluconeogenic pathway while disposing of the 

amino nitrogen in the urea cycle, since neither the gluconeogenic nor urea cycle pathways 

are operative in skeletal muscle (Felig et al., 1970).

Before alanine carbons can enter the gluconeogenic pathway, alanine must be converted to 

pyruvate by the alanine transaminase (ALT) enzymes, ALT1 and ALT2 (Figure 1A; DeRosa 

and Swick, 1975; Garcia-Campusano et al., 2009; Yang et al., 2009). These enzymes are 

also known as glutamic-pyruvic transaminases (GPTs) and are encoded by genes annotated 

as Gpt and Gpt2. The two ALT enzymes catalyze the bidirectional conversion of pyruvate 

and glutamate to alanine and α-ketoglutarate via transamination (Figure 1A; DeRosa and 

Swick, 1975; Felig, 1973). Adipose tissue, liver, skeletal muscle, and the intestines highly 

express ALT1, which is localized to the cytosolic compartment (Lindblom et al., 2007; 

Qian et al., 2015). Conversely, ALT2 is a mitochondrial matrix protein and is expressed 

in skeletal muscle, brain, heart, liver, and other tissues (Lindblom et al., 2007; Ouyang et 

al., 2016; Qian et al., 2015). Experimental determination of the Km values has suggested 

that ALT1 is important in the generation of alanine from pyruvate, while ALT2 favors the 

reverse reaction (DeRosa and Swick, 1975; Glinghammar et al., 2009). This would suggest 

that alanine is transported into the mitochondrion before conversion to pyruvate by ALT2. 

Consistent with this, chemical or genetic inhibition of the MPC in hepatocytes did not affect 

gluconeogenesis from alanine (Dieterle et al., 1978; McCommis et al., 2015).
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Herein, we demonstrate that ALT2 is activated in obese liver and examine the role of hepatic 

ALT2 in gluconeogenesis and hyperglycemia by using liver-specific Gpt2−/− mice and Gpt2 
shRNA. We found that loss of ALT2 had little effect on blood glucose concentrations in lean 

mice, but that ALT2 suppression in obese, db/db mice produced a robust glucose-lowering 

effect independent of changes in liver fat or insulin sensitivity. These findings are consistent 

with another recent study demonstrating that suppression of both ALT enzymes in liver 

lowered plasma glucose concentrations in mouse models of diabetes (Okun et al., 2021). 

Thus, although ALT activity is primarily considered a circulating biomarker for liver or 

muscle injury, these data collectively demonstrate that it also plays important roles in 

intermediary metabolism and may contribute to dysregulated glucose production by diabetic 

liver.

RESULTS

ALT2 is abundant in human liver and GPT2 expression is downregulated with marked 
weight loss

A recently published study suggested that hepatic expression of the gene encoding ALT2 

(GPT2) is induced in people with type 2 diabetes and in mouse models of the disease (Okun 

et al., 2021), but other work has questioned whether ALT2 protein is expressed in human 

liver (Glinghammar et al., 2009). To confirm that ALT2 is abundant in human liver, hepatic 

protein lysates from biopsies collected during Roux-en-Y gastric bypass surgery (RYGBS) 

from patients with obesity were probed with antibodies for ALT1 and ALT2 and compared 

with lysates from mouse liver (wild-type [WT], mice with liver-specific Gpt2 knockout 

[KO]), and lysates from Huh7 human hepatoma cells (treated with siRNA against GPT2 or 

scrambled control). Western blotting demonstrated that, although both ALT proteins were 

more abundant in mouse liver compared with human liver, both were readily detectable 

in human liver specimens and that these antibodies are specific for ALT1 and ALT2, 

respectively (Figure 1B). We also examined the abundance of ALT1 and ALT2 in livers 

of lean cadaveric donor liver samples compared with the tissues collected from patients with 

obesity obtained during RYGBS. Qualitatively, ALT2 appeared to be much more abundant 

in liver of patients with obesity compared with lean controls (Figure 1C). However, this 

study was not powered to allow for a convincing conclusion.

To determine whether marked weight loss affected the expression of ALTs, the expression 

of the genes encoding ALT1 (GPT) and ALT2 (GPT2) were assessed in liver biopsies 

collected during RYGBS and in the same individuals after losing ~36% of pre-surgery 

BMI (collected by percutaneous biopsy). As expected, RYGBS-induced weight loss led 

to significant reductions in fasting glucose and insulin, as well as marked metabolic 

improvements in insulin sensitivity, as determined by both the HOMA-IR and HISI (Table 

S1). RYGBS-induced weight loss and metabolic improvement were associated with a 

marked reduction in the expression of GPT2, but not GPT (Figure 1D). Similarly, the 

expression of mitochondrial amino acid carriers (SFXN1, SLC25A2, and SLC25A39) was 

also decreased in the RYGBS patients after marked weight loss (Figure 1E), although 

expression of other transporters (SLC25A18, SLC25A38, and SLC25A40) was not affected. 

Taken together, these data demonstrate that ALT2 is present in human liver and that 
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expression of the gene encoding this protein is reduced concordant with marked weight 

loss-induced metabolic improvements in people with obesity.

Obese mice exhibit higher expression of Gpt2 and ALT2 and are hyperglycemic after 
amino acid challenge

We then determined whether hepatic expression of Gpt/ALT enzymes was increased in 

rodent models of obesity. Livers of mice fed with a diet providing 60% of its calories as 

fat (high-fat diet [HFD]) for 23 weeks had greater ALT2 protein abundance than mice fed 

a control low-fat diet (LFD) (Figure 2A). The expression of the genes encoding ALT1 

and ALT2 (Gpt and Gpt2) was increased in these same mice (Figures 2B and S1A). 

The expression of Sfxn1 and Slc25a39 was also increased in HFD-fed mice versus LFD 

controls (Figure S1A). Consistent with increased gluconeogenesis from amino acids, alanine 

(ATT) and glutamine (QTT) tolerance tests revealed that blood glucose concentrations were 

significantly elevated in HFD-fed mice compared with LFD-fed mice (Figures 2C and 2D) 

in both ATT and QTT analyses.

We also determined that leptin receptor-deficient db/db mice had a 3-fold elevation in 

hepatic ALT2 protein compared with lean, db/+ littermate control mice (Figure 2E). The 

expression of Gpt and Gpt2 was also increased in db/db mice compared with db/+ lean 

controls (Figures 2F and S1B). ATT and QTT conducted with 8-week-old db/db and 

lean db/+ mice demonstrated that glucose concentrations after amino acid challenge were 

markedly higher in db/db mice compared with lean db/+ controls (Figures 2G and 2H). 

While other factors can affect blood glucose in these tolerance tests, these data support the 

hypothesis that the increase in hepatic ALT2 protein that occurs with obesity may contribute 

to amino acid-fueled glucose production by the liver.

Activating transcription factor 4 regulates ALT2 expression in db/db liver

Previous work has suggested that Gpt2 expression is transcriptionally regulated by the ER 

stress-activated transcription factor ATF4 (activated transcription factor 4) (Hao et al., 2016) 

and that hepatic ER stress is increased in obesity and diabetes (Ozcan et al., 2004). In vivo 
treatment with an antisense oligonucleotide (ASO) to knockdown ATF4 for 3 weeks blocked 

the induction of Gpt2 expression and ALT2 protein abundance in db/db liver (Figure 3A). 

Conversely, the expression of Gpt was not affected following ATF4 knockdown in db/+ or 

db/db mice (Figure S1B). Interestingly, the expression of Gpt2 is more sensitive to ATF4 

knockdown than several other known ATF4 target genes, including Asns, Fgf21, Trib3, 
Ddit4, and Psat1 (Figure S1B).

Also consistent with a role for ATF4 in controlling GPT2 expression, we examined the 

expression of ATF4 target genes in the patients who underwent RYGBS. Consistent with 

reduced GPT2 expression after weight loss, the expression of ASNS, FGF21, TRIB3, and 

DDIT4 was concomitantly reduced and PSAT1 tended to be reduced (p = 0.058) (Figure 

3B).

To determine whether ATF4 activation was sufficient to induce Gpt2 expression, we treated 

primary hepatocytes isolated from lean C57BL/6J mice with varying doses of an adenovirus 

to overexpress ATF4 or β-gal as a control. Overexpression of ATF4 resulted in a dose-
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dependent increase in expression of Gpt2 but had no effect on Gpt (Figure S1C). Similarly, 

induction of ER stress in hepatocytes by tunicamycin also resulted in increased Gpt2 
expression (Figure 3C). This effect was prevented by pretreatment with ATF4 ASO (Figure 

3C). ATF4 ASO treatment also suppressed the basal expression of Gpt2 in hepatocytes. 

Taken together, these data suggest that ALT2 is induced by ER stress in hepatocytes via a 

mechanism requiring the ATF4 transcription factor.

Loss of hepatic ALT2 reduces hepatic glucose production from alanine in vitro but not in 
vivo

Germline deletion of Gpt2 has previously been shown to lead to microcephaly and postnatal 

death before weaning (Ouyang et al., 2016). Morbidity and mortality were associated with 

impaired amino acid metabolism and anaplerotic flux to replenish tricarboxylic acid (TCA) 

cycle intermediates. We observed a similar lethal phenotype in homozygous constitutive 

Gpt2 knockout mice (data not shown), but mice with liver-specific loss of Gpt2 (LS-Gpt2−/
−) were viable. Successful knockout of ALT2 protein in the liver was confirmed (Figure 

4A).

We first assessed the ability of hepatocytes isolated from WT or LS-Gpt2−/− mice to produce 

glucose from alanine, pyruvate, and glutamine. Compared with WT mice, hepatocytes from 

LS-Gpt2−/− mice produced significantly less glucose in the presence of alanine (Figure 4B). 

Treatment of hepatocytes with β-chloro-alanine (β-Cl), an inhibitor of the ALT enzymes 

(Gray et al., 2015), reduced glucose production from alanine in WT hepatocytes, but not 

those from LS-Gpt2−/− mice (Figure 4B). When provided with pyruvate or glutamine as a 

gluconeogenic substrate, glucose production from these substrates was not different from 

WT hepatocytes (Figure 4B). These data suggest that ALT2 is essential for gluconeogenesis 

from alanine, but not other gluconeogenic substrates, in isolated hepatocytes.

To further assess alanine metabolism in hepatocytes from LS-Gpt2−/− mice, isolated 

hepatocytes were incubated with 13C-alanine or 13C-glutamine, and incorporation of 13C 

label was assessed by mass spectrometry (Figure 4C). Citrate M2, M3, and total enrichment 

from 13C alanine was reduced in hepatocytes from LS-Gpt2−/− mice (Figure 4D). However, 

enrichment was still quite substantial likely due to the activity of ALT1. Indeed, treating 

hepatocytes from LS-Gpt2−/− mice with UK5099 almost completely abolished 13C-alanine 

incorporation into citrate (Figure 4E). These findings are all consistent with the idea 

that alanine-pyruvate cycling is a compensatory mechanism in the Gpt2-deficient cells. 

Consistent with reduced contribution of alanine to gluconeogenesis, 13C-alanine enrichment 

incorporation into media glucose was also reduced in hepatocytes from LS-Gpt2−/− mice 

(Figure 4F). In contrast, deletion of Gpt2 did not affect the enrichment of 13C-glutamine in 

these intermediary metabolites or glucose (Figure S2A).

Next, we evaluated gluconeogenesis from amino acids in WT and LS-Gpt2−/− mice by 

performing a series of tolerance tests. Lean WT and LS-Gpt2−/− mice had similar increases 

in blood glucose concentrations during ATT and QTT analyses (Figures 4G and S2C). 

Knockout mice also exhibited normal glucose responses during a pyruvate tolerance test 

(Figures 4G and S2C). These data suggest that, although glucose production from alanine 

is impaired in isolated hepatocytes lacking ALT2, loss of this enzyme in the liver of lean 
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nondiabetic mice does not constrain glucose production in vivo in response to amino acid 

challenge.

We also assessed the response to overnight fasting in WT and LS-Gpt2−/− mice. Fasting 

induces the hepatic expression of Gpt2 in WT mice (Figure 5A). We found that blood 

glucose concentrations were not different between genotypes in either the fed or fasted states 

(Figure 5B). We also quantified the abundance of various metabolites in liver and plasma 

of the fed and fasted WT and LS-Gpt2−/− mice. The effects of fasting on liver glycogen 

(Figure 5C) and a variety of organic and amino acids were not affected by liver-specific 

deletion of Gpt2 (Figure S3). Liver Gpt2 deficiency also did not affect plasma insulin, 

lipids, glycerol, or ketone body concentrations in fed or fasted mice (Figure 4). Plasma 

alanine and glutamate, two key substrates of the ALT2 enzyme, were not affected by 

loss of liver Gpt2, but plasma glutamine was increased in fed LS-Gpt2−/− mice compared 

with fed WT mice (Figure S4). Fasting increased the plasma concentrations of other 

gluconeogenic amino acids, including isoleucine, valine, and phenylalanine, in WT mice 

(Figure 5D). Interestingly, this increase was significantly blunted in LS-Gpt2−/− mice, 

suggesting altered utilization of other amino acids as metabolic substrates. Thus, while loss 

of Gpt2 constrains alanine metabolism in isolated hepatocytes, in vivo this does not seem to 

affect gluconeogenesis in lean mice; possibly reflecting compensatory mechanisms.

Unlike Gpt2, the hepatic expression of Gpt was not increased by fasting and loss of Gpt2 
did not affect the expression of Gpt (Figure S5A). We also did not detect compensation in 

the expression of several other genes encoding enzymes involved in gluconeogenesis (Pck1), 

the mitochondrial pyruvate carriers (Mpc1, Mpc2), glutamate/glutamine metabolism (Gdh1, 
Got1, and Got2), or mitochondrial amino acid transporters (Slc25a38, Slc25a39, Sfxn1) 

(Figure S5). To further interrogate the transcriptome potential compensatory changes, we 

performed bulk RNA-seq analyses of liver RNA from fed and fasted WT and LS-Gpt2−/− 

mice. Strikingly, the only transcript that was significantly different between genotypes was 

Gpt2 (Figure 5E), and this was true in both fed and fasted conditions. However, pathway 

analysis revealed significant alterations in the expression of some amino acid metabolic 

KEGG pathways (Figure 5E).

ALT2 deactivation in db/db mice attenuates hyperglycemia

To assess the contribution of ALT2 to hyperglycemia in obese, diabetic mice, db/+ and 

db/db mice were administered adenovirus-expressing shRNA to knockdown ALT2 (shGpt2) 

or control shRNA targeting LacZ (shLacZ). Six days later, Gpt2 RNA (Figure 6A) and 

ALT2 protein abundance (Figure 6B) were decreased by shGpt2 compared with the LacZ 
shRNA controls in both genotypes of mice. The expression of Sfxn1 and Slc25a39, which 

was increased in db/db mice versus db/+ controls, was not affected by shGpt2 (Figure S6A). 

The expression of other transporters (Slc25a2, Slc25a18, Slc25a38, and Slc25a40) was not 

affected by genotype or shGpt2 treatment. Knockdown of Gpt2 in db/db mice also reduced 

total hepatic ALT activity, which was increased in db/db mice versus lean controls (Figure 

6C). Treatment with shGpt2 reduced fed blood glucose concentrations in db/db but not 

db/+ mice (Figure 6D). Plasma insulin concentrations were not different when comparing 

shLacZ versus shGpt2 groups in the db/+ genotype, but were lower with shGpt2 compared 
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with shLacZ treatment in db/db mice (Figure 6E). These data indicate that ALT2 plays an 

important role in promoting pathologic elevations of glucose and insulin seen in type 2 

diabetes, and that specifically knocking down ALT2 may be a strategy to improve blood 

glucose management.

Gpt2 knockdown alters plasma amino acid concentrations in db/db mice

To better understand how amino acid metabolism may be affected by the loss of hepatic 

ALT2, we measured plasma amino acid and organic acid concentrations in db/+ and db/db 
mice treated with shLacZ or shGpt2. Plasma alanine concentrations were not different in 

db/db versus db/+ mice but, compared with LacZ controls, shGpt2 treatment led to an 

increase in circulating concentrations of alanine in db/db mice (Figure 6F), suggesting 

impaired hepatic catabolism of alanine. Plasma glutamate concentrations were reduced in 

db/db mice compared with db/+ mice, and treatment with shGpt2 did not affect glutamate 

concentrations (Figure 6F). Consistent with previous reports in humans and rodents with 

diabetes (Newgard et al., 2009; Tai et al., 2010), plasma concentrations of phenylalanine, 

histidine, and the branched chain amino acids isoleucine, leucine, and valine, were increased 

and glycine was reduced in db/db mice versus db/+ mice (Figure 6F; Table S2). However, 

the effect of genotype on these amino acids was not corrected by shGpt2 treatment. 

Knockdown of Gpt2 resulted in an increase in plasma ornithine, an intermediate of the 

urea cycle, in both db/db and db/+ mice (Table S2). Compared with shLacZ-treated 

groups, shGpt2-treated mice exhibited higher concentrations of TCA cycle intermediates 

α-ketoglutarate, malate, and fumarate (Figure S6B).

Hepatic Gpt2 knockdown lowers plasma glucose without insulin sensitizing in db/db mice

Previous work has mechanistically linked hepatic steatosis, particularly accumulation of 

diacylglycerol (Petersen and Shulman, 2018) and ceramides (Summers et al., 2019), to 

hepatic insulin resistance and development of hyperglycemia. Knockdown of Gpt2 did not 

affect hepatic triglyceride content (Figure 7A) or plasma concentrations of triglyceride or 

cholesterol (Figure S7A) in mice of either genotype. Hepatic diacylglycerol and long chain 

saturated ceramides, which were increased in db/db mice compared with db/+ controls, were 

also not affected by Gpt2 knockdown (Figures 7B and 7C). This is interesting in light of 

previous data suggesting that alanine incorporation into hepatic lipids is increased in obese 

rats (Terrettaz and Jeanrenaud, 1990).

To determine if the observed improvements in blood glucose were due to differences in 

insulin sensitivity, we performed an insulin tolerance test with a separate cohort of db/db 
mice treated with shLacZ or shGpt2 adenovirus. Although initial glucose concentrations 

were lower in db/db mice injected with shGpt2 versus shLacZ, suppression of Gpt2 did not 

improve the response to insulin (area under the curve) in db/db mice when results were 

normalized to basal blood glucose concentrations in each group (Figure 7D). Similarly, a 

molecular correlate of insulin sensitivity, the phosphorylation of AKT in response to insulin 

bolus, was also not improved by Gpt2 knockdown in db/db mice (Figures 7E and S7B). 

Thus, despite significant improvements in plasma glucose concentrations, the data do not 

support the conclusion that insulin sensitivity is improved by Gpt2 knockdown.
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Based on these data, and our findings that loss of Gpt2 reduced alanine-mediated 

gluconeogenesis in hepatocytes, we examined the effects of Gpt2 knockdown on alanine 

tolerance in db/db and db/+ mice. Total area under the curve for blood glucose 

concentrations in an ATT was significantly decreased in db/db mice treated with the shGpt2 
adenovirus compared with LacZ shRNA-treated db/db mice (Figure 7F). In db/+ mice, Gpt2 
deactivation did not affect blood glucose levels at baseline or after injection with L-alanine 

during an ATT compared with Ad-shLacZ-infected mice (Figure 7F). In QTT challenges, 

shGpt2 did not affect blood glucose concentration area under the curve in db/db or db/+ 
mice (Figure 7G), which is consistent with glutamine-stimulated gluconeogenesis not 

requiring ALT activity. Similarly, knockdown of Gpt2 did not affect the glucose area under 

the curve in a glucagon tolerance test, which would assess gluconeogenesis from multiple 

substrates (Figure 7H). These data are consistent with the idea that the glucose-lowering 

effects of Gpt2 knockdown in obese db/db mice are due to attenuated alanine-stimulated 

glucose production by the liver.

DISCUSSION

Use of alanine and other amino acids as gluconeogenic substrates is increased in diabetes 

and contributes to hyperglycemia (Andrikopoulos and Proietto, 1995; Chan et al., 1975; 

Song et al., 2001), but the molecular mechanisms involved remain understudied. Herein, 

we show that expression and protein abundance of ALT2 is increased in rodent and 

human models of obesity, and that, in db/db mice, increased Gpt2 expression is driven 

by the ER stress-activated transcription factor ATF4. We also demonstrate that suppression 

or genetic deletion of liver ALT2 does not affect glucose concentrations in lean mice 

but, in db/db mice, lowers blood glucose and suppresses metabolism of amino acids to 

fuel gluconeogenesis. One possible explanation is that the alanine-driven gluconeogenic 

pathway, which is activated in diabetic liver, is only critical in this state. Alternatively or in 

addition, it is possible that normal liver is more heavily reliant on cytosolic ALT1 activity to 

convert alanine to pyruvate, but shifts to the mitochondrial pathway in diabetes. Collectively, 

these data suggest that approaches to specifically target ALT activity in diabetic liver could 

lower blood glucose by impinging upon the flux of amino acids into gluconeogenesis.

The vast preponderance of previous work on the ALT enzymes has focused on their utility 

as clinical biomarkers for liver or muscle injury, but relatively little work has focused 

on their important metabolic functions. It is generally assumed that ALT is released by 

damaged hepatocytes or myocytes in an unregulated fashion. However, it is possible that 

increases in serum ALT may also reflect elevations in hepatic ALT expression, especially 

in the context of obesity and metabolic associated fatty liver disease. Consistent with the 

current data, there is also previous evidence that the ALT enzymes are transcriptionally 

induced with obesity and in steatotic liver (Jadaho et al., 2004; Liu et al., 2009; Okun et 

al., 2021), which could also contribute to the plasma ALT pool. Plasma ALT levels may 

also have prognostic value beyond liver injury since recent work has demonstrated a strong 

correlation between increased serum ALT levels and metabolic dysfunction in patients 

(Schindhelm et al., 2006) and is predictive of future development of diabetes (De Silva et 

al., 2019). This is often interpreted to suggest that nonalcoholic fatty liver disease may drive 

insulin resistance and development of type 2 diabetes. However, ALT-driven stimulation of 
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gluconeogenesis from alanine may also directly promote development of hyperglycemia. 

Human mutations in GPT2 or germline deletion of Gpt2 in mice has profound effects on 

neurologic development (Ouyang et al., 2016). In addition, expression of Gpt2 is activated 

in skeletal muscle in response to thyroid hormone and Gpt2 knockout mice are insensitive 

to the anabolic effects of thyroid hormone on muscle mass after experimental denervation 

(Cicatiello et al., 2022). These observations illustrate important metabolic and biologic roles 

of ALT enzymes beyond their utility as biomarkers.

Also consistent with this, and while this manuscript was in preparation, Okun et al. 

(2021) demonstrated that ALT2 abundance was increased in liver of humans with type 2 

diabetes and in several mouse models of obesity and diabetes. Consistent with the present 

studies, they showed that concomitant silencing of Gpt and Gpt2 in db/db liver attenuated 

hyperglycemia, and led to reduced blood glucose excursions in ATT and increased plasma 

alanine concentrations. The main findings of that work are remarkably congruent with 

the present studies. In addition to confirming several of their key findings, we show that 

marked weight loss leads to a reduction in Gpt2 expression in people with obesity and 

have developed and characterized the phenotype of mice with liver-specific deletion of 

Gpt2. We show, using tracer-based approaches, that loss of Gpt2 enzyme attenuates alanine 

utilization in hepatocytes but does not affect blood glucose concentrations in lean mice 

challenged with amino acid tolerance tests or overnight fasting. We also demonstrate that 

Gpt2 silencing produces a metabolic benefit without sensitizing db/db mice to the effects of 

insulin. Together, these two studies reproducibly demonstrate the effectiveness of silencing 

hepatic ALT activity as a potential therapeutic approach for hyperglycemia.

Our data suggest that the increase in hepatic Gpt2 expression that occurs in diabetes is 

mediated by the ER stress-activated transcription factor ATF4. These findings are consistent 

with previous work indicating that Gpt2 is a direct target gene of ATF4. Indeed, the proximal 

promoter of the mouse Gpt2 gene contains a canonical ATF4 binding motif (Han et al., 

2013; Lee et al., 2015), which was bound by ATF4 in ChIP-seq studies (Han et al., 2013), 

and is directly activated by ATF4 in promoter-reporter analyses (Salgado et al., 2014). 

The regulation of Gpt2 by ATF4 is consistent with a coordinated regulation of amino 

acid catabolism by this transcription factor (Han et al., 2013), which could be an adaptive 

mechanism to dispose of amino acids released by proteolysis as part of the “unfolded protein 

response.” Previous work has indicated that ATF4 null mice are protected from diet-induced 

obesity and hyperglycemia (Seo et al., 2009), which is consistent with the effects of ATF4 

on activating Gpt2 expression and gluconeogenesis from amino acids. On the other hand, 

Okun et al. (2021) found that glucocorticoid signaling was involved in the induction of Gpt2 
expression in their studies. It remains to be determined whether the ATF4 and glucocorticoid 

receptor-mediated effects operate in parallel or in series to control Gpt2 expression.

Both ALT enzymes are bidirectional for the net production or consumption of alanine. In 

rat liver, some studies suggest that ALT1 is predominantly involved in alanine formation 

from pyruvate while ALT2 is more important for alanine catabolism (Dieterle et al., 1978; 

Glinghammar et al., 2009). This would suggest that alanine conversion to pyruvate occurs 

mostly in the mitochondrial matrix after alanine import into the mitochondrion. Previous 

research has shown that neutral amino acids are readily transported into the mitochondrion 

Martino et al. Page 10

Cell Rep. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for further metabolism (Cybulski and Fisher, 1977). The present studies are consistent with 

this model since the disruption of the mitochondrial isoform of ALT suppressed alanine 

entry into the mitochondrial TCA cycle. However, we still found significant metabolism 

of alanine after Gpt2 knockout. This could be due to cytosolic metabolism of alanine by 

other enzymes, including ALT1. Although the Km of ALT1 for alanine is much higher 

than for pyruvate (DeRosa and Swick, 1975; Glinghammar et al., 2009), cytosolic alanine 

accumulation could affect the directionality of ALT1 and allow alanine to enter into the 

mitochondrion as pyruvate via the MPC (Figure 1A). Indeed, the MPC inhibitor UK5099 

markedly reduced alanine enrichment in citrate in Gpt2-deficient hepatocytes, but had 

only modest effects in WT cells. Furthermore, some prior work suggests that much of 

the alanine entering the gluconeogenic pathway is converted to pyruvate in the cytosol, 

presumably by ALT1 (Patel and Olson, 1985). It is possible that both routes are important 

for alanine metabolism, but the relative importance depends upon the cell type, physiologic 

or pathophysiologic context, or the subcellular concentration of each substrate for the 

bidirectional interaction.

In conclusion, we show that Gpt2 expression is activated in diabetic liver in an ATF4-

mediated manner. Gpt2 silencing in liver had no effect in lean mice, but alleviated alanine-

induced hyperglycemia in db/db mice; likely by reducing the incorporation of alanine into 

newly synthesized glucose. Our results are consistent with a significant role for ALT2 in 

hepatic gluconeogenesis from amino acids and in the regulation of blood glucose levels in 

obesity and diabetes.

Limitations of the study

There are limitations to this study that should be discussed. Although our data indicate 

that GPT2 expression is decreased by marked weight loss after GBS, we were not able to 

compare the expression of this gene or the protein abundance between people with obesity 

or normal weight as we did in the mouse models. Obtaining liver biopsies from people with 

normal weight is extremely difficult to justify to the IRB due to risk of internal bleeding. 

Also, we have not yet examined the effect of genetic deletion of Gpt2 in livers of obese 

mice and it is possible that chronic deletion of the gene might lead to compensatory changes 

in metabolism, such as alanine-pyruvate cycling, which was observed in lean knockout 

mice. Finally, the therapeutic potential of inhibiting ALT activity is limited at this time 

due to lack of specific inhibitors for this transaminase reaction. Existing inhibitors, such as 

β-chloroalanine and amino-oxyacetate, likely inhibit other transaminases including aspartate 

aminotransferase.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Brian N. Finck bfinck@wustl.edu.
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Materials availability

• Adenoviral vectors and LS-Gpt2−/− mice are available upon request by academic 

researchers for non-commercial reasons after institutional material transfer 

agreement approval.

Data and code availability

• Bulk RNA sequencing data were uploaded to the NCBI Gene Expression 

Omnibus (http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO 

Series accession number GSE199975.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects—Eight subjects with a BMI of >35 kg/m2 (1 man and 7 women) 

between the ages of 35 and 52 years were recruited from the Bariatric Surgery Program 

at Barnes-Jewish Hospital (St. Louis, Missouri, USA). Written informed consent was 

obtained from all subjects before their participation in these studies, which were approved 

by the Institutional Review Board at Washington University School of Medicine in St. 

Louis, MO and registered in ClinicalTrials.gov (NCT00262964). All subjects completed a 

comprehensive screening evaluation, including a medical history and physical examination, 

and standard blood tests. Potential participants who had a history of liver disease other than 

NAFLD or consumed excessive amounts of alcohol (>21 units/wk for men and >14 units/wk 

for women) were excluded.

Animal studies—All experiments involving mice were approved by the Institutional 

Animal Care and Use Committee of Washington University in St. Louis and are consistent 

with best practices in the Guide for the Care and Use of Laboratory Animals. Mice 

that lack Gpt2 were generated by the Knockout Mouse Project Repository (KOMP) 

(project ID CSD24977) using the “knockout first” approach wherein the LacZ/Neo cassette 

constitutively blocks expression of the gene until it is removed by flp recombinase. This 

construct also contained exon 4 of the Gpt2 gene flanked by LoxP sites. We purchased 

frozen sperm from Gpt2 germline heterozygous mice from KOMP, established a colony 

of mice by in vitro fertilization, and then intercrossed these mice to generate germline 

knockouts. We also crossed germline heterozygotes with mice expressing flp recombinase 

in a global manner (B6.Cg-Tg(ACTFLPe)9205Dym/J mice; Jackson Laboratory stock 

number: 005703) to remove the LacZ and Neo cassettes and generate Gpt2 floxed mice. 

Gpt2 floxed mice were then crossed with transgenic mice expressing Cre under control 

of the albumin promoter (B6.Cg-Speer6-ps1Tg(Albcre)21Mgn/J; Jackson Laboratory stock 

number: 003574) to create LS-Gpt2−/− mice. Littermate mice not expressing Cre (fl/fl mice) 

were used as control mice in experiments involving LS-Gpt2−/− mice. Littermate db/db 
and heterozygous (db/+) (stock number: 000697) littermate mice were purchased from the 

Jackson Laboratory as well.
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Mice were housed in a specific pathogen free animal facility at Washington University 

School of Medicine under a 12 h light/dark cycle (lights on from 0600-1800) and studies 

were conducted during the light cycle. Animals were given ad libitum access to food and 

water unless otherwise indicated. All animals were studied between 10 and 29 weeks of age 

and both male and female mice were used in studies as indicated in the text and Figure 

legends.

METHOD DETAILS

Human metabolic studies—Subjects were admitted to the Clinical Research Unit at 

Washington University School of Medicine in St. Louis in the evening on day 1 where 

they consumed a standard meal. After the evening meal was consumed subjects fasted 

except for water, until completion of the study the following day. On the morning of day 

2, catheters were inserted into an arm vein for the infusion of stable isotopically labeled 

glucose and into a contralateral dorsal hand vein, which was heated to obtain arterialized 

blood samples. After baseline blood samples were obtained to assess background plasma 

glucose tracer enrichment, a primed (22.5 μmol/kg), constant infusion (0.25 μmol/kg/min) 

of [6,6-2H2]glucose (Cambridge Isotope Laboratories Inc.) was started and maintained for 

210 min. Blood samples were drawn every 10 min during the last 30 min to assess plasma 

glucose and insulin concentrations and plasma glucose enrichment.

Human plasma measurements and insulin sensitivity calculations—Plasma 

glucose concentration was determined using the glucose oxidase method (Yellow Spring 

Instruments Co.). Plasma insulin concentrations were measured by using radioimmunoassay 

kits (Linco Research, St Louis, MO). Plasma proteins were precipitated with ice-cold 

acetone, and hexane was used to extract plasma lipids. The aqueous phase, containing 

glucose, was dried by speed-vac centrifugation (Savant Instruments, Farmingdale, NY). 

The plasma glucose tracer-to-tracee ratio (TTR) was determined by gas-chromatography/

mass-spectrometry (MSD 5973 system with capillary column; Hewlett-Packard, Palo Alto, 

CA) after heptafluorobutyric (HFB) anhydride was used to form an HFB derivative of 

glucose. Glucose TTR were determined by selectively monitoring ions at mass-to-charge 

ratios (m/z) 519 and 521 (Korenblat et al., 2008). Hepatic insulin sensitivity was calculated 

as the inverse of the product of plasma insulin concentration and the endogenous glucose 

rate of appearance (Ra) into the systemic circulation, determined by dividing the glucose 

tracer infusion rate by the average plasma glucose TTR (Korenblat et al., 2008). The 

homeostasis model assessment of insulin resistance (HOMA-IR) was calculated by dividing 

the product of the plasma concentrations of insulin (in μU/mL) and glucose (in mmol/L) by 

22.5 (Matthews et al., 1985).

Human liver sample collection—After completing baseline testing participants 

underwent Roux-en-Y gastric bypass surgery (RYGBS), according to standard clinical 

practice procedures. During the procedure, a liver biopsy was obtained under direct 

visualization. Samples were frozen immediately in liquid nitrogen and stored at −80°C until 

processing. About 1-year after surgery, the metabolism study was repeated with liver tissue 

also sampled by percutaneous needle liver biopsy in the radiology suite at Mallinckrodt 

Institute of Radiology at Washington University School of Medicine. Tissue obtained in 
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these biopsies was used to quantify the expression of genes encoding ALT1 (GPT1) and 

ALT2 (GPT2) before and after RYGBS-induced weight loss. Tissue obtained from some 

subjects at time of surgery was used for protein isolation and western blotting analyses. 

Cadaveric donor liver samples were obtained from donor organs deemed unsuitable for 

transplantation.

High fat diet mouse studies—For high fat diet studies, male diet-induced obese mice 

in the C57BL/6J strain (stock number: 380050) or age matched lean controls (stock number: 

380056) were purchased from Jackson Labs at 12 weeks of age after being on a 60 kcal% 

fat diet (#D12492 Research Diets, Inc.) or 10 kcal% low fat control diet (#D12450 Research 

Diets, Inc.), respectively, for 6 week. Alanine tolerance or glutamine tolerance tests were 

conducted 17 weeks of age and mice were sacrificed after 23 weeks on diet.

ATF4 ASO studies—To silence ATF4, male db/db and db/+ mice (purchased from 

Jackson Laboratories) received intraperitoneal injections of 25 mg/kg body weight antisense 

oligonucleotide (ASO) directed against ATF4 twice a week for 4 weeks. Control mice were 

injected with scrambled control ASO by the same route, dose, and frequency. The ASO 

against ATF4 (product ID: 489707; sequence GCAGCAGA GTCAGGCTTCCT) and the 

scrambled control ASO (product ID: 141923; sequence CCTTCCCTGAAGGTTCCTCC) 

were obtained from Ionis Pharmaceuticals (Carlsbad, CA). ASO treatment was initiated in 

db/+ and db/db mice at 8 weeks of age. After treatment with ASOs for 4 weeks, mice were 

sacrificed and tissues were harvested, frozen in liquid nitrogen, and stored at −80°C for 

further analysis.

Gpt2 shRNA studies—For experiments involving adenoviral mediated silencing of Gpt2, 

6 week old male db/db and db/+ mice were anesthetized and infected by retro-orbital 

injection of ~200 μL high-titer adenovirus and experiments were performed 5 to 8 days 

post injection. Adenovirus expressing shRNA targeting mouse Gpt2 (shADV-260703) was 

obtained from Vector BioLabs and has been previously described (McCommis et al., 2015). 

The control adenovirus expressing shRNA targeting LacZ, as well as a GFP reporter, has 

been described (McCommis et al., 2015). Mice were administered between 1.0 and 1.5 × 

10^13 viral particles per mouse for both viruses by intravenous injection.

Metabolic tolerance tests—L-alanine tolerance tests (ATT), L-glutamine tolerance tests 

(QTT), pyruvate tolerance tests (PTT), and glucagon tolerance tests were performed on 

mice fasted overnight (16 h) and housed on aspen chip bedding. For studies involving 

obese mice (DIO or db/db), lean body mass was determined by EchoMRI and all mice 

were dosed based on lean body mass (kg). Mice were injected intraperitoneally with 2 g/kg 

lean body mass L-alanine (ATT), 1 g/kg lean body mass L-glutamine (QTT), or 1 g/kg 

lean body mass pyruvate (PTT) dissolved in sterile saline. For glucagon tolerance tests, 

mice were injected i.p. with 1 mg/kg of lean body mass glucagon (MilliporeSigmaG2044) 

dissolved in 0.9% saline following a 16 h overnight fast. Insulin tolerance tests (ITT) were 

performed by injecting i.p. 0.75 U/kg lean body weight insulin (Humulin), after a 5 h fast. 

For studies involving db/db or DIO mice, lean body mass was determined by echo MRI 

prior to testing and doses were calculated using those values. Blood glucose was measured 
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using a One-Touch Ultra glucometer (LifeScan) with a single drop of tail blood serially after 

challenge. For all tolerance tests, the total area under the curve (AUC) was calculated using 

the trapezoidal rule (Vigueira et al., 2014).

For overnight fasting studies, male and female mice were placed on aspen woodchip 

bedding and food was removed at the onset of the dark phase (18:00 h) and mice were 

sacrificed for tissue and blood collection 18 h later.

Blood and serum parameters—Blood samples for plasma insulin quantification were 

collected by puncture of the inferior vena cava and transferred to an EDTA coated 

Eppendorf tube. Plasma was isolated following centrifugation at 8,000 × G for 8 min at 

4°C and frozen at −80°C. Insulin levels were measured using a Singulex mouse insulin 

assay according to the manufacturer’s instructions at the Core Laboratory for Clinical 

Studies, Washington University School of Medicine. Plasma triglycerides (Thermo Fisher, 

TR22421), total cholesterol (Thermo Fisher, TR13421), and glycerol (Millipore Sigma, 

F6428) were measured using commercially available colorimetric enzymatic assays. Plasma 

total ketone bodies were measured using a commercially available kinetic assay (Fujifilm 

WAKO, Autokit Total Ketone Bodies).

Plasma amino acid concentrations—Plasma amino acid samples were processed as 

previously described (Cappel et al., 2019). Briefly, plasma samples (25 μL) were mixed 

with a labeled amino acid internal standard (Cambridge Isotopes) and 5% perchloric 

acid. Samples were centrifuged to remove precipitate, and dried. Amino acids were then 

derivatized as previously described (Casetta et al., 2000). In short, the sample pellet was 

reconstituted in BuOH-HCL to form amino acid butyl esters. Amino acid derivatives 

were then separated using a reverse phase C18 column (Xbridge, Waters, Milford, MA′ 
150 × 2.1 mm, 3.0 μm) with a gradient elution and detected using the MRM mode by 

monitoring specific transitions under positive electrospray on API 3200 triple quadrupole 

LC/MS/MS mass spectrometer (Applied Biosystems/Sciex Instruments). Data analysis and 

quantification involved comparisons of individual ion peaks to that of the internal standard 

for each amino acid.

Plasma organic acid concentrations—Organic acids were processed as previously 

described (Cappel et al., 2019). Briefly, thawed plasma samples (25 μL) were mixed with 

internal standard (Isotec), 0.8% sulfosalicylic acid and 5 M hydroxylamine-HCl. Samples 

were centrifuged, and 2 M KOH was added to neutralize the supernatant (pH 6-7), which 

was then heated (65°C) for 1 h. After incubation, 2 M HCL was added to acidify (pH 

1-2) each sample before saturating with sodium chloride and extracting with ethyl acetate. 

The extract was dried and derivatized using acetonitrile and MTBSTFA as a silylation 

reagent while heating at 60°C for 1 h. Derivatives were then analyzed using both scan and 

SIM modes with an Agilent 7890A gas chromatography interfaced to an Agilent 5975C 

mass-selective detector (70 eV, electron ionization source). An HP-5ms GC column (30 m × 

0.25 mm I.D., 0.25 μm film thickness) was used for all analyses (DesRosiers et al., 1994). 

Data analysis and quantification involved comparisons of individual ion peaks to that of the 

internal standard for each organic acid.
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Liver RNA and protein analyses—Liver tissue was collected at sacrifice and snap 

frozen in liquid nitrogen. Total RNA from livers or hepatocytes was isolated using RNA-Bee 

(Tel-Test). Complementary DNA was made by using a reverse transcription kit (Invitrogen), 

and real-time quantitative PCR was performed using an ABI PRISM 7500 sequence 

detection system (Applied Biosystems) and a SYBR green master mix. Arbitrary units of 

target mRNA were normalized by the Comparative Ct Method (ΔΔCT Method) to levels of 

36B4 mRNA. All sequences of the oligonucleotides can be found in the Tables S3 and S4.

Bulk RNA sequencing and analysis—Samples were prepared according to library kit 

manufacturer’s protocol, indexed, pooled, and sequenced on an Illumina HiSeq. Basecalls 

and demultiplexing were performed with Illumina’s bcl2fastq software and a custom python 

demultiplexing program with a maximum of one mismatch in the indexing read. RNA-seq 

reads were then aligned to the Ensembl release 76 primary assembly with STAR version 

2.5.1a (Dobin et al., 2013). Gene counts were derived from the number of uniquely aligned 

unambiguous reads by Subread:featureCount version 1.4.6-p5 (Liao et al., 2014). Isoform 

expression of known Ensembl transcripts were estimated with Salmon version 0.8.2 (Patro et 

al., 2017). Sequencing performance was assessed for the total number of aligned reads, total 

number of uniquely aligned reads, and features detected. The ribosomal fraction, known 

junction saturation, and read distribution over known gene models were quantified with 

RSeQC version 2.6.2 (Wang et al., 2012).

All gene counts were then imported into the R/Bioconductor package EdgeR (Robinson 

et al., 2010) and TMM normalization size factors were calculated to adjust for samples 

for differences in library size. Ribosomal genes and genes not expressed in the smallest 

group size minus one samples greater than one count-per-million were excluded from further 

analysis. The TMM size factors and the matrix of counts were then imported into the 

R/Bioconductor package Limma (Ritchie et al., 2015). Weighted likelihoods based on the 

observed mean-variance relationship of every gene and sample were then calculated for all 

samples with the voomWithQuality-Weights (Liu et al., 2015). The performance of all genes 

was assessed with plots of the residual standard deviation of every gene to their average 

log-count with a robustly fitted trend line of the residuals. Differential expression analysis 

was then performed to analyze for differences between conditions and the results were 

filtered for only those genes with Benjamini-Hochberg false-discovery rate adjusted p-values 

less than or equal to 0.05.

For each contrast extracted with Limma, global perturbations in known KEGG pathways 

were detected using the R/Bioconductor package GAGE (Luo et al., 2009) to test for 

changes in expression of the reported log 2 fold-changes reported by Limma in each term 

versus the background log 2 fold-changes of all genes found outside the respective term. 

Perturbed KEGG pathways where the observed log 2 fold-changes of genes within the term 

were significantly perturbed in a single-direction versus background or in any direction 

compared to other genes within a given term with p-values less than or equal to 0.05.

Western blotting analyses—For western blotting, liver lysates were collected in lysis 

buffer (150 mM NaCl, 20 mM Tris (pH = 7.4), 1 mM EDTA, 0.2% NP-40, 10% 

glycerol) with protease inhibitors using a Tissuelyser. Lysates were normalized to protein 
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concentration, denatured, and run on Criterion precast PAGE gels (BioRad). The antibodies 

used in this study were ALT2 (MilliporeSigmaHPA051514), ALT1 (GPT Abcam ab202083), 

Complex III (Oxphos Cocktail; Abcam ab110413), GAPDH (Invitrogen AM4300), AKT 

(Cell Signaling Technology 2920), pThr308 AKT (Cell Signaling Technology 2920), 

pSer473 AKT (Cell Signaling Technology 2920), or tubulin (MilliporeSigmaMonoclonal 

Anti-α- Tubulin Clone B-5-1-2, T51668).

Liver ALT assays—For ALT assays approximately 100 mg liver tissue was homogenized 

in 1 mL of homogenization buffer (25 mM HEPES, 5 mM EDTA, 0.1% CHAPS, pH 7.4) 

with protease inhibitors using a Tissuelyser. After centrifugation at 12,000 g for 5 min, the 

supernatants were diluted 1:10 in homogenization buffer. ALT activity was measured in 

the diluted supernatants using a kit from Teco Diagnostics according to the manufacturer’s 

instructions. The results were normalized to protein concentration and reported in standard 

units.

Liver glycogen assays—Frozen liver samples (30-90 mg) were hydrolyzed in 0.3 mL 

of 30% KOH solution in a boiling water bath for 30 min. Samples were vortexed at 10 

and 20 min during the incubation to facilitate digestion. Samples were allowed to cool 

to room temperature before adding 0.1 mL of 1 M Na2SO4 and 0.8 mL of 100% EtOH. 

Next, samples were boiled for 5 min then centrifuged at 10,000G for 5 min. Liquid was 

aspirated and the remaining glycogen pellet was dissolved in 0.2 mL of water, followed by 

two additional ethanol washes. The final glycogen pellet was dried in a speed vacuum and 

dissolved in 0.2 mL of 0.3 mg/mL amyloglucosidase in 0.2 M sodium acetate buffer (pH 

4.8) and incubated for 3 h at 40°C. The reaction mixture was diluted two-to fivefold with 

water. Glucose concentration was determined with a glucose assay kit (Sigma-Aldrich; cat# 

GAGO20).

Liver lipidomic analyses—Lipid species quantification was performed by the 

Washington University Metabolomics Facility. Mouse liver samples were homogenized in 

water (4 mL/g liver). TAG, DAG, and ceramide were extracted from 50 –L of homogenate 

using Blyth-Dyer lipid extraction method. TAG(17:1, 17:1, 17:1), d5-DAG(18:0, 18:0), 

and ceramide (17:0) were used as internal standards. Internal standards were added to the 

samples before extraction. Quality control (QC) samples were prepared by pooling the 

aliquots of the study samples and were used to monitor the instrument stability. The QC 

was injected six times in the beginning to stabilize the instrument, and was injected between 

every 5 study samples.

Measurement of TAG and ceramide was performed with a Shimadzu 20AD HPLC system 

coupled to an AB Sciex 4000QTRAP mass spectrometer operated in positive multiple 

reaction monitoring mode. Data processing was conducted with Analyst 1.6.3. Measurement 

of DAG was performed with a Shimadzu 10AD HPLC system and a Shimadzu SIL-20AC 

HT auto-sampler coupled to a Thermo TSQ Quantum Ultra mass spectrometer operated in 

positive selected reaction monitoring mode. Data processing was conducted with XCalibur 

1.02. Only lipid species with CV < 15% in QC sample were reported. The relative 

quantification of lipids was provided, and the data were reported as the peak area ratios 

of the analytes to the corresponding internal standards. The relative quantification data 
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generated in the same batch are appropriate to compare the change of an analyte in a 

test sample relative to other samples (e.g., control vs. treated). Lipidomic analyses were 

conducted by the Washington University Metabolomics Core.

Hepatocyte isolation and studies—Hepatocytes were isolated by perfusing livers of 

anesthetized mice with DMEM media containing collagenase from Clostridium histolyticum 
(MilliporeSigma) as reported before (McCommis et al., 2015). Briefly, hepatocytes were 

plated overnight in collagen coated 12 well-plates (200,000 cells/mL) with DMEM 

containing 10% FBS plus an antibiotic cocktail (penicillin/streptomycin and amphotericin) 

and washed twice with glucose-free Hank’s balanced salt solution (GF-HBSS) containing 

127 mM NaCl, 3.5 mM KCl, 0.44 mM KH2PO4, 4.2 mM NaHCO3, 0.33 mM Na2HPO4, 1 

mM CaCl2, 20 mM HEPES, pH 7.4.

In vitro ATF4 overexpression or knockdown studies—For experiments involving 

adenovirus mediated overexpression of ATF4, 1 μL (low) or 5 μL (high) of Ad-ATF4 was 

added to the media as indicated. Adenovirus overexpressing mouse ATF4 (ADV-253208) 

and the control β-gal-expressing adenovirus (catalog number: 1080) were obtained from 

Vector Biolabs. Hepatocytes treated with 10 μL of an adenovirus expressing β-gal served 

as a control. Cells remained in culture for 24 h following adenoviral transduction. For 

experiments involving ASO treatment, Lipofectamine RNAiMAX Transfection Reagent 

(ThermoFisher) was used per manufacturer instructions and treated hepatocytes remained 

in culture for 48 h. After 42 h of ASO treatment, 2 μg/mL of tunicamycin (Sigma) or 

an equal volume of DMSO (Sigma), which served as vehicle control; was added to the 

indicated wells for the remainder of the experiment. Following treatment of hepatocytes for 

the indicated times, media was removed and 1 mL of RNA Bee (Tel-Test) was added to each 

well to collect cells for RNA isolation. Complimentary DNA synthesis and real-time PCR 

were performed as described for liver tissue.

Hepatocyte glucose production assays—Hepatocyte glucose production assays were 

performed as described (McCommis et al., 2015). The morning after isolation, cells were 

washed 2X with PBS, and starved for 2 h in HBSS (containing 127 mM NaCl, 3.5 mM KCl, 

0.44 mM KH2PO4, 4.2 mM NaHCO3, 0.33 mM Na2HPO4, 1 mM CaCl2, 20 mM HEPES, 

pH 7.4). HBSS was removed, cells were washed in fresh HBSS, and then treated for 3 h in 

HBSS containing glucagon (100 ng/mL) alone or with 5 mM alanine, glutamine, or sodium 

pyruvate. After the 3-h incubation, media was collected and glucose concentrations were 

measured using a glucose oxidase-based glucose assay kit (MilliporeSigma; cat# GAGO20). 

Glucose concentrations were normalized to cell protein amount measured by Micro BCA kit 

(ThermoFisher).

13C-amino acid tracer studies—For studies using 13C labeled tracer metabolites, the 

morning after isolation, cells were rinsed with PBS twice. No starving was done. Cells 

were treated with HBSS solution containing glucagon (100 ng/mL) alone (for background 

calculations) or 20 mM 100% uniformly 13C-labeled alanine or 5 mM 100% uniformly 

labeled 13C-labeled glutamine in 600 μL per well and allowed to incubate for 3 h. When 

indicated, cells were treated with 5 μM UK5099 MilliporeSigma (St. Louis, MO) or vehicle 
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control, which was added at the time of 13C-labeled alanine provision. The media and 

cells were harvested and the extraction solvent (2:2:1 of methanol: acetonitrile: water) was 

mixed with media (1 part media: 9 parts extraction solvent) prior to being vortexed for 

1 min prior and placed at −20°C for an hour. Samples were centrifuged at 14,000 X g 

and 4°C for 10 min, and the supernatant stored at −80°C until metabolite analysis. For 

cell harvest and extraction, cells were washed twice with PBS and twice with HPLC-grade 

water. Cold HPLC-grade methanol was used for quenching, and cells were scraped and the 

lysates transferred to sterile Eppendorf tubes. Samples were dried in a SpeedVac for 2-6 h. 

Dried samples were reconstituted in 1 mL of cold methanol:acetonitrile:water (2:2:1), and 

subjected to three cycles of vortexing, freezing in liquid nitrogen, and 10 min of sonication 

at 25°C. Samples were then stored at −20°C for 1 h. After this, samples were centrifuged 

at 14,000 X g and 4°C. The protein content of pellets was measured by Micro BCA kit 

(ThermoFisher). Supernatants were transferred to new tubes and dried by SpeedVac for 2-5 

h. After drying, 1 μL of water:acetonitrile (1:2) was added per 2.5 μg of cell protein in 

pellets obtained after extraction. Samples were subjected to two cycles of vortexing and 10 

min of sonication at 25°C. Next, samples were centrifuged at 14,000 X g and 4°C for 10 

min, transferred supernatant to LC vials, and stored at −80°C until MS analysis.

Huh7 studies—For siRNA experiments, Huh7 cells were transfected with either 

GPT2 siRNA (Thermofisher; Cat# AM16708; ID# 112332) or negative control siRNA 

(Thermofisher; Cat# 4404021) using Lipofectamine RNAiMAX Transfection Reagent 

(Thermofisher) according to manufacturer’s instructions. After 72 h, cells were collected 

in lysis buffer for western blotting.

Metabolite analysis by LC/MS—Ultra-high performance LC (UHPLC)/MS was 

performed with a Thermo Scientific Vanquish Horizon UHPLC system interfaced with a 

Thermo Scientific Orbitrap ID-X Tribrid Mass Spectrometer (Waltham, MA). Hydrophilic 

interaction liquid chromatography (HILIC) separation was accomplished by using a 

HILICON iHILIC-(P) Classic column (Tvistevagen, Umea, Sweden) with the following 

specifications: 100 mm × 2.1 mm, 5 μm. Mobile-phase solvents were composed of A = 

20 mM ammonium bicarbonate, 0.1% ammonium hydroxide (adjusted to pH 9.2), and 2.5 

μM medronic acid in water:acetonitrile (95:5) and B = 2.5 μM medronic acid in acetonitrile:-

water (95:5). The column compartment was maintained at 45°C for all experiments. The 

following linear gradient was applied at a flow rate of 250 μL min−1: 0-1 min: 90% B, 

1-12 min: 90-35% B, 12-12.5 min: 35-25% B, 12.5-14.5 min: 25% B. The column was 

re-equilibrated with 20 column volumes of 90% B. The injection volume was 2 μL for all 

experiments.

Data were collected with the following settings: spray voltage, −3.5 kV; sheath gas, 35; 

auxiliary gas, 10; sweep gas, 1; ion transfer tube temperature, 275°C; vaporizer temperature, 

300°C; mass range, 67-1500 Da, resolution, 120,000 (MS1), 30,000 (MS/MS); maximum 

injection time, 100 ms; isolation window, 1.6 Da. LC/MS data were processed and analyzed 

with the open-source Skyline software (Adams et al., 2020). Natural-abundance correction 

of 13C for tracer experiments was performed with AccuCor (Su et al., 2017).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Figures were prepared using Prism version 8.0.1 for Windows (GraphPad Software, La Jolla 

California USA, www.graphpad.com). All human data in Table S1 are presented as the mean 

± SD. All animal data and human data in Figure 1 are presented as the mean ± SEM. All 

data sets were tested for normality by using Shapiro-Wilk’s test, and skewed data sets were 

log transformed for further analysis. Statistical significance was calculated using an unpaired 

Student’s t-test, two-way analysis of variance (ANOVA) with repeated measures, or one-way 

ANOVA with Tukey’s multiple comparisons test, with a statistically significant difference 

defined as p ≤ 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• ALT2 expression is increased in people and mice with obesity

• ALT2 expression is regulated by activating transcription factor 4 in liver

• Hepatic ALT2 deletion in lean mice has little effect on gluconeogenesis

• Silencing liver ALT2 in obese mice reduces alanine-induced hyperglycemia

Martino et al. Page 24

Cell Rep. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. ALT2 is expressed in human liver and is reduced after significant weight loss
(A) Schematic of hepatic alanine metabolism. ALA, alanine; GLU, glutamine; MPC, 

mitochondrial pyruvate carrier; ALT, alanine transaminase; OAA, oxaloacetate; αKG, α 
ketoglutarate. Created with BioRender.com.

(B) Western blotting analysis for ALT2, ALT1, and HSP60 conducted using lysates from 

obese human liver (n = 2),Huh7 cell lysates (treated with scramble [scr] or GPT2 siRNA), 

and mouse liver lysates (WT or LS-Gpt2−/−).

(C) Western blot image for ALT2, ALT1, and tubulin from liver biopsies collected from 

cadaveric donor livers (n = 3) or during RYGBS (n = 2) from patients with obesity.

(D) Expression of mRNA for GPT and GPT2 in obese subjects before (pre) (n = 8) and 6 

months after (post) (n = 8) bariatric surgery.

(E) Expression of the indicated genes encoding mitochondrial amino acid transporters in 

obese subjects during (pre) (n = 7) and 6 months after (post) (n = 7) bariatric surgery.

(D and E) Data are presented as mean ± SD. *p ≤ 0.05 for pre versus post.
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Figure 2. Diet-induced obese and db/db mice exhibit increased hepatic ALT abundance and 
exacerbated hyperglycemia from gluconeogenic amino acids
(A and B) (A) Representative western blot images for ALT2 and GAPDH proteins and (B) 

expression of Gpt2 mRNA in livers of mice fed either a control low-fat diet (LFD) (n = 5) or 

a 60% high-fat diet (HFD) (n = 5).

(C and D) Blood glucose concentrations after an i.p. injection of L-alanine (C) or L-

glutamine (D) in diet-induced obese (HFD; n = 5) and lean (LFD; n = 5) mice.

(E) Representative western blot image for ALT2 and mitochondrial complex III from either 

db/+ or db/db mouse liver homogenates.

(F) Expression of Gpt2 in liver RNA from db/+ (n = 8) and db/db (n = 5, 7) mice (bottom 

panel).

(G and H) Blood glucose concentrations after an i.p. injection of L-alanine (G) or L-

glutamine (H) in db/+ (n = 7, 8) and db/db mice (n = 6, 7). For (A) and (E) densitometric 

quantification of ALT2/loading control band intensity is provided numerically between the 

blots. Data are presented as mean ± SEM. *p ≤ 0.05 for LFD versus HFD or db/+ versus 

db/db.
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Figure 3. Gpt2 is regulated by the ER stress transcription factor ATF4
(A) Liver tissue from db/+ and db/db mice treated with a control ASO or an ASO against 

ATF4 were used to assess gene expression (n = 8) and obtain lysates for western blotting for 

ALT2 and tubulin (n = 3).

(B) Expression of the indicated ATF4 target genes in obese subjects during (pre; n = 7) and 6 

months after (post; n = 7) bariatric surgery. Data are presented as mean ± SD. *p ≤ 0.05 for 

pre versus post.

(C) Hepatocytes isolated from lean C57BL/6J mice were pretreated with a control ASO or 

an ASO against ATF4 for 24 h were treated with the ER stress-inducing agent tunicamycin 

(Tuni) or vehicle control (DMSO) for 6 h, after which gene expression was assessed (n = 

11). Data are presented as mean ± SEM. *p ≤ 0.05.
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Figure 4. Loss of ALT2 reduces hepatocyte alanine metabolism and alanine-mediated 
gluconeogenesis
(A) Representative western blots for ALT2, ALT1, or GAPDH using liver lysates from WT 

and LS-Gpt2−/− mice demonstrating loss of ALT2 protein.

(B) Glucose concentrations in the media of hepatocytes isolated from WT or LS-Gpt2−/− 

mice stimulated with glucagon in the presence of no substrate, alanine, pyruvate, or 

glutamine. Some cells were also treated with the transaminase inhibitor β-chloroalanine 

(β-Cl) (n = 7). *Indicates significant differences (p < 0.05).

(C) Schematic depicting incorporation of 13C-alanine into pyruvate and TCA cycle 

intermediates. Black circles indicate 13C. White circles indicate 12C. Created with 

BioRender.com.

(D) Hepatocyte citrate enrichment from 13C-alanine is shown. *Significant differences (p < 

0.05) between hepatocytes from different genotypes of mice.

(E) Hepatocyte M3 citrate enrichment from 13C-alanine is shown. *Significantly different (p 

< 0.05) from WT hepatocytes treated with vehicle. **Significantly different (p < 0.05) from 

all other groups.

(F) Media glucose enrichment from 13C-alanine is shown. *Significant differences (p < 

0.05) between hepatocytes from different genotypes of mice. For (D)–(F), a representative 

experiment (of 3) performed in triplicate is shown. Data are presented as mean ± SEM.
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(G) Blood glucose concentrations during ATT, QTT, and pyruvate tolerance test (PTT) 

analyses using lean WT or LS-Gpt2−/− mice.
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Figure 5. Loss of liver ALT2 does not affect blood glucose levels in lean mice
(A) Gpt2 mRNA expression in liver from fed and fasted WT and LS-Gpt2−/− mice.

(B) Blood glucose concentrations of fed and fasted WT and LS-Gpt2−/− mice (n = 14–17 

mice per group).

(C and D) (C) Liver glycogen concentrations and (D) plasma branched chain amino acids 

levels of fed and fasted WT and LS-Gpt2−/− mice.

(E and F) Bulk RNA sequencing analysis shows only Gpt2 is significantly altered by 

LS-Gpt2−/− knockout. Volcano plots of merged differential expression data from hepatic 

RNA of (E) fed WT versus LS-Gpt2−/− or (F) fasted WT versus LS-Gpt2−/− mice. Data were 

graphed as log2 fold change verses –log10 unadjusted p value. Gene expression changes 

were considered meaningful if they were >log2 fold change and had an adjusted p value 

of <0.05 versus WT mice. Graphical representation of pathway analysis showing the top 

25 significant signal direction changes of KEGG Signaling and Metabolism pathways. The 

color of the pathway label indicates the degree and direction of the change and the p value is 

the x axis. Data are presented as mean ± SEM. *Significant differences (p < 0.05) between 

indicated groups.
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Figure 6. Hepatic ALT2 knockdown results in decreased blood glucose concentration
Mice (db/+ and db/db) were infected with an adenovirus expressing shRNA targeting LacZ 
or Gpt2.

(A) Gpt2 gene expression was assessed in adenovirus-treated db/+ (n = 11) and db/db (n = 

9–13) mice 6 days post infection. *p < 0.05 versus indicated groups.

(B) Representative western blot image for ALT2 or mitochondrial complex III as a loading 

control using mouse liver lysates from adenovirus shRNA-treated db/+ or db/db mice 6 days 

after adenovirus administration.

(C) Total liver ALT activity in db/+ and db/db liver (n = 4–7 per group) after treatment with 

adenovirus expression shRNA against LacZ or Gpt2. *p < 0.05 versus indicated groups.

(D) Random fed blood glucose concentrations in adenovirus shRNA-treated db/+ or db/db 
mice 5 days after adenovirus injection (n = 13–18 per group). *p < 0.05 versus indicated 

groups.

(E) Plasma insulin concentrations in adenovirus shRNA-treated db/+ or db/db mice 7 days 

after adenovirus injection. Plasma was collected at sacrifice after a 4 h fast (n = 8–10 per 

group). *p < 0.05 versus indicated groups.

(F) Plasma amino acid concentrations in db/+ or db/db mice 7 days after administration of 

adenovirus expressing shRNA against LacZ or Gpt2. Plasma was collected at sacrifice after 
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a 4 h fast (n = 4–5 per group). *p < 0.05 versus shLacZ db/db mice. **p < 0.05 versus db/+ 
mice.
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Figure 7. Loss of hepatic ALT2 lowers blood glucose in diabetic db/db mice without affecting 
hepatic steatosis or insulin sensitivity
(A–C) Hepatic triglyceride (TAG) (A), diacylglycerol (DAG) (B), and ceramides (C) in 

liver extracts from db/+ and db/db mice collected 7 days after injection of adenovirus to 

knockdown Gpt2 or LacZ and after a 4 h fast. *p < 0.05 versus db/+ mice.

(D) Blood glucose area under the curve during insulin tolerance test (ITT) analyses in 

shLacZ or shGpt2 adenovirus-treated db/db mice 5 days post infection (n = 7).

(E) Western blots for AKT (phospho-S473, phospho-T308, or total) and ALT2 in db/db mice 

7 days after administration of adenovirus expressing shLacZ or shGpt2. Mice were injected 

with insulin or saline 5 min before sacrifice as indicated.

(F) Blood glucose concentrations during an ATT in adenovirus-treated db/+ (n = 12) and 

db/db (n = 9–11) mice 6 days post adenovirus injection. *p < 0.05 versus indicated groups.

(G and H) Blood glucose area under the curve during QTT (G) or glucagon tolerance test 

(H) analyses in shLacZ or shGpt2 adenovirus-treated db/db mice 5 days post infection (n = 

5). Data presented as mean ± SEM.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-ALT2 Sigma-Aldrich cat#HPA051514; RRID:AB_2681516

Rabbit monoclonal anti-GPT Abcam cat#ab202083

Mouse monoclonal anti-OXPHOS Rodent Cocktail Abcam cat#ab110413; RRID:AB_2629281

Mouse monoclonal anti-α-Tubulin Sigma-Aldrich cat#A11126; RRID:AB_2534135

Mouse monoclonal anti-GAPDH Invitrogen cat#AM4300; RRID:AB_2536381

Rabbit polyclonal anti-pSer473 AKT Cell Signaling Technology cat#9271; RRID:AB_329825

Rabbit polyclonal anti-pThr308 AKT Cell Signaling Technology cat#9275; RRID:AB_329828

Mouse monoclonal anti-AKT Cell Signaling Technology cat#2920; RRID:AB_1147620

IRDye 800CW Goat Anti-Rabbit IgG Secondary 
Antibody

LI-COR cat#926-32211; RRID:AB_621843

IRDye 680RD Donkey Anti-Rabbit IgG Secondary 
Antibody

LI-COR cat#926-68073; RRID:AB_10954442

IRDye 680RD Goat Anti-Mouse IgG Secondary 
Antibody

LI-COR cat#926-68070; RRID:AB_10956588

Bacterial and virus strains

Mouse GPT2 shRNA silencing Adenovirus Vector Biolabs cat# shADV-260703

Control LacZ- GFP Adenovirus ThermoFisher cat# K494100

mouse ATF4 Adenovirus Vector Biolabs cat# ADV-253208

b-gal/LacZ Adenovirus Vector Biolabs cat# 1080

Biological samples

Human cadaveric donor liver tissue Midwest Transplant Services N/A

Pre/Post RYGBS liver samples Bariatric Surgery Program at 
Barnes-Jewish Hospital (St. 
Louis, Missouri)

N/A

Blood samples Clinical Research Unit, 
Washington University in St. 
Louis School of Medicine

N/A

Chemicals, peptides, and recombinant proteins

DMEM - Dulbecco’s Modified Eagle Medium ThermoFisher cat#11960085

Fetal Bovine Serum Gibco cat#26140-079

Collagenase from Clostridium histolyticum Millipore Sigma cat#C5138

Lipofectamine RNAiMAX ThermoFisher cat#13778075

[6,6-2H]glucose Cambridge Isotope Laboratories 
Inc.

cat#DLM-349-PK

Insulin (Humulin) Eli Lilly and Company cat#Humulin R U-100

Glucagon Millipore Sigma cat#G2044

RNA-Bee Tel-Test cat#CS-501B

Tunicamycin Millipore Sigma cat#T7765

Penicillin-Streptomycin (10,000 U/mL) Gibco cat#15140122

Amphotericin B Gibco cat#15290026

L-Alanine Millipore Sigma cat#A7627

L-Glutamine Millipore Sigma cat#G3126

Cell Rep. Author manuscript; available in PMC 2022 May 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Martino et al. Page 35

REAGENT or RESOURCE SOURCE IDENTIFIER

Sodium Pyruvate Millipore Sigma cat#P4562

UK5099 Millipore Sigma cat#PZ0160

Critical commercial assays

Glucose and Lactate Analyzer Yellow Spring Instruments Co. cat#YSI2300 or cat# YSI2900 analyzer

Human Insulin-Specific RIA Kit Linco Research, Inc. cat#EZHIASF-14K

One-Touch Ultra glucometer LifeScan N/A

Reverse transcription kit Thermo Fisher (Applied 
Biosystems)

cat#4368814

Power SYBR Green Thermo Fisher (Applied 
Biosystems)

cat#4367659

ALT (SGPT) Kinetic Teco Diagnostics cat#A524-150

Erenna Immunoassay System Singulex N/A

Glucose Oxidase Activity Assay Kit Millipore Sigma cat#GAGO20

Thermo Scientific Vanquish Horizon UHPLC Thermo Scientific cat#IQLAAAGABHFAPUMZZZ

Infinity Triglycerides Thermo Scientific cat#TR22421

Infinity Cholesterol Thermo Scientific cat#TR13421

Deposited data

RNA sequencing data This paper GSE199975

Experimental models: Cell lines

Huh7 Cells Glow Biologics cat# GBTC-099H

Experimental models: Organisms/strains

Mouse - diet-induced obese mice in the C57BL/6J 
strain

Jackson Laboratories Stock# 380050

Mouse – lean controls for diet-induced obese mice in 
the C57BL/6J strain

Jackson Laboratories Stock# 380056

Mouse Littermate db/db and heterozygous (db/+) Jackson Laboratories Stock# 000697

Mouse Gpt2tm1e(KOMP)Wtsi –“Gpt2 knockout” Knockout Mouse Project 
Repository

project ID CSD24977

Mouse B6.Cg-Speer6-ps1Tg(Alb-cre)21Mgn/J –“Alb-
Cre”

Jackson Laboratories Stock# 003574

Mouse B6.Cg-Tg(ACTFLPe)9205Dym/J -“Actin-Flp” Jackson Laboratories Stock# 005703

Mouse Gpt2 floxed - generated by crossing Gpt2 
knockout and Actin-Flp

This paper N/A

Mouse LS-Gpt2−/− generated by crossing Gpt2 floxed 
with Alb-Cre

This paper N/A

Oligonucleotides

ATF4 ASO Ionis Pharmaceuticals (Carlsbad, 
CA).

ID: 489707

Scrambled ASO Ionis Pharmaceuticals (Carlsbad, 
CA).

ID: 141923

Human GPT2 siRNA Thermo Fisher Cat# AM16708; ID# 112332

Human negative control siRNA Thermo Fisher Cat# 4404021

PCR Oligonucleotides can be found in Table S3 N/A N/A

Software and algorithms

Prism Version 9 GraphPad https://www.graphpad.com/scientific-software/
prism/
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REAGENT or RESOURCE SOURCE IDENTIFIER

Image Studio Lite Ver 5.2 Licor https://www.licor.com/bio/image-studio-lite/
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