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SUMMARY

Several two-sample tests for high-dimensional data have been proposed recently, but they are
powerful only against certain alternative hypotheses. In practice, since the true alternative hypoth-
esis is unknown, it is unclear how to choose a powerful test. We propose an adaptive test that
maintains high power across a wide range of situations and study its asymptotic properties. Its
finite-sample performance is compared with that of existing tests. We apply it and other tests to
detect possible associations between bipolar disease and a large number of single nucleotide poly-
morphisms on each chromosome based on data from a genome-wide association study. Numer-
ical studies demonstrate the superior performance and high power of the proposed test across a
wide spectrum of applications.

Some key words: Genome-wide association study; Single nucleotide polymorphism; Sum-of-powers test.

1. INTRODUCTION

Two-sample testing on the equality of two high-dimensional means is common in genomics
and genetics. For instance, Chen & Qin (2010) considered analysis of differential expressions for
gene sets based on microarray data. In our motivating example and other genome-wide associa-
tion studies (The International Schizophrenia Consortium, 2009), polygenic testing is of interest:
one would like to test whether there is any association between a disease and a large number of
genetic variants, mostly single nucleotide polymorphisms. In these applications, the dimension of
the data, p, is often much larger than the sample size n. Traditional multivariate two-sample tests,
such as the T 2-test of Hotelling (1931), either cannot be directly applied or have too low power.
As shown theoretically in Fan (1996), as the dimension p increases, even for simple one-sample
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testing on the mean of a normal distribution with a known covariance matrix σ 2 I , the standard
Wald, score or likelihood ratio tests may have power that decreases to the Type I error rate as the
departure from the null hypothesis increases. Several two-sample tests for high-dimensional data
have been proposed (Bai & Saranadasa, 1996; Srivastava & Du, 2008; Chen & Qin, 2010; Cai
et al., 2014; Gregory et al., 2015; Srivastava et al., 2015). There are two common types of testing
approach when p > n: one based on the sum-of-squares of the sample mean differences and the
other based on the maximum componentwise sample mean difference. The two types of tests are
powerful against different alternatives: if the true mean differences are dense in the sense that
there is a large proportion of small to moderate componentwise differences, then the former type
is more powerful; in contrast, if the true mean differences are sparse in the sense that there are
only few but large nonzero componentwise differences, the latter type of test is more powerful. In
practice, however, it is unclear which should be applied. Furthermore, as will be shown in the sim-
ulation study, there are denser and intermediate situations in which neither type of test is powerful.

In this paper, we develop an adaptive testing procedure which yields high testing power
against various alternative hypotheses in the high-dimensional setting. This is achieved through
combining information across a class of sum-of-powers tests, including tests based on the
sum-of-squares of the mean differences and the supremum mean difference. The main idea is to
incorporate multiple tests in the procedure so that at least one of them would yield a high power
for a particular application with unknown truth. The proposed adaptive sum-of-powers test then
selects the most powerful of the candidate tests. To perform the proposed test, we establish
the asymptotic null distribution of the adaptive test statistic. In particular, we derive the joint
asymptotic distribution for a set of the sum-of-powers test statistics. The marginal distributions
of the test statistics converge to the normal distribution or the extreme value distribution,
depending on the power parameters. Based on the theoretical results, we develop a new way to
calculate asymptotic p-values for the adaptive test.

We further demonstrate the superior performance of the proposed adaptive test in the con-
text of large p and small n. We compare its performance with several existing tests which have
not yet been applied to single nucleotide polymorphism data. Due to the discrete nature of sin-
gle nucleotide polymorphism data, normal-based parametric tests are not suitable. In addition,
although the sparsity assumption has been so widely adopted, the nonzero differences in single
nucleotide polymorphism data may not be sparse, as predicted by the polygenic theory of Fisher
(1918). The problem of nonsparse signals has begun to attract the attention of statisticians (e.g.,
Hall et al., 2014). It is highly relevant here because the performance of a test, especially a non-
adaptive one, may depend on how sparse the signals are, as illustrated in the real-data analysis.
An R (R Development Core Team, 2016) package highmean that implements the tests studied
here is available from the Comprehensive R Archive Network, CRAN.

2. SOME EXISTING TESTS

Suppose that we observe two groups of p-dimensional independent and identically distributed
samples {X1i }n1

i=1 and {X2 j }n2
j=1; we consider high-dimensional data with p � n = n1 + n2 − 2.

Let μ1 and μ2 denote the true mean vectors of the groups, and assume throughout that the
two groups share a common covariance matrix � = (σi j )p×p. Our primary object is to test
H0 : μ1 = μ2 versus HA : μ1 |= μ2. In this section, we review existing two-sample tests for
high-dimensional data. For k = 1, 2 let X̄k be the sample mean for group k, and let S =
n−1∑2

k=1
∑nk

i=1(Xki − X̄k)(Xki − X̄k)
T be the pooled sample covariance matrix. The precision

matrix, i.e., the inverse of the covariance matrix, is written as � = �−1. Moreover, for a vector v,
we denote by v(i) its i th element.
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The best-known two-sample test for low-dimensional data is the T 2-test of Hotelling (1931),
which is a generalization of the two-sample t-test for p = 1 to multivariate data with p > 1
but p � n: TH = (X̄1 − X̄2)

TS−1(X̄1 − X̄2). The T 2-test, however, is not applicable to high-
dimensional data because S is singular. Accordingly, some modifications have been proposed in
which S is replaced by a known quantity or another estimate. A straightforward procedure is to
substitute an identity matrix I for S, forming a sum-of-squares-type test, which is directly based
on the L2-norm of the sample mean differences, ‖X̄1 − X̄2‖2

2 = (X̄1 − X̄2)
T(X̄1 − X̄2), or its

weighted version (Bai & Saranadasa, 1996; Srivastava & Du, 2008; Chen & Qin, 2010). Bai &
Saranadasa (1996) proposed a test statistic

TBS = (n−1
1 + n−1

2 )−1(X̄1 − X̄2)
T(X̄1 − X̄2) − tr S

[2n(n + 1)(n − 1)−1(n + 2)−1{tr S2 − n−1(tr S)2}]1/2

and established its asymptotic normal null distribution. Chen & Qin (2010) noticed some theoret-
ical difficulties due to the presence of the cross-product terms

∑nk
i=1 X T

ki Xki in TBS, and proposed
removing them to obtain a new test statistic

TCQ =
∑n1

i |= j X T
1i X1 j

n1(n1 − 1)
+
∑n2

i |= j X T
2i X2 j

n2(n2 − 1)
− 2

∑n1
i=1

∑n2
j=1 X T

1i X2 j

n1n2
,

whose asymptotic properties were established under much weaker conditions.
To account for possibly varying variances of the components of the data, one may replace S by

a diagonal version DS = diag(s11, . . . , spp), where sii are the diagonal elements of S; the matrix
DS is in general nonsingular. Srivastava & Du (2008) introduced such a weighted version of the
sum-of-squares-type test of Bai & Saranadasa (1996):

TSD = (n−1
1 + n−1

2 )−1(X̄1 − X̄2)
T D−1

S (X̄1 − X̄2) − (n − 2)−1np

{2(tr R2 − p2n−1)cp,n}1/2
,

where R = D−1/2
S SD−1/2

S is the sample correlation matrix and cp,n = 1 + tr R2 p−3/2.
All of the above sum-of-squares-type test statistics are asymptotically distributed as normal

under H0. These tests are usually powerful against moderately dense alternative hypotheses,
where there is a large proportion of nonzero components in the true mean differences μ1 − μ2.
However, if the nonzero signals are sparse, these tests lose substantial power (Cai et al., 2014).
Accordingly, Cai et al. (2014) proposed a supremum-type statistic using the L∞-norm of the
sample mean differences, i.e.,

TCLX = (n−1
1 + n−1

2 )−1max1�i�p
(

X̄ (i)
1 − X̄ (i)

2

)2/
σi i ,

where σi i are the diagonal elements of the covariance matrix �. In practice, we use the sample
variances sii to estimate the σi i .

A supremum-type statistic and a sum-of-squares-type statistic represent two extremes: the
former uses only a single component as evidence against the null hypothesis, while the latter uses
all of the components. Neither of the statistics will be uniformly better; they are more powerful for
sparse and dense nonzero signals, respectively (Gregory et al., 2015). However, for more dense or
only weakly dense nonzero signals, neither may be powerful: there may not be a single component
to represent a strong departure from H0, whereas a sum-of-squares statistic may accumulate
too much noise through summing over the zero components. To boost the power when nonzero
signals are neither too dense nor too sparse, Chen et al. (2014) proposed removing estimated zero
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components through thresholding; since zero components are expected to give small squared
sample mean differences, those smaller than a given threshold would be ignored, leading to a test
statistic

TCLZ(s) =
p∑

i=1

{
n1n2(X̄ (i)

1 − X̄ (i)
2 )2

(n1 + n2)σi i
− 1

}
I

{
n1n2(X̄ (i)

1 − X̄ (i)
2 )2

(n1 + n2)σi i
> λp(s)

}
,

where the threshold level is λp(s) = 2s log p and I (·) is the indicator function. Since an optimal
choice of the threshold is unknown, Chen et al. (2014) proposed trying all possible threshold
values and then choosing the most significant one as the final test statistic:

TCLZ = maxs∈(0,1−η)

{
TCLZ(s) − μ̂TCLZ(s),0

}/
σ̂TCLZ(s),0,

where μ̂TCLZ(s),0 and σ̂TCLZ(s),0 are estimates of the mean and standard deviation of TCLZ(s) under
the null hypothesis. The asymptotic null distribution of TCLZ is an extreme value distribution.
Because of the slow convergence to the asymptotic null distribution, Chen et al. (2014) proposed
using the parametric bootstrap to calculate its p-values. The test TCLZ can be regarded as an
adaptive test: it uses thresholding to adapt to unknown signal sparsity. It is closely related to
another adaptive test for association analysis of rare variants in genetics (Pan & Shen, 2011).

Remark 1. Sum-of-squares-type tests and supremum-type tests have also been used in anal-
yses of genome-wide association studies with large n and small p. For example, in the frame-
work of generalized linear models, the sum-of-squared-score test in Pan (2009) for association
analysis of multiple single nucleotide polymorphisms can be regarded as a sum-of-squares-type
test, while another widely used test in single nucleotide polymorphism analysis is similar to the
supremum-type test of Cai et al. (2014). As shown in Pan (2011), the sum-of-squared-score test
is equivalent to the variance-component-score test with a linear kernel (Wu et al., 2010) and a
nonparametric multivariate analysis of variance (Wessel & Schork, 2006), both used in genetics,
as well as to an empirical Bayes test for high-dimensional data (Goeman et al., 2006).

Remark 2. Cai et al. (2014) also introduced test statistics based on linearly transformed sam-
ple mean differences. Although they discussed the transformation only for their supremum-type
statistic, the same transformation can be applied to other test statistics (Chen et al., 2014). How-
ever, the transformation may not work for very dense signals; for example, in some cases with
more than pr nonzero signals for r > 1/2, a test using the precision matrix transformation could
be outperformed by that without transformation (Cai et al., 2014). Furthermore, conducting the
�-transformation requires an estimate of the p × p precision matrix, which is time-consuming
for large p (Gregory et al., 2015). More importantly, any test can be conducted on either the orig-
inal or the transformed data, which is not a focus here. Therefore, this article does not consider
data transformations.

3. MAIN RESULTS

3·1. Test statistics

We first propose a family of sum-of-powers tests, indexed by a positive integer γ . For any
1 � γ < ∞, we define a sum-of-powers test statistic with power index γ as

L(γ ) =
p∑

i=1

(
X̄ (i)

1 − X̄ (i)
2

)γ
.
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When γ = 2, this yields a sum-of-squares-type test statistic equivalent to that of Bai & Saranadasa
(1996). Since, as an even γ → ∞,

L(γ ) ∝ ‖X̄1 − X̄2‖γ → ‖X̄1 − X̄2‖∞ = max1�i�p
∣∣X̄ (i)

1 − X̄ (i)
2

∣∣,
following the supremum-type test statistic in Cai et al. (2014) we define

L(∞) = max1�i�p
(

X̄ (i)
1 − X̄ (i)

2

)2/
σi i .

Thus, the class of the sum-of-powers tests includes both a sum-of-squares test and a supremum-
type test as special cases. Furthermore, L(1) is like a burden test widely studied in genetic
association analysis of rare variants for large n and small p (Pan & Shen, 2011; Lee et al.,
2012). If nonzero signals are extremely dense with almost the same sign, then a burden test
like L(1) can be more powerful than both the sum-of-squares and the supremum-type tests; see
our numerical examples and § 3·3. Similarly, there are situations with only weakly dense signals,
in which an L(γ ) test with 2 < γ < ∞ may be more powerful than both the sum-of-squares and
the supremum-type tests.

Which L(γ ) is most powerful depends on the unknown pattern of nonzero signals, such as
sparsity and signal strength. Hence, we propose the following adaptive test to combine the sum-
of-powers tests and improve the test power:

TaSPU = minγ∈� PSPU(γ ), (1)

where PSPU(γ ) is the p-value of L(γ ) test. The idea of taking the minimum p-value to approx-
imate the maximum power has been widely used (e.g., Yu et al., 2009), but TaSPU is no longer
a genuine p-value. In order to perform the proposed adaptive test, in the next section we derive
the asymptotic distribution. In practice, one has to decide what candidate values of γ are to
be used. From the theoretical power study in § 3·3 and the simulation study, we suggest using
γ ∈ � = {1, 2, . . . , γu, ∞} with γu = 6 or a little bigger for a larger p/n ratio.

Remark 3. Our tests for small n and large p are in the same spirit as those proposed for
analysis of rare variants with large n and small p (Pan et al., 2014). Specifically, Pan et al. (2014)
defined SPU(γ ) =∑p

i=1 Uγ
i , where U = (U1, . . . , Up)

T is the score vector for a parameter, say β,
in a generalized linear model under a null hypothesis H ′

0 : β = 0. The SPU(γ ) test can be regarded

as a weighted score test (Lin & Tang, 2011) with weights wi = Uγ−1
i . In the current context, the

score U becomes the sample mean difference, so we use the same name and denote the adaptive
test statistic by TaSPU in (1). Apart from, the difference between the small n large p and large
n small p scenarios, asymptotic results for the adaptive test have not yet been described in the
literature. In this paper we derive asymptotics of the test statistics L(γ ) in the high-dimensional
setting, based on which we can calculate the asymptotic p-values of L(γ ) and TaSPU.

3·2. Asymptotic theory

For simplicity, we present our results under the assumption of a common covariance matrix
�1 = �2 = �, although our derivations and proofs in the Supplementary Material are established
without this assumption. In the following we write � = (σi j )p×p. Under H0 : μ1 = μ2, we first
derive asymptotic approximations to the mean and variance of L(γ ) for γ < ∞, denoted by μ(γ )

and σ 2(γ ), respectively. We assume that n1/(n1 + n2) → ρ ∈ (0, 1) as n → ∞. We write an ∼ bn

if an/bn = 1 + o(1) and let �x
 denote the largest integer not greater than x .
We need the following assumptions.
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Condition 1 (Covariance assumption). There exists some constant B such that B−1 �
λmin(�) � λmax(�) � B, where λmin(�) and λmax(�) denote the minimum and maximum
eigenvalues of the covariance matrix �. In addition, all correlations are bounded away from
−1 and 1, i.e., max1�i |= j�p |σi j |/(σi iσ j j )

1/2 < 1 − η for some η > 0.

Condition 2 (Mixing assumption). For a set of multivariate random vectors Z = {Z ( j) : j �
1} and integers a < b, let Zb

a be the σ -algebra generated by {Z ( j) : j ∈ [a, b]}. For each
s � 1, define the α-mixing coefficient αZ (s) = supt�1{|pr(A ∩ B) − pr(A)pr(B)| : A ∈Z t

1, B ∈
Z∞

t+s}. We assume that {(X ( j)
ki , i = 1, . . . , nk) : j � 1} is α-mixing for k = 1, 2 and that αX (s) �

Mδs , where δ ∈ (0, 1) and M is some constant.

Condition 3 (Moment assumption). We assume that log p/n1/4 = o(1) and

max
1�i�p

E[exp{h(X (i)
k1 − μ

(i)
k )2}] < ∞

for h ∈ [−M, M] and k = 1, 2.

Remark 4. Conditions 1 and 3 were also assumed in Cai et al. (2014), and they are needed to
establish the weak convergence of L(∞). When γ < ∞, asymptotic normality can be established
under weaker assumptions on the eigenvalues and correlations. However, in order to establish
weak convergence of L(γ ) for γ > 2, stronger moment assumptions may be needed than those
in Chen & Qin (2010), whose test statistic is similar to L(2). Condition 2 imposes weak depen-
dence on the data. A similar mixing condition is considered in Chen et al. (2014), and such weak
dependence is also commonly assumed in time series and spatial statistics. Alternatively, we
may consider the weak dependence structure introduced in Bai & Saranadasa (1996) and Chen
& Qin (2010), where a factor-type model for X is assumed. Since the variables in the motivating
genome-wide association studies have a local dependence structure, with their correlations often
decaying to zero as their physical distances on a chromosome increase, we focus on mixing-type
weak dependence in this paper.

We write μ(γ ) =∑p
i=1 μ(i)(γ ), where μ(i)(γ ) = E{(X̄ (i)

1 − X̄ (i)
2 )γ }. Then the following

approximation holds for μ(γ ) and σ 2(γ ) with γ < ∞.

PROPOSITION 1. Under H0 : μ1 = μ2, we have μ(i)(1) = 0 and

μ(i)(γ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ !

2γ /2

γ /2∑
d=0

1

d! (γ /2 − d)! nd
1nγ /2−d

2

σ
γ/2
i i + o(n−γ /2), γ even,

�γ /2
∑
d=1

γ !

(d − 1)! (�γ /2
 − d)! 3! 2�γ /2
−1

×
(

m1i

nd+1
1 n�γ /2
−d

2

− m2i

n�γ /2
−d
1 nd+1

2

)
σ

�γ /2
−1
i i + o(n−�γ /2
−1), γ � 3 odd,

where mki is the third central moment of the random variable in component i from group k, i.e.,
mki = E{(X (i)

k − μ
(i)
k )3}.
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For any positive integers s and t with s + t even, define a set A(c1, c2, c3, d1, d2, d3; s, t) of
integers (c1, c2, c3, d1, d2, d3) such that c1 � 0, c2 � 0, d1 � 0, d2 � 0, c3 + d3 > 0, 2c1 + c3 +
2d1 + d3 = s and 2c2 + c3 + 2d2 + d3 = t . For simplicity, we write the set as A(s, t).

PROPOSITION 2. Under Conditions 1–3 and H0, σ 2(1) = (n1
−1 + n2

−1)1T
p � 1p where 1p is

a p × 1 vector whose elements are all 1, and, for γ � 2,

σ 2(γ ) = μ(2γ ) −
p∑

i=1

{μ(i)(γ )}2

+
∑

A(γ,γ )

(γ !)2∑
i |= j σ

c1+d1
i i σ

c2+d2
j j σ

c3+d3
i j

nc1+c2+c3
1 nd1+d2+d3

2 c1! c2! c3! d1! d2! d3! 2c1+c2+d1+d2

+ o(pn−γ ). (2)

Because μ(2γ ) −∑p
i=1{μ(i)(γ )}2 =∑p

i=1 var{(X̄ (i)
1 − X̄ (i)

2 )γ }, we have that σ 2(γ ) ∼∑p
i=1 var{(X̄ (i)

1 − X̄ (i)
2 )γ } if σi j = 0 for any i |= j . Since the boundedness condition on the eigen-

values, Condition 1, implies the boundedness of the variances σi i , σ 2(γ ) is of order pn−γ .

To derive the asymptotic joint distribution of the test statistics L(γ ), we also need the following
result to approximate their correlations: corr{L(s), L(t)} = cov{L(s), L(t)}/{σ(s)σ (t)}.

PROPOSITION 3. Under Conditions 1–3 and H0 : μ1 = μ2, for finite s, t ∈ �, if s + t is even
then

cov{L(s), L(t)} = μ(s + t) −
p∑

i=1

μ(i)(t)μ(i)(s)

+
∑
A(s,t)

t! s!
∑

i |= j σ
c1+d1
i i σ

c2+d2
j j σ

c3+d3
i j

nc1+c2+c3
1 nd1+d2+d3

2 c1! c2! c3! d1! d2! d3! 2c1+c2+d1+d2

+ o(pn−(s+t)/2);

and if s + t is odd, cov{L(s), L(t)} = o(pn−(s+t)/2).

Now we are ready to introduce the asymptotic joint distributions for the test statistics L(γ ).

THEOREM 1. Let � be a candidate set of γ values containing ∞. Assume that
lim infn→∞ σ 2(γ )/(pn−γ ) > 0 for γ < ∞. Under Conditions 1–3 and the null hypothesis H0 :
μ1 = μ2, the following properties hold:

(i) for the set �′ = �\{∞}, [{L(γ ) − μ(γ )}/σ(γ )]T
γ∈�′ converges weakly to a normal dis-

tribution N (0,R), where R= (ρst ) satisfies ρss = 1 for s ∈ �′ and ρst = corr{L(s), L(t)}
for s |= t ∈ �′. In particular, ρst = o(1) when s + t is odd;

(ii) when γ = ∞, pr{n1n2/(n1 + n2)L(∞) − ap � x} → exp{−π−1/2 exp(−x/2)} for any
x ∈ R, where ap = 2 log p − log log p;

(iii) [{L(γ ) − μ(γ )}/σ(γ )]T
γ∈�′ and {n1n2/(n1 + n2)L(∞) − ap} are asymptotically inde-

pendent.
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We can use Propositions 1–3 to approximate μ(γ ), σ(γ ) and ρst , respectively, and then calcu-
late the p-value for the proposed adaptive test. Define LO and LE as the sets consisting of stan-
dardized L(γ ) with γ odd and even, respectively, i.e., LO = {{L(γ ) − μ(γ )}/σ(γ ) : odd γ ∈ �}
and LE = {{L(γ ) − μ(γ )}/σ(γ ) : even γ ∈ �}. By Theorem 1, LO and LE are asymptotically
independent, and each is asymptotically independent of L(∞). Thus we can obtain the p-value
of the adaptive test from these three sets of statistics. Consider the realizations of the test statis-
tics, TO = maxodd γ∈� |{L(γ ) − μ(γ )}/σ(γ )| and TE = maxeven γ∈�{L(γ ) − μ(γ )}/σ(γ ). We
calculate the p-values for TO and TE as pO = pr[maxodd γ∈� |{L(γ ) − μ(γ )}/σ(γ )| > TO] and
pE = pr[maxeven γ∈�{L(γ ) − μ(γ )}/σ(γ ) > TE]. We use the function pmvnorm in the R pack-
age mvtnorm to calculate the multivariate normal tail probabilities pO and pE (R Development
Core Team, 2016). Finally, we take the minimum p-value from the odd, even and infinity tests,
i.e., pmin = min(pO, pE, p∞); then, by the asymptotic independence of LO, LE and L(∞), the
asymptotic p-value for the adaptive test is paSPU = 1 − (1 − pmin)

3.
The above discussion focuses on the case where the covariance matrix � is known. In practice,

� must be estimated. We can apply existing methods, such as banding and thresholding tech-
niques, to estimate a high-dimensional sparse covariance matrix (Bickel & Levina, 2008; Roth-
man et al., 2010; Cai & Liu, 2011; Xue et al., 2012). In the simulation study and real-data analysis,
we used the banding approach of Bickel & Levina (2008): for a sample covariance matrix S =
(si j ), the banded matrix with bandwidth kn is defined as �̂kn = {si j I (|i − j | � kn)}. Theoretical
properties of �̂kn have been studied in Bickel & Levina (2008). We used five-fold crossvalidation
to select an optimal bandwidth in our simulations and real-data analysis (Bickel & Levina, 2008;
Cai & Liu, 2011). Under the conditions in Theorem 1, we can show that σ̂ 2(γ ) estimated based on
the banded matrix �̂kn satisfies σ̂ 2(γ ) = {1 + o(1)}σ 2(γ ) for properly chosen kn . Consider the
approximation of σ̂ (γ ) in (2). Under the weak dependence condition, Condition 2, for any i, j and
ε > 0, there is a constant C such that σi j � Cδ|i− j |ε/(2+ε) (see, e.g., Guyon, 1995). Therefore, for

kn → ∞ as n → ∞, the sum of terms with |i − j | > kn , i.e.,
∑

i |= j;|i− j |>kn
σ

c1+d1
i i σ

c2+d2
j j σ

c3+d3
i j ,

is ignorable. On the other hand, in
∑

i |= j;|i− j |�kn
σ

c1+d1
i i σ

c2+d2
j j σ

c3+d3
i j there are O(kn p) sum-

mands in total. Since si j = σi j + Op(n−1/2), we can obtain σ̂ 2(γ ) − σ 2(γ ) = op(pn−γ ) if kn =
o(n1/2). By the result that σ 2(γ ) is of order pn−γ , we obtain σ̂ 2(γ ) = {1 + o(1)}σ 2(γ ). Simi-
larly, we can show that μ̂(γ ) = {1 + o(1)}μ(γ ) and the estimators of the correlations are consis-
tent.

In applications, the components of the observations may be measured on different scales.
Therefore, we could consider an inverse variance weighted test statistic W (γ ) =∑p

i=1{(X̄ (i)
1 −

X̄ (i)
2 )/

√
σi i }γ (1 � γ < ∞). For γ = ∞, L(∞) is already weighted by the inverse variances and

we let W (∞) = L(∞). To calculate the p-values for W (γ ) and the corresponding adaptive test,
it is straightforward to use the asymptotic properties on the weighted samples {Yki }nk

i=1, where
Yki = D−1/2 Xki and D = diag(σ11, . . . , σpp). In practice, we replace the unknown σi i with the
sample variances sii . Results similar to Theorem 1 can be established.

Remark 5. For simplicity, this paper focuses on the case where two groups of samples share a
common covariance matrix. More generally, the two groups may have different covariance matri-
ces, �1 |= �2. In this situation, one may apply a two-sample test without assuming a common
covariance matrix: the definitions of the tests remain the same, while for the weighted tests,
the weights for the sample mean differences become the reciprocals of the diagonal elements in
�1/n1 + �2/n2. The asymptotic properties of the proposed tests are still valid in this situation;
see the Supplementary Material.
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Remark 6. The asymptotic independence of the sum-of-squares- and supremum-type statis-
tics has been studied in Hsing (1995) for weakly dependent observations. Under the sparse
signal alternative with 1/2 < β < 1, similar tests to the proposed L(1) and L(2) have also
been studied in Zhong et al. (2013) with an additional higher criticism thresholding of the
means; the asymptotic independence between the sum-of-squares-type statistics and a screen-
ing statistic by higher criticism thresholding has been studied in Fan et al. (2015). However, our
study differs from theirs in several respects. First, our proposed method is adaptive and pow-
erful for both sparse and dense signal alternatives, as shown by the theoretical and numerical
results, whereas Zhong et al. (2013) and Fan et al. (2015) focus on sparse alternatives. As illus-
trated in the simulation, when the signals are dense, the proposed test performs better than the
thresholding-type test in Chen et al. (2014). Second, we theoretically study a family of power
statistics L(γ ) with different finite and infinite values of γ and establish their joint distribu-
tion; Zhong et al. (2013), on the other hand, focused on L(1)- and L(2)-type statistics and stud-
ied their performance separately, while Fan et al. (2015) considered the limiting behaviour of
the summation of a sum-of-squares-type statistic and a screening statistic by higher criticism
thresholding.

3·3. Asymptotic power analysis

In this section, we analyse the asymptotic power of the proposed adaptive test. Under the
alternative HA : μ1 |= μ2, we first derive approximations for the mean, variance and covariance
functions for L(γ ) with γ < ∞, denoted respectively by μA(γ ), σA(γ ) and covA{L(s), L(t)} for
s, t < ∞. We write δi = μ

(i)
1 − μ

(i)
2 (i = 1, . . . , p).

PROPOSITION 4. Under the regularity conditions in Theorem 1 and HA : μ1 |= μ2,

μA(γ ) = μ(γ ) +
p∑

i=1

γ∑
c=1

(
γ

c

)
δc

i μ
(i)(γ − c) (γ < ∞),

where approximations for μ(·) and μ(i)(·) are given in Proposition 1. In particular, μA(1) =∑p
i=1 δi , μA(2) = μ(2) +∑p

i=1 δ2
i , μA(3) = μ(3) +∑p

i=1 δ3
i + 3(n1

−1 + n2
−1)
∑p

i=1 δiσi i ,
and

μA(4) = μ(4) +
p∑

i=1

δ4
i + 6

(
n1

−1 + n2
−1) p∑

i=1

δ2
i σi i + 4

p∑
i=1

δi
(
m1i n

−2
1 − m2i n

−2
2

)
.

PROPOSITION 5. Under the conditions in Theorem 1 and HA,

covA{L(s), L(t)} ∼ μA(t + s) −
p∑

i=1

μ
(i)
A (t)μ(i)

A (s)

+
∑
i |= j

∑
0�h�l
0�l�s

(
t

h

)(
s

l

)
δh

i δl
j ri j (t − h, s − l),
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where for s = 0 or t = 0, ri j (s, t) = 0, and for s > 0 and t > 0,

ri j (s, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
A(s,t)

t! s! σ
c1+d1
i i σ

c2+d2
j j σ

c3+d3
i j

nc1+c2+c3
1 nd1+d2+d3

2 c1! c2! c3! d1! d2! d3! 2c1+c2+d1+d2
, s + t even,

∑
B(s,t)

t! s! σ
c1+d1
i i σ

c2+d2
j j σ

c3+d3
i j

(
m1,ia jb

a! b! n2
1

− m2,ia jb

a! b! n2
2

)
nc1+c2+c3

1 nd1+d2+d3
2 c1! c2! c3! d1! d2! d3! 2c1+c2+d1+d2

, s + t odd,

where mk,ia jb = E{(X (i)
k − μ

(i)
k )a(X ( j)

k − μ
( j)
k )b} for a + b = 3 and B(s, t) is the set of non-

negative integers (a, b, c1, c2, c3, d1, d2, d3) such that a + b = 3, 2c1 + c3 + 2d1 + d3 = t − a,
2c2 + c3 + 2d2 + d3 = s − b and ab > 0 or c3 + d3 > 0.

The variance function is σ 2
A(γ ) = covA{L(γ ), L(γ )}. In particular, σ 2

A(1) = (n−1
1 +

n2
−1)1T

p � 1p and σ 2
A(2) ∼ σ 2(2) + 4(n−1

1 + n2
−1)
∑

i, j σi jδiδ j .

We now analyse the power of the test. For the testing statistic in (1), let p∗
α be the critical

threshold under H0 with significance level α. The test power under HA then satisfies pr(TaSPU =
minγ∈� PSPU(γ ) < p∗

α) � pr(PSPU(γ ) < p∗
α) for any γ ∈ �. Therefore, the asymptotic power of the

proposed adaptive test is 1 if there exists γ ∈ � such that pr(PSPU(γ ) < p∗
α) → 1, that is, if L(γ )

has asymptotic power equal to 1. Hence, to study the asymptotic power of the adaptive test, we
only need to focus on the power of L(γ ) for γ ∈ �.

Under the alternative, we denote the set of locations of the signals by Sβ = {i : δi |= 0} and
the cardinality of Sβ by p1−β , where β ∈ (0, 1] is the sparsity parameter. In the following, we
consider two cases: the dense signal case with β < 1/2 and the sparse signal case with β � 1/2.

Case 1: 0 < β < 1/2. To study the asymptotic power, we consider the local alternative with
small δi . Consider the set �′ = �\{∞}, and for any finite γ define the corresponding aver-
age standardized signal as δ̄(γ ) =∑i∈Sβ

nγ /2δ
γ
i /p1−β . If δi = O{n−1/2(log p)ε} with ε > 0,

then μA(γ ) − μ(γ ) = o(pn−γ /2) and σ 2
A(γ ) − σ 2(γ ) = o(pn−γ ). A proof similar to that of

Theorem 1 gives the following result.

THEOREM 2. Under the conditions in Theorem 1 and the alternative HA with 0 < β < 1/2
and δi = O{n−1/2(log p)ε} for ε > 0, [{L(γ ) − μA(γ )}/σA(γ )]T

γ∈�′ converges weakly to a mul-
tivariate normal distribution with mean zero and covariance matrix RA given in Proposition 5.

Theorem 2 gives the asymptotic test power of L(γ ) at significance level p∗
α as

pr(PSPU(γ ) < p∗
α)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�

{
μA(γ ) − μ(γ ) − z p∗

α
σ (γ )

σA(γ )

}
, γ even,

�

{
μA(γ ) − μ(γ ) − z p∗

α/2
σ(γ )

σA(γ )

}
+ �

{
−

μA(γ ) − μ(γ ) + z p∗
α/2

σ(γ )

σA(γ )

}
, γ odd,

where � is the standard normal cumulative distribution function and z p∗
α

is its (1 − p∗
α)th quan-

tile. Since σ(γ )/σA(γ ) is bounded under the alternative considered, the asymptotic power is
mainly dominated by {μA(γ ) − μ(γ )}/σA(γ ). In addition, σA(γ ) is of order p1/2n−γ /2 and
therefore the power goes to 1 if nγ /2{μA(γ ) − μ(γ )}/p1/2 → ∞. Intuitively speaking, the power
of the adaptive test converges to 1 if some of the average standardized signals are of order higher
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than pβ−1/2, which is o(1). For example, when γ = 1 or 2, from the derivations in Proposi-
tion 4 we have that the asymptotic power of L(1) or L(2) goes to 1 if n1/2∑

i δi/p1/2 → ∞ or
n
∑

i δ2
i /p1/2 → ∞, that is, if δ̄(1) or δ̄(2) is of order higher than pβ−1/2.

For different values of γ , the test statistic L(γ ) that achieves the highest power depends on
the specific dense alternative. To further study the power of different test statistics L(γ ) and how
to choose the set �, we consider a special case where the signal strength is fixed at the same
level, n1 = n2, σi i = 1 and σi j � 0. In this case, we show in the Supplementary Material that
under the alternative hypothesis with small δ, the L(1) test is asymptotically more powerful than
the other L(γ ) tests. On the other hand, because of the slow convergence rate to the asymptotic
distribution, which depends on the value of p1/2−β , the performance of L(1) for a finite sample
may not be as good as that of L(γ ) tests with γ > 1, especially when the sparsity parameter β is
close to 1/2 and p is not large enough; see the Supplementary Material. Similarly, we can show
that L(2) is asymptotically more powerful if the absolute values of the δi have the same level but
the signs are random with about half being positive.

Case 2: β � 1/2. The result in Case 1 implies that when β < 1/2 and γ < ∞, the test power
of L(γ ) goes to 1 if nγ /2{μA(γ ) − μ(γ )}/p1/2 → ∞, which is satisfied in most cases if some
average standardized signal is of order higher than pβ−1/2 = o(1). However, in the sparse setting
with β � 1/2 and γ < ∞, L(γ ) loses power. To illustrate this, take γ = 1 and 2. For any β < 1/2,
the powers of L(1) and L(2) converge to 1 if δ̄(1) and δ̄(2) are of order higher than o(1). However,
when β > 1/2, pβ−1/2 → ∞ and the asymptotic powers of L(1) and L(2) are strictly less than
1 even if δ̄(1) = O(pβ−1/2) and δ̄(2) = O(pβ−1/2).

On the other hand, L(∞) is known to be powerful against sparse alternatives; therefore, the
proposed adaptive sum-of-powers test still has asymptotic power equal to 1 if that of L(∞) con-
verges to 1. The asymptotic power of L(∞) has been studied in Cai et al. (2014); from their
Theorem 2, the power of L(∞) converges to 1 if maxi |δi | � c(log p)1/2n−1/2 for a certain con-
stant c and if the nonzero δi are randomly uniformly sampled with sparsity level β > 3/4. The
condition that β > 3/4 was assumed by the authors because of the technical difficulty in proving
the asymptotic results. It is expected that the asymptotic power is still 1 for 1/2 < β � 3/4 but
the proof would be more challenging (Cai et al., 2014).

Combining the above theoretical arguments and simulation results, we recommend including
small γ values such as 1, 2 and medium γ values such as 3, . . . , 6 in � to achieve balance between
the asymptotic and finite-sample performances when the signals are dense; in addition, we also
recommend including ∞ in �, as L(∞) is more powerful when the signals are sparse. See the
Supplementary Material for more details and simulation studies.

Remark 7. When the signal is dense, β < 1/2, the L(2) test performs similarly to the tests
in Bai & Saranadasa (1996) and Chen & Qin (2010). As discussed above, there are alternatives
under which L(2) is not as powerful as other L(γ ) tests, and therefore in these dense signal
cases, the proposed test is more powerful than those of Bai & Saranadasa (1996) and Chen &
Qin (2010), as illustrated by the simulation study. When the signal is sparse, β > 1/2, the L(∞)

test is equivalent to the supremum test in Cai et al. (2013), so the proposed adaptive test would
perform similarly to that of Cai et al. (2013). On the other hand, under certain sparse alternatives,
the L(∞) test may not be as powerful as the thresholding tests in the literature, such as the test
proposed in Chen et al. (2014). To illustrate this, consider the oracle case, where the signal set Sβ

is known and has order p1−β with 1/2 < β < 1. Suppose that the Xk are independent standard
normal and signals are at the same level δ = (r log p/n)1/2 for some large constant r . Then, the
oracle test statistic with power index γ = 1, namely On =∑i∈Sβ

{X̄ (i)
1 − X̄ (i)

2 }, has test power



620 G. XU, L. LIN, P. WEI AND W. PAN

going to 1 if p1−β → ∞. In particular, the log of the Type II error is of the order of p1−β log p.

For the L(∞) test, the log of the Type II error is of the order of log p. Therefore, in this ideal
case, the On test, which excludes nonsignal locations, is more powerful than the supremum-type
test L(∞).

4. SIMULATIONS

In this section we compare, through simulations, the performance of the proposed adaptive
method and the existing tests described in § 2. The candidate set of γ for the sum-of-powers
tests L(γ ) was taken to be � = {1, . . . , 6, ∞}. We generated two groups of random samples,
{X1i }n1

i=1 and {X2 j }n2
j=1, with sample sizes n1 = n2 = 50, from two multivariate normal distribu-

tions of dimension p = 200, so Xki ∼ N (μk, �) for k = 1, 2. Without loss of generality, we let
μ1 = 0. Under the null hypothesis, μ2 = 0; under the alternative hypothesis, �p1−β
 elements
in μ2 were set to nonzero values, where β ∈ [0, 1] controls the signal sparsity. In our simu-
lations we used β = 0·1, . . . , 0·9, covering very dense signals for an alternative hypothesis at
β = 0·1, to dense and then only moderately dense signals at β = 0·2 and 0·5, and finally to mod-
erately sparse and very sparse signals at β = 0·7 and 0·9, respectively. The nonzero elements
of μ2 were assumed to be uniformly distributed in {1, . . . , p}, and their values were constant
at {2r(1/n1 + 1/n2) log p}1/2, where r controls the signal strength. The common covariance
matrix is � = D1/2 R D1/2, where R is the correlation matrix and the diagonal matrix D contains
the variances. We considered various structures of R = (ri j ) and D, as detailed in the Supplemen-
tary Material. To save space, here we only show results for a first-order autoregressive correlation
matrix R = (0·6|i− j |) and an equal-variance case with D = Ip. Although this covariance matrix
is only approximately bandable, we applied the banding estimator of Bickel & Levina (2008) to
show the robustness of the proposed tests. For each setting, 1000 replicates were simulated to
calculate the empirical Type I error and power of each test. The p-values were calculated based
on both the asymptotic distributions of the tests and the permutation method with B = 1000
iterations. The nominal significance level was set to α = 0·05.

Table 1 presents empirical Type I error rates and powers for β = 0·1. The results of most tests
based on the asymptotics are very close to those based on permutations. This validates the results
in Theorem 1. The Type I error rate and power of the thresholding test TCLZ were overestimated
by the corresponding asymptotic approximation, probably due to the slow convergence to its
asymptotic distribution.

Since the Type I error rates of all the tests were well controlled by their permutation-based
p-values, we present the permutation-based powers in Fig. 1 to offer a fair comparison between
the tests. The proposed adaptive sum-of-powers test TaSPU was much more powerful than the
other tests when the signals were highly dense, with β = 0·1. When the signal sparsity increased
from 0·2 to 0·4, the adaptive sum-of-powers test performed similarly to the sum-of-squares-type
tests in Bai & Saranadasa (1996), Srivastava & Du (2008) and Chen & Qin (2010), and it was
slightly more powerful than the thresholding test in Chen et al. (2014) and much more powerful
than the supremum-type test in Cai et al. (2014). As the signals became less dense at β = 0·5, the
adaptive sum-of-powers and thresholding tests were the most powerful, closely followed by the
sum-of-squares-type tests and then the supremum-type test. At β = 0·6, although the adaptive
sum-of-powers and thresholding tests remained the winners, the supremum-type test was more
powerful than the sum-of-squares-type tests. When the signals were moderately sparse at β = 0·7,
the adaptive sum-of-powers and supremum-type tests were the most powerful, closely followed
by the thresholding test; they were much more powerful than the sum-of-squares-type tests. When
the signals were highly sparse at β = 0·9, as expected, the supremum-type test became the sole
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Table 1. Empirical Type I errors and powers (%) of various tests for normal samples with
n1 = n2 = 50, p = 200 and covariance matrix � = (0·6|i− j |). Zero signal strength r = 0 rep-
resents Type I errors, while r |= 0 represents powers; the results outside and inside parenthe-
ses were calculated from asymptotics- and permutation-based p-values, respectively. The spar-
sity parameter was β = 0·1, leading to 117 nonzero elements in μ2 with a constant value of

{2r(1/n1 + 1/n2) log p}1/2

Test r = 0 r = 0·02 r = 0·04 r = 0·06 r = 0·08

SPU(1) 5 (5) 50 (46) 78 (76) 92 (91) 98 (97)
SPU(2) 5 (5) 22 (20) 47 (46) 69 (67) 87 (85)
SPU(3) 4 (4) 40 (40) 71 (70) 88 (89) 97 (97)
SPU(4) 5 (5) 19 (18) 38 (37) 61 (60) 79 (78)
SPU(5) 4 (5) 24 (25) 47 (49) 70 (72) 84 (86)
SPU(6) 4 (4) 13 (14) 26 (29) 42 (45) 60 (64)
SPU(∞) 6 (5) 12 (9) 18 (15) 25 (21) 35 (28)

aSPU 6 (5) 33 (34) 66 (66) 85 (85) 94 (94)

CLZ 12 (5) 33 (15) 56 (34) 77 (57) 91 (76)
CLX 6 (5) 12 (9) 18 (15) 25 (21) 35 (28)
BS 6 (5) 23 (20) 48 (46) 70 (67) 88 (85)
CQ 6 (5) 23 (20) 48 (46) 70 (67) 88 (85)
SD 4 (5) 19 (19) 43 (45) 67 (68) 85 (86)

SPU, the proposed sum-of-powers tests with different values of γ ; aSPU, the adaptive sum-of-powers test; CLZ, test
of Chen et al. (2014); CLX, test of Cai et al. (2014); BS, test of Bai & Saranadasa (1996); CQ, test of Chen & Qin
(2010); SD, test of Srivastava & Du (2008).
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Fig. 1. Empirical powers of the adaptive sum-of-powers test (squares) and the tests of Chen et al. (2014) (triangles
point up), Cai et al. (2014) (plus signs), Bai & Saranadasa (1996) (crosses), Chen & Qin (2010) (diamonds), and

Srivastava & Du (2008) (triangles point down). The signal sparsity parameter β varies from 0·1 to 0·9.



622 G. XU, L. LIN, P. WEI AND W. PAN

winner, and the powers of the sum-of-squares-type and thresholding tests dropped substantially;
however, the power of the adaptive sum-of-powers test remained high, close to that of the winner,
the supremum-type test.

We obtained similar results for other simulation settings, including a more extreme case with a
compound symmetric R and unequal variances D for multivariate normal data, and for simulated
single nucleotide polymorphism data; see the Supplementary Material. In summary, owing to its
adaptivity, the adaptive sum-of-powers test either achieved the highest power or had power close
to that of the winner in any setting; it performed consistently well across all the situations. The
banding estimator performed well, although occasionally the asymptotic adaptive sum-of-powers
test would have slightly inflated Type I error rates when the assumptions in § 3·2 were severely
violated.

5. REAL-DATA ANALYSIS

We applied the various tests to the bipolar disorder dataset from a genome-wide association
study collected by The Wellcome Trust Case Control Consortium (2007). We used their quality
control procedure to screen the subjects and obtained n1 = 2938 controls and n2 = 1868 cases.
We filtered out all the single nucleotide polymorphisms with minor allele frequency lower than
0·05 and those with Hardy–Weinberg equilibrium test p-value less than 10−5 in either cases or
controls, giving 354 796 variables in total. To obtain a set of single nucleotide polymorphisms in
approximate linkage equilibrium, as in the work of The International Schizophrenia Consortium
(2009), we used the software PLINK (Purcell et al., 2007) to prune them with a criterion of link-
age disequilibrium r2 � 0·1, a sliding window covering 200 single nucleotide polymorphisms,
and a moving step of 20; this yielded 42 092 remaining single nucleotide polymorphisms. As
The International Schizophrenia Consortium (2009) has shown that for bipolar disorder there is
strong evidence of polygenic effects, we applied the various tests to the single nucleotide poly-
morphisms in each of the 22 autosomes separately to better demonstrate the possible power dif-
ferences between the tests. The familywise nominal significance level was set at 0·05, and it
would be 0·05/22 = 0·00227 for each chromosome after Bonferroni adjustment. This indicates
that 10 000 permutations should be sufficient to yield a possibly significant p-value to reject the
null hypothesis.

We calculated both asymptotics- and permutation-based p-values for each test. To save space,
Table 2 shows only some representative results. Most of the asymptotics-based p-values of the
proposed sum-of-powers and adaptive tests were similar to their permutation-based ones, indi-
cating good approximations. Again, the thresholding test TCLZ produced asymptotics-based p-
values that were far more significant than the permutation-based ones for most chromosomes,
indicating its poor approximation. The test of Srivastava & Du (2008) also performed poorly; it
always gave asymptotic p-values less than 0·0001. To avoid potentially poor asymptotic approxi-
mations, we use the permutation-based p-values to compare the various tests. In chromosomes 1,
2, 3, 6, 7, 9, 14, 15 and 16, both the sum-of-squares-type tests and the adaptive sum-of-powers test
gave p-values less than 0·05/22 = 0·00227. In contrast, the thresholding test yielded significant
p-values for only five of those chromosomes, while the supremum-type test was not significant
for any chromosome. These results were presumably due to dense signals in these chromosomes,
thus favouring the sum-of-squares-type tests. However, in other situations the sum-of-squares-
type tests might not perform well. For example, for chromosome 13, only the sum-of-powers
test L(γ ) with γ = 4 gave a significant p-value. Another example is chromosome 18: perhaps
due to sparse signals, the supremum-type test gave the most significant p-value, but none of
the sum-of-squares-type tests yielded even marginal significance; borrowing strength from the
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Table 2. The p-values (%) of various tests applied to the Wellcome Trust Case Control Con-
sortium bipolar disease data; the p-values outside parentheses were calculated from asymptotic

distributions, and those inside parentheses were based on permutations

Chromosome (number of single nucleotide polymorphisms)
Test 1 (3340) 2 (3194) 4 (2617) 13 (1592) 18 (1421)

SPU(1) 63·6 (64·3) 17·0 (17·8) 0·2 (0·2) 3·7 (3·7) 33·0 (32·3)
SPU(2) <0·1 (<0·1) <0·1 (<0·1) 1·5 (1·7) 2·7 (2·9) 28·9 (28·7)
SPU(3) 73·8 (74·5) 0·6 (0·7) 3·1 (3·1) 12·9 (12·6) 18·7 (17·4)
SPU(4) <0·1 (<0·1) <0·1 (<0·1) 2·0 (2·7) <0·1 (0·2) 35·3 (33·1)
SPU(5) 74·2 (73·2) 0·2 (0·3) 37·5 (36·1) 39·4 (37·1) 25·9 (23·4)
SPU(6) <0·1 (<0·1) <0·1 (0·1) 2·7 (4·1) <0·1 (0·4) 44·8 (38·6)
SPU(∞) 13·1 (11·8) 4·5 (4·3) 12·1 (11·9) 8·8 (8·0) 0·5 (0·4)
aSPU <0·1 (<0·1) <0·1 (<0·1) 1·0 (1·2) <0·1 (1·3) 1·4 (1·9)
CLZ <0·1 (<0·1) <0·1 (0·3) 9·6 (10·2) 0·2 (0·5) 5·6 (6·6)
CLX 13·1 (11·8) 4·5 (4·3) 12·1 (11·9) 8·8 (8·0) 0·5 (0·4)
BS <0·1 (<0·1) <0·1 (<0·1) 1·5 (1·7) 2·6 (2·9) 28·8 (28·7)
CQ <0·1 (<0·1) <0·1 (<0·1) 1·5 (1·7) 2·7 (2·9) 29·0 (28·7)
SD <0·1 (<0·1) <0·1 (<0·1) <0·1 (1·0) <0·1 (11·4) <0·1 (9·7)

SPU, the proposed sum-of-powers tests with different values of γ ; aSPU, the adaptive sum-of-powers test; CLZ, test
of Chen et al. (2014); CLX, test of Cai et al. (2014); BS, test of Bai & Saranadasa (1996); CQ, test of Chen & Qin
(2010); SD, test of Srivastava & Du (2008).

supremum-type test, i.e., L(∞), the p-value of the adaptive sum-of-powers test was marginally
significant. In summary, owing to its adaptivity, the proposed adaptive test retained high power
across various chromosomes with varying association patterns.
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