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ABSTRACT
Mesophotic and deeper habitats (∼40 to 350 m in depth) around Rapa Nui (Easter
Island) were investigated using a remotely operated vehicle. We observed extensive
fields of filamentous cyanobacteria-like mats covering sandy substrates and mostly
dead mesophotic Leptoseris spp. reefs. These mats covered up to 100% of the seafloor
off Hanga Roa, the main village on the island, located on its western side. The highest
mortality of corals was observed at depths between 70 and 95 m in this area. Healthy
Leptoseris reefs were documented off the northern and southeastern sides of the island,
which are also the least populated. A preliminary morphologic analysis of samples of
the mats indicated that the assemblage is composed of at least four filamentous taxa,
including two cyanobacteria (cf. Lyngbya sp. and Pseudoanabaena sp.), a brown alga
(Ectocarpus sp.), and a green alga (Cladophora sp.). An ongoing eutrophication process
is suggested as a potential driver of the proliferation of these filamentousmats off Hanga
Roa village.

Subjects Ecology, Marine Biology, Natural Resource Management, Environmental Contamina-
tion and Remediation, Environmental Impacts
Keywords Cyanophyceae, Lepstoseris, Mesophotic reefs, Marine conservation, Easter Island,
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INTRODUCTION
Mesophotic coral ecosystems are deep reef communities that typically occur at a depth
range of 30 or 40 to over 150 m (Baker et al., 2016). They are formed mainly by coral taxa
adapted to living in low-light conditions and often also include other structure-forming
taxa, such as sponge and macroalgae species (Baker et al., 2016; Slattery & Lesser, 2021).
These ecosystems are now recognized as ecologically distinct and independent from their
shallower counterparts and contain a substantial diversity of unique biota that is still
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unexplored in most parts of the world (Rocha et al., 2018). The lack of knowledge about
these deep coral ecosystems is a consequence of the difficulty of accessing the depths at
which they occur, as technical diving (e.g., rebreather diving using trimix) or sophisticated
submarine equipment (e.g., remotely operated vehicles, autonomous drop-cams, or
manned submersibles) are required to carry out research. Mesophotic coral ecosystems are
vulnerable to a series of anthropogenic stressors, such as fishing, thermal stress, diseases,
pollution, invasive species, the marine aquarium trade, oil and gas exploration, cables, and
pipelines (Andradi-Brown et al., 2016).

Rapa Nui (Easter Island; 27◦07′S, 109◦22′W), which formed∼0.8Mya, is a remote island
located at the westernmost end of the large chain of seamounts comprising the Salas y
Gómez ridge, relatively close to the East Pacific Rise (Rodrigo, Díaz & González-Fernández,
2014). Located in the easternmost apex of the Polynesian triangle, it is recognized for
the high overall endemism levels of its coastal marine fishes (∼22%; Randall & Cea,
2010) and invertebrate taxa (4% to 34%; see Fernandez et al., 2014). However, this unique
marine biodiversity is severely threatened by several anthropogenic impacts, including
overfishing (Zylich et al., 2014), plastic pollution (Hidalgo-Ruz et al., 2021), exacerbated
tourism (Figueroa & Rotarou, 2016), coastal erosion and terrestrial runoff (Mieth & Bork,
2005), and potential pollution from the percolation of domestic sewage and landfill
contaminants into aquifers (Rosa, 2013).

Recently (2015–2018), through the use of a remotely operated vehicle (ROV), we have
been able to access unexplored marine habitats (from ∼40 to 350 m deep) around the
island, as well as at nearby seamounts, allowing for a first assessment of the biodiversity
of mesophotic ecosystems and deeper sites (Easton et al., 2019), generation of new records
of fauna, including fishes (e.g., Easton et al., 2017) and echinoderms (Mecho et al., 2019),
and reports of vast fields of the solitary mesophotic mushroom coral Cycloseris vaughani
(Hoeksema, Sellanes & Easton, 2019). In these surveys, a chance discovery was the presence
of dense and extensive fields of filamentous mats, covering the seafloor and nearby reefs at
mesophotic depths at several locations around the island. It is known that cyanobacteria
are a common constituent of coral reef ecosystems (Stal, 2000) and play an important role
in nitrogen fixation and primary production (Charpy et al., 2012). However, under certain
conditions, they can undergo massive proliferation, affecting the health of the ecosystem
(Bakker et al., 2017; Ford et al., 2017). These events have been associated with variation
in irradiance, nutrient supply, and other natural and anthropogenic disturbances (Ford
et al., 2018). These proliferation events seem to be increasing at a global scale because of
alterations in local biogeochemical cycles related to climate change (Paul, 2008; Paerl &
Paul, 2012). These filamentous mats could develop into such dense blooms that they could
even wash ashore, producing a mass accumulation, as reported by Nagle & Paul (1999) for
Guam. At this location, benthic marine cyanobacterial blooms often occur in the presence
of diverse assemblages of herbivorous fishes and urchins, but the underlying factors causing
these proliferations, as well as the interaction mechanisms between grazers and these mats
(since cyanobacteria are known to produce feeding-deterrent compounds), are still poorly
understood (Cissell, Manning & McCoy, 2019; Ford et al., 2021). In addition, cyanobacteria
have been directly linked with ciguatera fish poisoning outbreaks (Laurent et al., 2008),
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and mats can create suitable habitats for other toxic microalgae, including toxin-producing
dinoflagellates, thus generating co-occurring blooms (Paerl & Otten, 2013). Although
several microalgae species are not toxic, their growth could produce low oxygen conditions
as a consequence of organic matter accumulation and associated degradation processes
in the bottom water, thus affecting the benthic communities (Albert et al., 2012). It is also
possible that the rise of fixed nitrogen may modify its budget in the system, promoting the
growth of macroalgae, further increasing the organic matter content within the sediments,
and decreasing porewater oxygen content (Brocke et al., 2015; Brocke et al., 2018). In some
environments, mats form associations with sulfate-reducing bacteria, producing sulfide,
which is toxic for corals and establishes black band disease (Myers & Richardson, 2009;
Charpy et al., 2012).

It has also been reported that in littoral reefs, green algae (chlorophytes) are common
indicators of eutrophication (Barile, 2004). Most of the species in this group proliferate due
to increased nutrient inputs, tolerate a wide range of environmental conditions, aggressively
compete against sensitive corals, and have sub-lethal effects on several of the biological
functions of corals (Koop et al., 2001; Fabricius, 2005; Birrel et al., 2008).

In this context, the aims of the present study were: (1) to provide a first approach to
the spatial coverage of filamentous mats in the benthic ecosystem around Rapa Nui, (2) to
evaluate the extent of the mesophotic coral reefs potentially impacted by these mats, and
(3) to provide a preliminary description of the taxonomic composition of these mats.

MATERIALS AND METHODS
Rapa Nui is a triangular-shaped island, delimited by the volcanoes Rano Kau in the
southwest, Terevaka in the north, and Poike in the east, with Hanga Roa, the main
village, located on the western side (Fig. 1). Aiming to have a representative spatial and
bathymetric (∼40 to 350 m deep) characterization of the mesophotic habitats on the three
sides of the island, a remotely operated vehicle (ROV), controlled from local fishing boats,
was deployed in 56 mostly independent sites around the island. There were 18 deployments
each in January 2018 and 2019, and 20 during November and December 2019 (Fig. 1). The
ROV, model Commander MKII (Mariscope Meerestechnik, Kiel, Germany), was equipped
with two laser pointers, 10 cm apart, and a front-pointing HD video camera (Panasonic
SD 909), angled at 45◦ and recording at 30 fps with a resolution of 1920 × 1080 pixels.
The videos were analyzed at half their normal speed using GOM Player 2.3.19 (GOM &
Company; https://www.gomlab.com/).

Asmentioned in the Introduction, some of the results of these and previous ROV surveys
have been presented elsewhere (Easton et al., 2017; Easton et al., 2019; Hoeksema, Sellanes
& Easton, 2019; Mecho et al., 2019), for selected biotic components. For the present study,
however, the focus was to evaluate the spatial coverage of filamentous mats in the benthic
ecosystem, and the extent of mesophotic reefs potentially impacted by these mats, as well
as their overall health conditions. The presence and coverage of filamentous mats were
assessed semi-quantitatively by observing the seafloor in a stepwise manner as the ROV
advanced over the ground along transects. Bottom-time varied between 10 and 42 min
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Figure 1 Map of Rapa Nui showing the main features of the island, the sites surveyed in the present
study, and the extent of coverage of filamentous mats at these sites. (A) Abundance of filamentous mats
in the benthic ecosystems at the survey sites. (B) Depth range of the remotely operated vehicle stations for
each category of filamentous mat coverage used in this study. Green: no mats observed, yellow: low cov-
erage, orange: high coverage, and red: very high coverage. The box plots show the mean (red diamonds),
median (horizontal black line), and lower and upper quartiles; the whiskers indicate the depth range for
each category. The letters (a, b) indicate homogenous groups identified using the Wilcoxon post hoc test.

Full-size DOI: 10.7717/peerj.12052/fig-1

(mean: 25 min) per transect. In general, a portion of 10 to 20 min of video, considering
mainly those segments in which the ROV was displaced at a steady velocity and a suitable
distance from the bottom, was selected and analyzed per site. For each transect, we analyzed
an area of at least 10 m2, corresponding to ∼15 non-overlapping frames. We exclusively
analyzed those frames when the ROV was approximately 25 cm above the ground or in
front of the reefs. As calibrated with the ROV on land, at these distances the images covered
an area of ∼0.65 m2 (width ∼117 cm × height ∼65 cm).

According to the extent to which the bottom or the coral was covered by filamentous
mats, the transects were cataloged into four groups: (1) without patches of filamentous
mats, (2) low coverage (less than 50% coverage in at least five non-overlapping frames of
the video of a transect), (3) high coverage (50% to 75% coverage in at least five frames of the
video of a transect), and (4) very high coverage (100% coverage). Statistical comparisons
of the mean depth between the four categories of filamentous mat coverage were evaluated
using the Kruskal-Wallis test. Post hoc analyses were performed using pairwise comparisons
with the Wilcoxon rank sum test and the p-value was adjusted using the Holm method
(Holm, 1979). Before comparisons, normality and homogeneity of variance were tested
using the Shapiro–Wilk and Levene tests, respectively. Statistical analyses were performed
using RStudio (R StudioTeam, 2020), specifically the ‘‘car’’ package (Fox & Weisberg, 2019)
and the ‘‘ggplot2’’ package for boxplots (Wickham, 2016).

We used the same ROV survey approximation to assess the extent of live coral coverage
as a proxy for coral health status. Three categories were considered: (1) a healthy reef with
>75% of the corals alive, (2) some damage with 25% to 75% of the corals alive, and (3)
mostly damaged with <25% of the corals alive (mainly dead corals or fragments). Dead
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corals were easily identified by their generally greenish or darker colors. Some were also
covered by filaments.

To characterize the taxonomic composition of the filamentous mat assemblage, in May
2019, a small benthic trawl with a horizontal aperture of 30 cm was deployed at a site off
Hanga Roa, where patches with 100% coverage were frequent. Mat samples were fixed
using a 4% aqueous solution of formaldehyde (ACS Reagent; Sigma-Aldrich, St. Louis,
MO,USA). Formorphological characterization, filaments were observed using anOlympus
IX71 inverted microscope equipped with phase contrast and epifluorescence (Olympus
Co., Tokyo, Japan). Micrographs were taken using a camera ProgRes C3 (JENOPTIK AG,
Jena, Germany), and measurements of cells (length and width) were carried out using
ProgRes R© CapturePro (JENOPTIK AG) analytical software. Monographic publications,
floristic studies, and systematic articles were used for taxonomic identification of the
macroalgae composing the mats, at least to the genus level (Santelices, 1989; Loiseaux-de
Goër & Noailles, 2008; Cormaci, Furnari & Alongi, 2014; Ramirez et al., 2018). Guides and
systematic articles were used to identify the cyanobacteria inhabiting the mat samples
(Komarek & Anagnostidis, 2007; Yu et al., 2015; Brocke et al., 2018; Zubia et al., 2019). The
identification of taxa was performed at the genus or species complex level.

Sample collection was performed with permission Res. Ext No. 41/2016 and No.
3314/2017 from SUBPESCA (National Fishing Authority of Chile) granted to the
Universidad Católica del Norte. This project was also presented to the local Consejo
del Mar de Rapa Nui (Council of the Sea of Rapa Nui), which permitted the capture of
underwater footage and sampling around the island.

RESULTS
The ROV transects around the island covered a depth range of 43 to 347 m. This allowed
us to visualize the spatial and bathymetric distribution of sites with different levels of
filamentous mat coverage (Figs. 1 and 2), and the distribution of mesophotic reefs and
their health status around the island (Fig. 3). Mesophotic corals were represented by
reef-forming Porites lobata and Pocillopora spp. at shallower depths (<60 m), Leptoseris
spp., and C. vaughani at depths between 70 and 117 m, and sea-whips (Stichopathes spp.)
between 127 and 327 m (Fig. 2). Other scleractinians were occasionally sighted deeper than
120 m (e.g., cup corals), but they were too small to identify using ROV images.

Spatial distribution of filamentous mats and corals
Filamentous mats were absent (category: without) from 34 of the studied sites around
Rapa Nui, and low to very high coverage was observed at the remaining 22 sites, commonly
on the western side of the island (Fig. 1A) and in water shallower than ∼130 m (Fig. 1B).
Statistical comparisons confirmed the significant differences between the depths of the
mat-coverage categories (Kruskal-Wallis, Ch i2= 12.9, df = 3, p = 0.005), in particular
between the categories without and very high (Wilcoxon test, p = 0.023; Fig. 1B). Other
comparisons between categories were not significant (Wilcoxon test, p > 0.05). Indeed,
high coverage was observed in the northwest corner (close to Hanga O’teo) at a depth of
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Figure 2 Remotely operated vehicle (ROV) images of the filamentous mats andmesophotic reefs off
Rapa Nui. (A) Field of filamentous mats at∼80 m deep off Hanga Roa, Rapa Nui. (B) Close up view of
the filaments. (C) Filaments among Cycloseris vaughani individuals. (D) Dead Leptoseris reef∼80 m deep
overgrown by filaments. (E) Healthy Leptoseris reef off Anakena 80 m deep. (F) Healthy Leptoseris reef off
Hanga Roa filmed during prospective ROV surveys during the ‘‘CIMAR-5 Islas’’ cruise conducted in 1999.
Scale bars: 10 cm (A, B, C) and 25 cm (D, E, F). Images: Matthias Gorny, OCEANA.

Full-size DOI: 10.7717/peerj.12052/fig-2

123 m, and high and very high coverages were observed mainly off Hanga Roa (Fig. 1B)
from 70 to 95 m deep.

Corals were observed in 50% of the 56 transects (Fig. 3A), and Leptoseris was present in
11 of them. Off Hanga Roa, the location where filamentous mats were most frequent, they
were observed covering the sediments (Figs. 2A, 2B), fringing fields of the zooxanthellate
mushroom coral C. vaughani (Figs. 2C, 3A; see also Hoeksema, Sellanes & Easton, 2019),
and close by dead Leptoseris reefs (∼80 m deep), which were also overgrown by filamentous
mats (Fig. 2D). Healthy Leptoseris reefs were documented mainly off the northern and
southeastern parts of the island (e.g., near Anakena, La Perouse, and Vinapú) at depths of
68 to 82 m (Fig. 3B). Of the six locations with the healthiest Leptoseris reefs, four of them
had no filamentous mats, or a sporadic presence of them, whereas at the three sites where
the reefs were completely dead, filamentous mat coverage was high or very high (see also
Supplemental Information).
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Figure 3 Transects surveyed off Rapa Nui in the present study showing sites with mesophotic corals.
(A) Map showing the main mesophotic coral taxa at each site. (B) Health status of Leptoseris reefs indi-
cated by color: green= healthy (no noticeable impact), yellow= some damage (25%–75% of corals dam-
aged), and red= destroyed (only dead corals or fragments observed).

Full-size DOI: 10.7717/peerj.12052/fig-3

Taxonomic characterization of the filamentous mat assemblage
Morphological analyses of samples of mats collected off Hanga Roa indicated that mats
are an assemblage of at least four taxa: one Chlorophyta (Cladophora sp.), one Ochrophyta
(Ectocarpus sp.), and two Cyanobacteria (Lyngbya s.l. ([sensu lato] and Pseudoanabaena
sp.) (Fig. 4) as follows:

Cladophora sp. (Figs. 4A, 4B): thallus of green to light green branched uniseriate filaments
with 2–3 cm in total length. Basal part of the filaments fixed to the substrate by a primary
rhizoid. Presence of unilateral branches inserted laterally or obliquely on the filament.
Principal axis constituted by cylindrical cells measuring of 998.9 ± 69.2 µm in length and
223.3± 9.5 µm in diameter. Apical cells cylindrical, round ended with a diameter of 250.0
± 7.6 µm and length of 701.8 ± 76.0 µm. Zoosporangia were not observed.

Ectocarpus sp. (Figs. 4C, 4D): thallus of light brown to olive sparingly branched filament
0.1–0.5 cm in total length. Cells conform to uniseriate filaments ending in a rounded
apical cell. Cells barrel-shaped, 50.0 ± 7.3 µm in length, and 14.1 ± 3.4 µm in diameter.
Plurilocular sporangia were present, elongated with cylindroconical form, 80–130 µm in
length and 20–30 µm in diameter.

Lyngbya s.l. (Figs. 4E, 4F): thallus caespitose, brownish-red, filaments slightly curved,
sheet colorless, lamellated with apices not attenuated at the end. Trichome not constricted
at the cross-wall, cylindrical cells very short 3.5 ± 0.3 µm in length and 7.1 ± 0.1 µm in
diameter, sheath 1.6 ± 0.3 µm, end cells rotund, calyptra absent.

Pseudoanabaena sp. (Figs. 4G, 4H): trichomes solitary or crowded in clusters, straight
or almost straight, pale blue–green. Cells barrel-shaped, 2.8 ± 0.8 µm in length and 1.2
± 0.1 µm in diameter, intensely constricted at cross walls, no heterocysts or sheath, end
cells round.
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Figure 4 Micrographs of four filamentous taxa in samples frommats collected off Hanga Roa, Rapa
Nui at mesophotic depths. A–E and G were photographed using phase-contrast and F and H using epi-
fluorescence techniques. (A, B) Cladophora sp. (C, D) Ectocarpus sp. (E, F) Lyngbya s.l. (G, H) Pseudoan-
abaena sp. Scale bars represent (A): 500 µm, (B): 200 µm, (C): 100 µm, (D): 30 µm, (E and F): 20 µm,
and (G) and H: 30 µm.

Full-size DOI: 10.7717/peerj.12052/fig-4
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DISCUSSION
Although we have provided only a preliminary taxonomic characterization of the
filamentous mats covering sandy areas and dead mesophotic reefs off Rapa Nui, our
findings indicate that these mats are composed of at least two cyanobacteria. We are
aware of, and recognize the limitations associated with our approach to identifying mat
taxa, based only on morphology. As indicated by Komárek (2016), Lyngbya, Okeania,
and Moorea cannot be distinguished from each other using light microscopy. Thus, we
refer to Lyngbya s.l. ([sensu lato] and suggest that genetic analysis is needed to clarify
this classification. Cyanobacteria-dominated microbial mats are known to be typical
components of coral reef systems and often undergo massive proliferation (Stal, 2000).
These events have been associated with natural processes (e.g., variation in irradiance),
but mostly with anthropogenic disturbances that increase nutrient concentrations in
the marine environment (Ford et al., 2017). The highest coverage of mats was observed
mainly off Hanga Roa village, which has the highest concentration of the island’s human
population (7,750 inhabitants; http://www.ine.cl) and where most tourists engage in
recreational activities. Figueroa & Rotarou (2016) reported ∼20,000 visitors per year in
the late 1990s, whereas ∼150,000 were reported during 2019 (http://www.sernatur.cl),
representing an approximately eight-fold increase over the last two decades. Factors such
as overtourism, the absence of a wastewater collection and treatment system (most of the
residences have cesspools and a minor proportion have septic tanks), and the unlined
landfill (Rosa, 2013) potentially pose a great threat to the marine environment off Hanga
Roa village, owing to the potential input of organic matter, nutrients, and contaminants.
Pollutants can reach the sea by runoff or percolation to aquifers that eventually discharge
into the sea. On Rapa Nui, submarine groundwater discharges are ubiquitous in intertidal
environments around the island (Brosnan, Becker & Lipo, 2018), and could hypothetically
also seep through deeper sediments (Montgomery EL & Associates INC, 2011), potentially
conducting nutrients of anthropogenic origin directly to mesophotic habitats. Indeed, very
low salinities (4.7–16.8 psu) have been measured in the overlying water of unperturbed
sediment cores obtained off Hanga Roa where filamentous mats proliferate, further
suggesting percolation of pollutants to aquifers in the area (P. Muñoz, unpublished data). A
similar situation has been observed at the western flank of Hawai’i Island, where freshwater
from onshore aquifers can flow through permeable fractured basalts, mix with seawater
to form freshened groundwater, and seep into offshore (mesophotic) benthic areas (Attias
et al., 2020). Furthermore, the observation of low salinity bottom water is concomitant
with relatively high NO3− concentrations (1.87 and 3.03 µM), compared to two other sites
where nitrate concentrations were undetectable in overlying waters with normal salinities
(∼35 psu) (P. Muñoz, unpublished data). Therefore, it is feasible that the benthic fluxes
and submarine groundwater discharges could channel nutrients to mesophotic depths,
enhancing algal and cyanobacterial growth, to the detriment of corals. A similar situation,
albeit caused by groundwater nutrients derived from bird guano, was observed in the coral
reefs of Heron Island (Great Barrier Reef, Australia;McMahon & Santos, 2017). In addition
to the potential impacts of pollutants, the permanent coastal erosion around Rapa Nui and
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terrestrial runoff during rainy seasons (May to October) could also increase nutrient inputs
to the coastal environments, including ammonia, nitrate, and silicate, which are known
to have negative consequences for corals (D’Angelo & Wiedenman, 2014). Furthermore,
the volcanic origin of Rapa Nui, together with enhanced erosion could also increase the
iron concentration in the marine ecosystem. Iron from shipwrecks has been found to
directly drive cyanobacteria expansion in iron-limited reefs in the Pacific (Kelly et al., 2012;
Mangubhai & Obura, 2018). Increased iron added to a decrease in the N:P ratio could even
further stimulate the proliferation of cyanobacteria (Ford et al., 2018).

Regarding mesophotic reefs, two species of the genus Leptoseris have been reported for
Rapa Nui, L. scabra and L. solida, both collected in 1999 off Hanga Roa at depths of 43
m and 80 to 100 m, respectively (Glynn et al., 2007). Given the depth of our observations
as well as the plate-like structure of the colonies, as indicated by Glynn et al. (2007), the
damaged reef off Hanga Roa village was probably composed mainly of L. solida. A piece
of evidence, also obtained in November 1999 during the first ROV survey ever done off
Hanga Roa at ∼80 m deep, suggests that the same Leptoseris reef that is currently dead
was healthy ∼20 years ago (Fig. 2D; Gorny & Retamal, 2000). In the present study, live
Leptoseris reefs were documented mainly off the northern and southeastern sides of the
island (e.g., Anakena, La Perouse, and Vinapú).

Despite the circumstantial indication of the health status of the mesophotic reefs off
Hanga Roa a few decades ago, the ecological impacts on the biodiversity and ecosystem
functioning associated with anthropogenic causes are still unknown and need further
investigation in the short term. Further research should address a more detailed taxonomic
characterization of these mats, for example, through molecular techniques; assessment
of the seasonal, spatial, and structural patterns of the assemblage; their eventual role in
reef deterioration; recognition of eutrophication mechanisms; and long-term monitoring
of dissolved organic matter and nutrient dynamics. These studies are encouraged to
inform the implementation of effective and integrated land-sea management actions,
including a wastewater treatment system. This information should also be key to inform
the implementation of management strategies of the recently created Marine Protected
Area of Multiple Uses (MPA-MU) of Rapa Nui, currently the largest in Latin America. This
protected area encompasses ∼579,000 km2 (Paredes et al., 2019) and aims to protect this
unique world biodiversity heritage site. In addition, this study will also serve as a baseline
for future studies of changes in the mesophotic ecosystem off Rapa Nui after closure of the
island to tourism, from March 2020 to date, due to the COVID-19 pandemic.

CONCLUSIONS
Based on opportunistic video observations, we provide the first report of filamentous
mats covering sandy areas and dead mesophotic reefs (Leptoseris spp.) off Rapa Nui.
A preliminary morphological analysis of mat samples suggested that the assemblage is
constituted by at least four filamentous taxa, including two cyanobacteria (Lyngbya s.l.
and Pseudoanabaena sp.), a brown alga (Ectocarpus sp.), and a green alga (Cladophora
sp.). Whereas a highly damaged, even completely dead, Leptoseris reef was observed in
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the waters off the main village on the western side of the island, reefs in much healthier
conditions were observed off the less populated northern and southeastern parts of the
island (e.g., Anakena, La Perouse, and Vinapú). Circumstantial evidence indicates that the
Leptoseris reef off Hanga Roa was alive ∼20 years ago. Our preliminary evidence suggests
a link between ongoing eutrophication associated with human population expansion and
deficient management of wastewater and urban runoff on the western side of the island,
the proliferation of filamentous mats, and consequent damage to mesophotic Leptoseris
reefs.
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