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Abstract
The COVID-19 pandemic rapidly puts a heavy pressure on hospital centers, especially on intensive care units. There was
an urgent need for tools to understand typology of COVID-19 patients and identify those most at risk of aggravation during
their hospital stay. Data included more than 400 patients hospitalized due to COVID-19 during the first wave in France
(spring of 2020) with clinical and biological features. Machine learning and explainability methods were used to construct
an aggravation risk score and analyzed feature effects. The model had a robust AUC ROC Score of 81%. Most important
features were age, chest CT Severity and biological variables such as CRP, O2 Saturation and Eosinophils. Several features
showed strong non-linear effects, especially for CT Severity. Interaction effects were also detected between age and gender
as well as age and Eosinophils. Clustering techniques stratified inpatients in three main subgroups (low aggravation risk
with no risk factor, medium risk due to their high age, and high risk mainly due to high CT Severity and abnormal biological
values). This in-depth analysis determined significantly distinct typologies of inpatients, which facilitated definition of
medical protocols to deliver the most appropriate cares for each profile.
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1 Introduction

At the beginning of the pandemic, COVID-19 was regarded
as a potentially severe disease, mostly affecting elderly
people requiring intensive care. Obesity and diabetes were
identified as risk factors of aggravation [1, 2]. In this
context, extraordinary measures were taken with respect
to the care of hospitalized patients. COVID-19 patients
were isolated from other patients, in separate medical units.
Buildings were thoroughly cleaned and the use of protecting
gear was required for all health care personnel. These
measures were implemented to limit a possible contagion.
Molecular microbiological determinations were used to
provide an early diagnosis of the virus. Extraordinary
resources were provided in order to increase intensive care
unit (ICU) capacity [3, 4]. However, there was at first a clear
lack of tools to identify COVID-19 patients hospitalized
with a high risk of worsening condition.

Although a large amount of information about the
epidemiology and clinical management of COVID-19
infection had been obtained in a remarkably short period
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[5, 6], a major gap existed in understanding the disease’s
severity and identifying at-risk populations at a local level.
Physicians needed a clear view of hospitalized patients
profiles, especially for severe cases of COVID-19. A risk
score would help hospital staff identify the patients most
likely to develop a severe form of COVDI-19.

Several COVID-19 risk scores were thus developed [7–
10] right after the outburst of the pandemic. Most studies
used classical analysis approach or did not perform a
thorough examination of risk score decision process when
using more recent risk score construction methods such as
machine learning (ML) models [11, 12]. This examination
would offer the physicians a better understanding of
COVID-19 medical context regarding patient stratification
[13], identifying risk factors and interaction effects between
relevant data points.

Aggravation risk can vary widely among patients due
to important non-linearity and interaction effects. State-
of-the-art ML models such as Tree Ensembles (Random
Forest or Boosted Trees), Support Vector Machine or Neural
Networks are now widely used in clinical context. By
taking into account the differences between individuals,
these models outperform the more traditional methods [14].
Boosted tree ensemble models proved to be particularly
efficient in aggravation scores for COVID-19 [12, 15].

However, such ML models are more complex, making
their decision process harder to understand. Several tech-
niques have been perfected to get a better comprehension
of models, grouped under the label “eXplainable Artifi-
cial Intelligence”, abbreviated as “XAI”. Such techniques
produce local explanations representing, for each obser-
vations, the relative influence of every variables. Notably,
local methods such as LIME (Local Interpretable Model-
Agnostic Explanations) [16] or SHAP (SHapley Additive
exPlanations) [17] allow to measure the influence of each
feature for an individual observation representing the impor-
tance and direction of the feature effect for that particular
observation. Early tools were developed during the first
wave of the COVID-19 pandemic to help physicians [18, 19]
obtain an aggravation risk prediction for a particular patient,
along with their individual protective and risk factors.

Nevertheless, to make the most accurate prognosis,
choosing the most appropriate care possible for a patient,
physicians not only need the patient’s specific information
but also a broader view to contextualize the overall patient
state. Such a context consists in visualizations about
global feature importance ranking, single feature effect or
interaction effect of two features.

Moreover, clustering methods can also be applied to
regroup patients with similar conditions and prognosis in
order to help physicians define medical procedures that are
specific and most appropriate for each group of patients. A
presentation of the most typical patient for each of these

homogeneous group can also facilitate the understanding of
each group specificity.

2Methodology

2.1 Study population

Population consisted in all patients hospitalized because
of COVID-19 at the Centre Hospitalier Intercommunal
de Créteil (CHIC) with an admission stay between the
20/03/2020 and the 09/05/2020. All hospitalizations were
primarily due to COVID-19. All patients presented clear
signs of COVID-19 infection leading to their hospital
admission or their transfer to a unit specifically dedicated
to COVID-19 if they were already hospitalized. No patient
positive to COVID-19 but asymptomatic was included,
since their hospitalization is only related but not directly
caused by COVID-19 issues.

Data collected consisted in extractions of COVID-
19 patients from the Programme de médicalisation des
systèmes d’information (PMSI) which contains standard-
ized medical information about hospitalizations, such as the
diagnoses under the International Classification of Diseases
standard v10 (ICD-10). Data was entered on an ongoing
basis by medical information technicians from the elec-
tronic medical record and checked by the physician in
charge of the medical information (MR).

The primary outcome of interest was aggravation of
the patient state during hospitalization. Aggravation was
defined as a composite variable, thus a patient was
considered aggravated if at least one of the following points
was verified.

• Presence of septic shock.
• Requirements for mechanical ventilation.
• Acute respiratory distress syndrome (ARDS).
• Requirement for resuscitation maneuvers.
• Hospital mortality.

Since the period considered (spring 2020) was the
initial outbreak of the COVID-19 pandemic, there was
no clear guidelines about the definition of aggravation.
However, even if previous studies considered slightly
different definitions of aggravation [7–12], all of them
included mechanical ventilation, admission to ICU and
death, mostly based on previous recommendations related
to pneumonia disease [20]. Moreover, physicians opted for
a single binary composite target variable in order to have a
clearer and faster understanding of risk factors, as done in
most early studies [7, 9–11].

Every aggravation was validated by the physician
in charge of the medical information (MR) using the
medical record. Patient information, also called explanatory
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variables, included clinical features such as age, gender,
several comorbidities and results of the computerized
tomography (CT) radiological exam. Additionally, several
biological features, such as rates of C-reactive protein
(CRP), Platelets, O2 Saturation, were also included.
All explanatory variables were collected at the time of
admission. Moreover, there was no missing data. For each
patient, the prediction was made once, at the admission day
right after the collection of the clinical and biological data
forming the explanatory variables.

2.2 Statistical analysis

Statistical tests were performed in order to see the
actual differences between aggravated and non-aggravated
patients. Student test was used for quantitative variables
(age and biological features), while the chi-square test was
applied for qualitative variables (gender, comorbidities and
CT Severity result). The CT Severity feature was an ordinal
qualitative variable scoring lesions from best to worst, as
indicated by following list :

• 0 : Scanner not needed
• 1 : Minimal
• 2 : Moderate
• 3 : Expanded
• 4 : Severe
• 5 : Critical

All p-values were adjusted using Bonferroni correction
so as to control the family-wise error rate.

2.3 Machine learningmodeling

A Boosted Tree Ensemble was used for the construction of
the aggravation risk score. The XGBoost implementation
was used since it is considered one of the most efficient
model for tabular data [14, 15, 21].

Performances were assessed using 5-fold cross-
validation. Optimization of hyperparameters was performed
with an inner 5-fold cross-validation.

2.4 Influence-based analysis

A special attention was paid to the notion of explainability
in order to give insights about patients profiles in respect
of their personal characteristics. The SHapley Additive
exPlanation (SHAP) [17, 22] was applied to observe the
influence of features individually for each patient. The
predictive model used being a Boosted Tree Ensemble,
the TreeSHAP algorithm [22] was preferred since it is a
more efficient version for tree-based models compared to its
model-agnostic counterpart (both in terms of computation
time and accuracy) [17].

In order to have a first view of the contribution level of
each feature, a global feature importance ranking was done
using the influences computed by the SHAP method. A
distribution graph was then used to have a first view of the
link between the feature initial value (for example an age of
80) with the related influence (that this age of 80 years old
increased the aggravation probability by 30%).

Moreover, univariate graphs were constructed to offer
a more detailed view about effect of a single feature,
especially the most important ones selected through the
global feature importance ranking. Bivariate graphs were
also constructed to display the interaction effect between
two features.

Clustering was also performed on the global dataset so
as to group patients with similar condition and aggravation
risk. The K-Medoids algorithm was used on the influences
and not the initial feature values. There are indeed several
advantages of using influence values rather than initial ones,
as shown in Table 1.

Silhouette coefficient (also called Silhouette Score) was
used to select the optimal number of clusters. The Silhouette

Table 1 Advantages of using influence values over initial values for clustering

Initial values Influences values

Unit Several different units (for example age in years, Single unit, the same as the prediction task

oxygen saturation in percentages or a comorbidity (a percentage in our study since the prediction is

being a binary indicator). the probability of aggravation).

Threshold Differences are linear (it is the same between an Take into account non-linearity and sudden

age of 55 and 60 as between 60 and 65). thresholds (for example a sudden increase of the

aggravation risk starting at the age of 60, meaning that

a difference between an age of 60 and 65 will be

much larger than between 55 and 60 in terms of

influences).
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Table 2 Population characteristics

Total Non-aggravation Aggravation p-value

Quantitative Nb patients 409 233 (57.0) 176 (43.0)

features Age (years) 61.58 (±23.9) 54.77 (±25.9) 70.59 (±17.2) <0.01 **

Platelets (G/L) 227.48 (±93.9) 238.9 (±101.6) 212.37 (±80.5) 0.115

Eosinophils (G/L) 0.08 (±0.2) 0.11 (±0.3) 0.05 (±0.2) 0.4075

Neutrophils (G/L) 11.05 (±17.3) 9.8 (±14.9) 12.69 (±20.0) 1.0

CRP (mg/L) 85.26 (±84.2) 61.98 (±68.3) 116.07 (±93.2) <0.01 **

O2 Saturation (%) 95.02 (±4.6) 96.28 (±2.8) 93.35 (±5.8) <0.01 **

Serum Creatinine (μmol/l) 95.13 (±119.6) 82.3 (±62.9) 112.12 (±166.1) 0.31

White Globules (G/L) 20.44 (±227.1) 9.05 (±5.4) 35.52 (±346.1) 1.0

Blood Sugar (mmol/L) 7.23 (±3.0) 6.72 (±2.1) 7.91 (±3.7) <0.01 **

Systolic Blood Pressure (mmHg) 132.71 (±24.1) 131.8 (±24.2) 133.92 (±24.1) 1.0

Hemoglobin (mmol/L) 12.72 (±2.1) 12.6 (±2.1) 12.87 (±2.0) 1.0

Arterial pulse (bpm) 96.31 (±23.6) 98.35 (±27.1) 93.6 (±17.6) 0.8175

Qualitative Gender 190 (46.5) 126 (54.1) 64 (36.4) <0.05 *

features Anosmia Ageusia 362 (88.5) 196 (84.1) 166 (94.3) 0.0575

Cancer 28 (6.8) 15 (6.4) 13 (7.4) 1.0

Cardiovascular 141 (34.5) 75 (32.2) 66 (37.5) 1.0

Overweight/Obesity 76 (18.6) 39 (16.7) 37 (21.0) 1.0

Insulin Intake 40 (9.8) 15 (6.4) 25 (14.2) 0.3575

Type 2 Diabetes 77 (18.8) 33 (14.2) 44 (25.0) 0.2025

CT Severity: 0 180 (44.0) 123 (52.8) 57 (32.4) <0.01 **

CT Severity: 1 34 (8.3) 21 (9.0) 13 (7.4) 1.0

CT Severity: 2 69 (16.9) 47 (20.2) 22 (12.5) 1.0

CT Severity: 3 66 (16.1) 34 (14.6) 32 (18.2) 1.0

CT Severity: 4 53 (13.0) 8 (3.4) 45 (25.6) <0.01 **

CT Severity: 5 7 (1.7) 0 (0.0) 7 (4.0) 0.18

Results are presented with mean and standard deviation for quantitative features, and numbers and proportion for qualitative features. All
qualitative features are binary indicators except for CT Severity. Thus, CT Severity was split into six binary indicators, one for every modality

Gender value is 0 for man and 1 for woman

For visual help for p-value, a single star (*) denotes a p-value strictly inferior to 0.05 and two stars (**) denotes a p-value strictly inferior to 0.01

coefficient ranges from −1 to 1, with −1 being the worst
clustering result possible and 1 the best [23, 24]. Clusters
were characterized by statistical testing and presentation
of their associated medoid corresponding to the most
representative patient of the group, which is part of a larger
problematic called instance selection.

2.5 Ethics

All data were anonymized before analysis, in strict obser-
vance of legislation on observational studies. Indeed,
this study is compliant with the GDPR (General
Data Protection Regulation) rules and the CNIL (Com-
mission Nationale de l’Informatique et des Libertés)
methodology.

The use of PMSI data for research purposes does
not require an individual consent. However, patients are
informed on this kind of research on the hospital’s website.1

3 Results

3.1 Population study

There was a total of 409 inpatients during the study
period. Table 2 displays the principal characteristics for the
global, non-aggravated and aggravated populations, such as
number of patients. Statistical tests were performed between

1https://www.chicreteil.fr/politique-de-confidentialite/
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Table 3 Confusion matrix

Ground truth

Prediction Non-aggravation Aggravation

Non-aggravation 186 47

Aggravation 55 121

non-aggravated and aggravated populations. Age and
several biological features came out as significantly
different between aggravation and non-aggravation. As
for qualitative features, Gender and several levels of
CT Severity were significantly different between the two
groups.

3.2 Machine learningmodeling

3.2.1 Performances

Internal validation gave a global accuracy of 75.1%, with a
F1-Score of 79% for the non-aggravation class and 70% for
the aggravation class. Table 3 shows the confusion matrix
produced by the internal validation procedure, and Table 4
indicates additional measures per class, such as sensitivity,
precision and F1-Score.

Receiver operating characteristic (ROC) score was
80.7% and Precision-Recall (PR) score was 74.4%, as show
by Fig. 1 that displays ROC and PR curves.

3.2.2 Influence-based analysis

Most impactful features are given by Fig. 2. Age was clearly
the most important variable, followed by CT Severity.
Then several biological features (CRP, O2 Saturation,
Eosinophils, Platelets and Serum Creatinine) were also
considered as important information by the model.

Distribution graph, also shown by Fig. 2, indicates that
aggravation risk increased with Age or CT Severity. As
for biological features, a higher CRP increased aggravation
probability, while it was a lower O2 Saturation that
increased aggravation risk.

Univariate effects of the four most important features
as indicated by the feature importance ranking (Fig. 2) are
displayed in Fig. 3. Age effect was mostly linear, except for
young ages. CT Severity influence was similar for the first

Table 4 Performance measures per ground-truth class

Ground truth Sensitivity Precision F1-score

Non-aggravation 79.8 77.2 78.5

Aggravation 68.8 72.0 70.3

three levels, then suddenly increased starting from the fourth
level.

Bivariate graphs show interaction effects between two
features. Figure 4 indicates interactions between Age, which
was the most important feature, and the two most important
qualitative features that were CT Severity and Gender. There
was no clear sign of strong interaction between Age and CT
Severity. But there was a slight interaction effect between
Age and Gender since the difference between man and
woman increased with Age.

Figure 5 shows interactions between Age and the fourth
most important quantitative features after Age that were
CRP, O2 Saturation, Eosinophils and Platelets. There were
no clear signs of interactions between Age and CRP, O2
Saturation, or Platelets. On the contrary, there was an
interaction effect between Age and Eosinophils as an older
Age increased the gap between low Eosinophils values
and high ones. Therefore, an older Age increased the
Eosinophils impact.

3.2.3 Clustering analysis

The optimal number of clusters in respect of the Silhouette
coefficient criterion was 3. Table 5 indicates the principal
characteristics of clusters as well as statistical difference
testing between clusters for all features. Clusters are rather
homogeneous in terms of number of patients, even if the
cluster 2 had the highest proportion of patients. On the
contrary, clusters widely differed on the proportion of actual
aggravation, with the cluster 1 having the least amount of
aggravation cases, while the cluster 3 had the most.

Clusters significantly differed on patient typology.
Cluster 1 had the youngest patients and cluster 2 the
oldest ones. Patients of cluster 3 had more comorbidities,
especially for Overweight/Obesity and Type 2 Diabetes,
and more severe scanner results since the proportion of CT
Severity value of 0 (scanner not done) was the lowest and
that values of 4 or 5 were the highest for cluster 3. Moreover,
biological feature results were also significantly worst for
cluster 3, since patients of cluster 3 had the lowest O2
Saturation and Eosinophils along with the highest CRP and
Serum Creatinine values.

Figure 6 shows the three medoids, which were actual
observations from the dataset, corresponding to the respec-
tive three clusters. Each medoid is thus the patient most
representative of a particular cluster.

Medoid of cluster 1 was the youngest, while cluster 2
medoid was the oldest. The influence of Age was the highest
for cluster 1, since it decreased the aggravation probability
prediction by almost 15%. Moreover, medoids of clusters
1 and 2 had very good CT Severity results (value of 0),
which was a clear protective factor. On the contrary, medoid
of cluster 3 had a worse CT Severity value of 3, which
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Fig. 1 ROC and PR curves

Fig. 2 Feature importance ranking and distribution of influences
linked to feature initial values (best viewed in color). Feature impor-
tance ranking (left graph) is established by averaging the absolute
influences over all patients. As for distribution of influences (right
graph), each dot represents a particular patient, with feature names on
the y-axis and influence values on the x-axis. A protective factor is

indicated by a negative influence since it decreased the probability of
aggravation, while a risk factor is indicated by a positive influence.
The initial value is represented by the color of the dot, through the col-
ormap shown on the far right of the graph. For comorbidity indicators,
0 indicates the absence and 1 the presence, while genre value is 0 for
man and 1 for woman
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Fig. 3 Univariate graphs for effect of Age, CT Severity, CRP and O2 Saturation. Each dot represents a patient, with the feature value on the x-axis
and the associated influence on the y-axis

Fig. 4 Bivariate graphs for interaction effect of Age with Gender and
CT Severity (best viewed in color). Each dot represents a particular
patient. Color and size of the dot give information about the two feature
initial values, respectively color for the feature located on the x-axis

(Age) and size for the feature on the y-axis. The colormap for the x-
axis feature is the same used in Fig. 2 with blue indicating a young age
and red an old age
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Fig. 5 Bivariate graphs for
interaction effect of Age with
CRP, O2 Saturation,
Eosinophils and Platelets (best
viewed in color). Reading
information is the same as Fig. 4

increased the predicted aggravation risk by almost 15%.
Compared to the first two clusters, medoid of cluster 3 had
also several biological features that were considered as risk
factors, especially CRP.

4 Discussion

4.1 Main findings

This study presented the construction and evaluation of an
machine learning–based aggravation risk score for COVID-
19 inpatients. Though this score is based on a population
from a single center, which may be considered a limitation,
it did include more than 400 patients with several clinical
and biological information that are available upon the
patient’s arrival to the hospital.

This model showed a strong performance with an AUC
ROC score of 81%. This model and the associated analysis
were used as an assisting tool during the stressful context of
the first wave of COVID-19 in a French hospital [18] so as to
help medical staff have a better understanding of risk factors
and identify population with high risk of aggravation.

The tool also presented individual protective and risk
factors for each patient. However, physicians wanted and
needed a broader view to get a deeper understanding of the
global context. The ability to associate a single patient to a
larger group and to know whether the patient is a common
case, either for aggravation or non-aggravation, or a more
atypical case is crucial to choose and deliver the relevant
and proper care.

An in-depth analysis of the decision process of this score,
thanks to machine learning and explainability methods,
indicated that age, results of CT Severity scanner and
several biological variables (mostly CRP, Saturation and
Eosinophils [25, 26]) had a significant impact on the risk
level of aggravation, which is mostly aligned with existing
literature [5, 6, 27, 28].

Furthermore, more complex feature effects were high-
lighted by this study. Influence of CT Severity scanner result
was notably non-linear, as for CRP and O2 Saturation but
in a less significant manner. Interaction effect were also
detected for Age and Gender, and for Age and Eosinophils
[26, 29].

A clustering analysis was also performed to detect similar
groups of patients based on their condition and aggravation
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Table 5 Cluster characteristics

Cluster 1 Cluster 2 Cluster 3 p-value

Cluster Nb patients 129 (31.5) 172 (42.1) 108 (26.4)

Nb Aggravations 23 (17.8) 73 (42.4) 80 (74.1)

Model prediction of aggravation (%) 20.64 (14.3) 42.42 (17.7) 75.22 (13.5)

Quantitative Age (years) 34.2 (±17.0) 78.49 (±11.7) 67.34 (±14.5) <0.01 **

features Platelets (G/L) 243.42 (±106.9) 220.13 (±85.3) 220.15 (±89.0) 1.0

Eosinophils (G/L) 0.08 (±0.2) 0.12 (±0.3) 0.03 (±0.1) <0.01 **

Neutrophils (G/L) 8.48 (±12.2) 10.91 (±16.8) 14.31 (±22.3) <0.01 **

CRP (mg/L) 59.2 (±64.5) 54.99 (±51.0) 164.59 (±96.3) <0.01 **

O2 Saturation (%) 96.72 (±2.5) 95.25 (±5.1) 92.63 (±4.6) <0.01 **

Serum Creatinine (μmol/l) 75.93 (±66.1) 96.92 (±78.1) 115.23 (±196.7) <0.01 **

White Globules (G/L) 9.28 (±5.6) 35.67 (±350.1) 9.51 (±4.7) 1.0

Blood Sugar (mmol/L) 6.32 (±1.9) 6.97 (±2.3) 8.73 (±4.2) <0.01 **

Systolic Blood Pressure (mmHg) 126.25 (±19.0) 137.22 (±26.2) 133.23 (±24.6) <0.05 *

Hemoglobin (mmol/L) 12.71 (±2.3) 12.59 (±1.9) 12.93 (±2.0) 1.0

Arterial pulse (bpm) 108.02 (±27.9) 88.19 (±19.8) 95.25 (±17.0) <0.01 **

Qualitative Gender 69 (53.5) 81 (47.1) 40 (37.0) 0.9975

features Anosmia Ageusia 101 (78.3) 161 (93.6) 100 (92.6) <0.01 **

Cancer 4 (3.1) 18 (10.5) 6 (5.6) 0.8975

Cardiovascular 17 (13.2) 78 (45.3) 46 (42.6) <0.01 **

Overweight/Obesity 27 (20.9) 24 (14.0) 25 (23.1) 1.0

Insulin Intake 7 (5.4) 19 (11.0) 14 (13.0) 1.0

Type 2 Diabetes 7 (5.4) 40 (23.3) 30 (27.8) <0.01 **

CT Severity: 0 73 (56.6) 97 (56.4) 10 (9.3) <0.01 **

CT Severity: 1 10 (7.8) 22 (12.8) 2 (1.9) 0.1325

CT Severity: 2 25 (19.4) 39 (22.7) 5 (4.6) <0.01 **

CT Severity: 3 19 (14.7) 13 (7.6) 34 (31.5) <0.01 **

CT Severity: 4 2 (1.6) 1 (0.6) 50 (46.3) <0.01 **

CT Severity: 5 0 (0.0) 0 (0.0) 7 (6.5) <0.01 **

Results are presented with numbers and proportions for Nb patients, Nb Aggravations and qualitative features, and mean and standard deviation
for Model prediction of aggravation (%) and quantitative features

Gender value is 0 for man and 1 for woman

For visual help for p-value, a single star (*) denotes a p-value strictly inferior to 0.05 and two stars (**) denotes a p-value strictly inferior to 0.01

risk. Clustering was done on influence values rather than
initial feature values so as to better take into account non-
linearity of effects and remove the noise brought by less
important features. The patients the most representative
of each cluster (also called a medoid instance) were also
presented so as to have a view of the different typical cases.

Three groups were identified. The first group contained
patients at really low risk of aggravation represented by
young patients (≤40 years), without comorbidity and with
normal biological values and low CT Severity results. The
second group contained a population at an intermediate
aggravation risk (almost 40% of probability of aggravation)
consisting of old patients (around 75 years old), but without
comorbidity, and with normal biological values and low CT

Severity results. The third group had the highest aggravation
risk (almost 75%) since it was comprised of patients with
abnormal biological values and high CT Severity results,
while age was old (around 67 years old) but not as old as the
second group.

This indicated that although the age was the most
important variable when considering feature independently,
biological features and radiological results were clearly
more impactful when all information was considered.

Therefore, this study gave a better understanding of the
global situation along with information to define medical
protocols based on patient characteristics so as to have
pertinent guidelines that would help physicians in their
work.
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Fig. 6 Influences of patients corresponding to the medoids of the three identified clusters. Feature names are represented by their initials for
cluster 2 and 3. Initial feature values are indicated after the hyphen and rounded so they all appear as integers

4.2 Future works

Even if an individual prediction for a single patient already
brings an useful insight, additional information about the
general context can help situate the patient in a broader view
and in respect of other patients. Therefore, one could see if
the patient is a typical or atypical case and bring the patient
together to a larger group with similar characteristics, for
which medical procedures that best fit the needs of this
group have already been defined.

Identification of the most typical patient for each group,
with the related characteristics along with protective and
risk factors, offers a clear view of the specificity of the
group. Besides, it helps physicians rapidly associate a new
patient to a larger group of patients with similar condition.

This instance selection and presentation problematic was
tackled in this study with a well-known, but rather classical,
K-medoid technique. Testing of more recent instance
selection methods, such as [30, 31], is an interesting future
axis of work so as to present even more representative and
useful observations to help medical staff make the most
appropriate decisions.

This study focused on the outburst of the COVID-19
pandemic since it was the period with the utmost pressure
on hospital centers. Still, as the model used in this study
can be easily updated while admitting new patients, it could
be applied to the analysis of the pandemic evolution by
taking into account patients from the next waves. Indeed,
very few studies have yet analyzed how the hospitalized
patient profiles, especially severe cases, have evolved since

this first wave [32, 33]. This would provide an up-to-date
aggravation risk score that efficiently takes into account the
most recent SARS-COV-2 variants [34, 35], to help medical
staff adapt their care deliveries to better reflect the current
situation.

5 Conclusion

This study presented a construction of a machine learning
aggravation risk score for COVID-19 inpatients. An
extensive analysis based on state-of-the-art explainability
techniques highlighted several non-linear and interaction
effects, especially for age, CT severity result and several
biological variables. Moreover, clustering method identified
three main groups of patients with different risk levels.
This deeper understanding of risk factors along with the
obtained risk stratification can help physicians develop
medical guidelines so as to improve the risk stratified care
management for COVID-19 patients.
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manuscript:
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