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Background.  In settings without access to rapid expert radiographic interpretation, artificial intelligence (AI)–based chest ra-
diograph (CXR) analysis can triage persons presenting with possible tuberculosis (TB) symptoms, to identify those who require 
additional microbiological testing. However, there is limited evidence of the cost-effectiveness of this technology as a triage tool.

Methods.  A decision analysis model was developed to evaluate the cost-effectiveness of triage strategies with AI-based CXR 
analysis for patients presenting with symptoms suggestive of pulmonary TB in Karachi, Pakistan. These strategies were compared to 
the current standard of care using microbiological testing with smear microscopy or GeneXpert, without prior triage. Positive triage 
CXRs were considered to improve referral success for microbiologic testing, from 91% to 100% for eligible persons. Software diag-
nostic accuracy was based on a prospective field study in Karachi. Other inputs were obtained from the Pakistan TB Program. The 
analysis was conducted from the healthcare provider perspective, and costs were expressed in 2020 US dollars.

Results.  Compared to upfront smear microscopy for all persons with presumptive TB, triage strategies with AI-based CXR anal-
ysis were projected to lower costs by 19%, from $23 233 per 1000 persons, and avert 3%–4% disability-adjusted life-years (DALYs), 
from 372 DALYs. Compared to upfront GeneXpert, AI-based triage strategies lowered projected costs by 37%, from $34 346 and 
averted 4% additional DALYs, from 369 DALYs. Reinforced follow-up for persons with positive triage CXRs but negative microbio-
logic tests was particularly cost-effective.

Conclusions.  In lower-resource settings, the addition of AI-based CXR triage before microbiologic testing for persons with pos-
sible TB symptoms can reduce costs, avert additional DALYs, and improve TB detection.

Keywords.  artificial intelligence; chest radiography; cost-effectiveness; deep learning; tuberculosis.

Tuberculosis (TB) remains a leading cause of morbidity and 
mortality worldwide. With 10 million estimated cases annu-
ally [1], a large gap exists between estimated incidence and 
reported cases, partly due to underdiagnosis. In an effort to re-
duce underdiagnosis, it was recommended at the 2018 United 
Nations high-level meeting on tuberculosis [1] to improve di-
agnostic tests to promote early identification, which in turn 
will improve health outcomes and reduce transmission [2].

One of the most needed diagnostic tools in high-TB burden 
settings is a low-cost, efficient TB triage test for first contact health 

centers. Chest radiographs (CXRs) have been considered poten-
tial triage tests, to focus further microbiologic evaluation of per-
sons presenting with symptoms suggestive of pulmonary TB [1].

CXRs read by radiologists are suitably accurate, but the costs 
and scarcity of radiologists and other trained readers impede 
usage as triage tests in most low-income, high-TB-burden 
countries. In settings without access to experienced readers, 
artificial intelligence (AI)–guided CXR interpretation could 
potentially be used for triage, particularly given the recent ad-
vances in performance.

In December 2020, the World Health Organization (WHO) 
announced that forthcoming guidelines on TB screening and 
diagnosis will state that AI-based CXR analysis software can re-
place human CXR interpretation [3]. A recent market mapping 
study documented 27 developers of AI-guided CXR analysis 
systems and described 11 of these systems; 8 are commercially 
available for TB diagnosis [4]. Deployment, data sharing, com-
patibility and other elements relevant to integrating these sys-
tems into existing TB diagnostic algorithms were reviewed and 
the diagnostic accuracy of AI-based CXR interpretation has 
been evaluated in various high-TB burden settings [5–8].
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The WHO’s target product profile for TB diagnostics em-
phasizes affordability [1]. Previous reports from Pakistan and 
South Africa estimated costs per radiograph and per TB diag-
nosis with AI-based CXR interpretation software, but did not 
consider overall testing and treatment costs (including false-
positive treatment starts), nor broader health outcomes [7, 9]. 
To date there has been no published assessment of the cost-ef-
fectiveness of triage using AI-based CXR interpretation. To 
explore the potential cost and effectiveness of this technology, 
a decision analysis model was developed, building on a pro-
spective field study of diagnostic accuracy completed at Indus 
Health Networks (IHN) TB clinic in Karachi, Pakistan [6].

METHODS

Study Setting

In 2019, Pakistan was 1 of 8 countries that together accounted 
for two-thirds of the global TB burden; only 50% of notified 
cases were bacteriologically confirmed. The estimated inci-
dence in Pakistan in 2019, was 263 per 100 000 population [10]; 
in Sindh Province in 2011, it was 454 per 100 000 [11]. We sim-
ulated a cohort reflecting the population who participated in 
the field study in Karachi [6]. This population was represen-
tative of persons presenting with symptoms suggestive of TB 
from the Indus Hospital catchment area, a low-income, high-
TB-incidence area of Karachi. The prospective study evaluated 
the diagnostic accuracy of 2 analysis software packages: qXR 
version 2.0 (qXRv2, qure.ai, Mumbai, India) and CAD4TB ver-
sion 6.0 (CAD4TBv6, Delft, Veenendaal, the Netherlands). It 
included 2198 adults (52% men) aged ≥15 years (median age, 

33 years [interquartile range, 23–49 years]), who presented with 
TB symptoms.

Participants were enrolled from March 2017 to July 2018 
and liquid culture of 2 sputum specimens was the reference 
standard test for pulmonary TB. Persons with at least 1 posi-
tive culture were classified as having TB, and those with 2 neg-
ative cultures were classified as not having pulmonary TB. The 
study informed cohort and diagnostic accuracy parameters 
in our model. Other inputs, such as costs and treatment out-
comes, were obtained from the IHN TB clinic and the Pakistan 
National TB Program.

Overview

A trial-based economic evaluation of triage, using AI-based CXR 
interpretation for persons presenting with symptoms suggestive 
of pulmonary TB, used a decision analysis model (TreeAge Pro 
2020; TreeAge Software, Williamstown, Massachusetts). Model 
outputs included TB diagnoses (both true and false positives) 
and costs (in 2020 US dollars), as well as deaths, numbers of mi-
crobiologic tests, and disability-associated life-years (DALYs). 
Where appropriate, incremental costs were estimated: per ad-
ditional person correctly diagnosed with TB, per TB-related 
death averted, and per DALY averted. All analyses were con-
ducted from the perspective of the healthcare payer.

Simulated Cohort

The cohort included human immunodeficiency virus (HIV)–
negative individuals with TB symptoms referred for fur-
ther testing at a TB clinic. In all scenarios, simulations began 
with persons ≥15 years with symptoms suggestive of TB who 

Table 1.  Diagnostic Algorithms

Strategy Description of Diagnostic Algorithm 

Smear as microbiologic test

I. Status quo: AFB smear Upfront sputum AFB smear × 2 for all persons with symptoms suggestive of TB. CXR performed, with human 
interpretation, for individuals with negative smears and persistent symptoms after 7 days of antibiotics.

1A.Triage with CXR and AI-based CXR inter-
pretation. AFB smears only if CXR suggests 
TB

Triage using AI-based CXR interpretation for all persons with presumptive TB based on symptoms. If CXR sug-
gests pulmonary TB based on score, the person then has 3 sputum AFB smears sent. If those smears are then 
negative, but the person has persistent symptoms despite an antibiotic trial, they are started on TB treatment 
based on clinical diagnosis. If the CXR is not suggestive based on score, there is no further testing.

1B.Reinforced follow-up based on triage with 
CXR and AI-based CXR interpretation before 
AFB smears

Triage using AI-based CXR interpretation for all persons with suspected TB based on symptoms, plus reinforced 
follow-up. If the CXR suggests pulmonary TB based on score, the person then has 3 sputum AFB smears sent. 
If these are negative, the person undergoes repeat sputum AFB smear within 2 weeks.

2.Triage after a negative AFB smear Upfront sputum AFB smear × 3 for all persons with suspected TB based on symptoms. AI-based CXR interpre-
tation done for those with negative smears; if score above threshold for suspected TB, the person is referred for 
Xpert testing; if the score is below the threshold, there is no further testing at that time.

Xpert as microbiologic test

II. Status quo: Xpert Upfront sputum Xpert for all persons with suspected TB based on symptoms. No further testing protocol if 
Xpert negative.

3A.Triage with AI-based CXR interpretation 
before Xpert

Triage using AI-based CXR interpretation for all persons with suspected TB based on symptoms. If CXR sug-
gests pulmonary TB based on score, the person then has a sputum sample sent for Xpert. No further testing if 
Xpert is negative. If the CXR does not suggest pulmonary TB based on score, there is no further testing.

3B.Reinforced follow-up based on triage with 
AI-based CXR interpretation before Xpert

Triage using AI-based CXR interpretation for all persons with suspected TB based on symptoms, plus reinforced 
follow-up. If the CXR suggests pulmonary TB based on score, the person then has 1 sputum sample sent for 
Xpert. If this is negative, the person then undergoes repeat sputum Xpert within 2 weeks.

Abbreviations: AFB, acid-fast bacilli; AI, artificial intelligence; CXR, chest radiograph; TB, tuberculosis.
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presented at a TB clinic. In this simulated cohort, 91% were re-
ferred for microbiologic testing [11], and 12% of tests yielded 
culture-confirmed TB [6]. The analysis focuses on individuals 
without risk factors for drug-resistant TB.

AI-Based CXR Interpretation as Triage Test

The diagnostic accuracy of 2 deep learning-based AI soft-
ware packages for CXR was evaluated in the prospective study. 
The software analyzes CXR images and outputs a TB abnor-
mality score, with higher scores indicating greater abnormality. 
Thresholds are preset: Scores above the threshold suggest pos-
sible pulmonary TB and the need for further microbiologic 
testing; scores below the threshold suggest that the CXR is suf-
ficient to rule out pulmonary TB without further testing. The 

test properties—that is, sensitivity and specificity—reflect this 
categorical classification.

Several potential diagnostic algorithms were simulated, with 
test properties for the 2 AI-based interpretation software pack-
ages taken from the field study. Since the diagnostic perfor-
mance of both software packages was similar, we present the 
detailed cost-effectiveness analysis for one in the main text, and 
the other in Supplementary Tables 4–6. Parallel diagnostic algo-
rithms where acid-fast bacilli smear microscopy or GeneXpert 
is used were considered. The algorithms are listed in Table 1, 
with further detail and scenarios in Supplementary Table 1: 
the integration of AI-based CXR interpretation parallels the 
approaches described in the market mapping of these tech-
nologies [4]. These algorithms were compared to the current 

Table 2.  Model Parameters

Parameter Value, % (Range) Reference 

Epidemiologic parameters

Culture-confirmed TB prevalence in individuals who present to the clinic with symptoms suggestive of TB 12 (10–14)a  [6]

Adherence to referrals for upfront microbiologic testing in the status quo strategies 91 (80–99)  [12]

Proportion smear-positive (of all persons with TB) 78 (64–94)  [6]

Annual rate of spontaneous recovery from active TB without treatment

  Smear-positive patients 23 (18–29)  [13, 14]

  Smear-negative patients 13 (7–21)  [13, 14]

Annual rate of TB-related death for untreated

  Smear-positive patients 39 (34–45)  [15, 16]

  Smear-negative patients 2.5 (1.7–3.5)  [15, 16]

Probability of completing treatment for active TB 85 (80–90) Register TB-09 for 2017b

Probability of death during TB treatment 5 Register TB-09 for 2017

Specificity of smear microscopy 98 (97–99)  [17]

Specificity of culture 96  [18]

Sensitivity of human-read CXR

  Smear negative 80 (74–85)  [19]

  Smear positive 94 (88–98)  [20]

Specificity of CXR for active TB when read by

  Clinical officerc 46 (33–59)  [21]

  Physician/radiologist 77 (73–80)  [19]

Sensitivity of clinical-radiographic diagnosis of TB after negative smears 57  [19], Register TB-09 for 2017

Specificity of clinical-radiographic diagnosis of TB after negative smears 78  [19], Register TB-09 for 2017

Sensitivity of Xpert

  Smear negative 59 (51–67)  [22]

  Smear positive 100 (95–100)  [23]

Specificity of Xpert

  Smear negative 98 (96–99)  [22]

  Smear positive 99 (98–100)

Software 1: AI-based CXR diagnostic performance

  Sensitivity of AI-based CXR

    Smear negative 82 (70–91)  [6]

    Smear positive 97 (93–99)  [6]

  Specificity of AI-based CXR 69 (67–71)  [6]

Software 2: AI-based CXR diagnostic performance

  Sensitivity of AI-based CXR

    Smear negative 80 (68–89)  [6]

    Smear positive 96 (93–98)  [6]

  Specificity of AI-based CXR 75 (73–77)  [6]

Abbreviations: AI, artificial intelligence; CXR, chest radiograph; TB, tuberculosis.
aThe 95% confidence interval for TB prevalence among symptomatic persons in the parent Karachi study ranged from 11% to 13%, but we used a wider range for purposes of sensitivity 
analysis.
bReport form TB-09: Quarterly report on treatment outcomes; it is produced by extracting data from the TB register TB-03.
cA standardized approach for radiograph reading for TB.

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab567#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab567#supplementary-data
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standard of care (“status quo”), which involves upfront microbi-
ological testing using (1) smear microscopy, or (2) GeneXpert, 
for all persons with presumptive TB based on symptoms (ie, no 
triage before microbiologic testing).

Model Structure and Key Assumptions

The simulation began with initial presentation to a health 
center with symptoms consistent with TB. Persons with active 
TB who were correctly diagnosed were assumed to be diag-
nosed, treated, and followed up during a single year. Those 
who remained undiagnosed were assumed to again seek care 
and to undergo microbiologic testing, 3 months after their 
previous false-negative testing episode if they had not died in 
the interval. Persons with TB and false-negative CXRs only 
underwent microbiologic testing when they returned with 
persistent symptoms. These persons remained undiagnosed 
for 3 months and during the 3-month delay, they became dis-
abled, died, or were spontaneously cured. Survivors with per-
sistent TB returned to the health center for reevaluation every 
3 months, to a maximum of 3 visits after which they remained 
undiagnosed.

Persons without underlying TB continued in the simulation 
until they were discharged from medical evaluation and care 
for suspected TB—that is, all TB-related tests, as well as any 
TB treatment related to empiric therapy or false-positive test 
results, were considered. Discounting was not used given the 
short analytic horizon of 1 year.

Microbiologic testing required referral, sometimes to other 
sites, for acid-fast smears or GeneXpert, so persons initially 
evaluated for TB symptoms might not present for microbio-
logic testing. We assumed that when CXR was used as an initial 
triage test, microbiologic testing would be done immediately 

on site, for all persons presenting with symptoms and imaging 
deemed consistent with TB. A model schematic is shown in 
Figure 1.

TB Epidemiology Inputs

Model parameters related to TB pathogenesis, performance 
of microbiological tests, and conventional CXR were obtained 
from published literature (Table 2). TB diagnosis and treatment 
parameters were obtained from the prospective study [6] and 
2018 Indus Health Network TB clinic data. The annual mor-
tality rate from untreated TB was assumed to be 39% for smear-
positive and 2.5% for smear-negative TB patients [13,15,16]. 
The annual rate of spontaneous resolution of untreated TB 
was assumed to be 23% for smear-positive and 13% for smear-
negative TB patients [13,15,16].

DALYs

A weight of 0.331 DALYs was attributed to active TB [24]. 
Years lived with disability (YLD) and years of life lost due to 
premature mortality (YLL) were used to calculate DALYs 
(YLD + YLL). We assumed that those undergoing treatment for 
TB would only experience disability for the duration of their 
6-month treatment regimen, and thus the yearly disability 
weight would be half (0.1655 DALYs) of that reported for a full 
year (0.331 DALYs) with untreated active TB. We defined YLD 
as the duration of time on TB treatment or time with TB before 
death multiplied by the disability weight. YLL was defined as 
remaining life expectancy at the age of death (the parent study 
median population age was 33). Life expectancy in Pakistan was 
75 years in 2021 and the mean age at onset of TB disease was 33 
years [25]. DALYs lost in future years were discounted at 3%.

Persons with
TB symptoms
referred for
smear/Xpert
or triage test

Standard of
care with
upfront smear
or Xpert

Triage with
AI-based
CXR

No active TB
disease

Active TB
disease

A triage test is administered before a microbiological test is
done. After that, the structure is similar to that of  the standard
of  care. See main text for details

End simulation

Up to 3 chances of  returning for diagnosis
1. Correct diagnosis as a non-TB patient based on the specificity of  the diagnostic test

2. False positives started on active TB treatment

3. Individuals with persistent symptoms will have a probability of  returning for diagnosis

Delayed diagnosis

Successful referral
for TB diagnosis

Successful referral
for TB diagnosis

Smear
negative

Smear positive

Delayed
diagnosis

Diagnosed with
active TB based
on the diagnostic
performance of
the test used

Started on
treatment

Delayed diagnosis
with chance of
treatment

Final state - not
diagnosed

Pakistan national
TB program
diagnostic
algorithm was
used to model
this cohort

Death

End simulation

End simulation

Die from TB
disease

Spontaneous
resolution

Ongoing TB
disease

Return for
diagnosis

Treatment outcomes: cure/complete,
failure and LTFU and TB deaths

Up to 3 chances of  returning for diagnosis.
Antibiotics are prescribed to manage the
symptoms before the next cycle of
diagnosis visits

Diagnostic pathway for smear negative: antibiotic trial and
CXR, after which individuals with persistent TB symptoms
and an abnormal CXR suggestive of  PTB started
empiric treatment

Not successfully
referred for diagnosis

Figure 1.  Simplified schematic of model structure for strategies to diagnose active TB. Probabilities related to each decision node are not shown. Abbreviations: AI, artifi-
cial intelligence; CXR, chest radiograph; LTFU, lost to follow-up; TB, tuberculosis.
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Cost Inputs

All component costs for diagnostic testing, treatment, and clin-
ical care were obtained from the IHN TB clinic, published lit-
erature, and other Karachi reference laboratories [26] (Table 
3). Technology costs included image analysis and equipment 
depreciation. Clinic overhead costs were not included as they 
are constant regardless of the diagnostic algorithm. Costs were 
converted from rupees to US dollars using the United States 
Treasury historical reported exchange rate, and inflated from 
2018 to 2021 using Pakistan Bureau of Statistics consumer price 
index [27–29]. A detailed breakdown of cost estimates for TB 
diagnosis and treatments is provided in Supplementary Table 2.

Sensitivity Analysis

One-way sensitivity analysis for all model parameters was con-
ducted, and tornado diagrams were generated accordingly. 
Distributions for the input parameters are provided in the 
Supplementary Table 3. Several scenarios for the underlying 
prevalence of TB among persons presenting with compatible 
symptoms were considered. Sensitivity and specificity thresh-
olds for AI-based CXR interpretation corresponding to both 
the minimal and optimal target product profiles of triage tests 
[1] were considered. A scenario where the CXR is read by a ra-
diologist, with increased specificity, was also considered. A sce-
nario analysis incorporated 100% patient adherence to referrals 
for upfront microbiologic testing in the status quo strategies.

Probabilistic sensitivity analysis used 10  000 Monte Carlo 
simulations to obtain 95% uncertainty ranges (URs; 2.5th to 
97.5th percentiles) around point estimates for all projected 
outcomes. For our willingness-to-pay threshold, and related 
cost-effectiveness acceptability curves, we used a value of 
$195 per DALY for Pakistan, based on observed health op-
portunity costs in Pakistan; these may be lower for low- and 
middle-income country settings [31, 32]. Hence, this has been 
suggested as a more appropriate approach [32] than the often-
used willingness below the thresholds of either per-capita 

gross domestic product (GDP), or 3 times the per-capita GDP, 
making the analysis more conservative in this regard [33, 34].

Patient Consent Statement

For the parent study in Karachi, written informed consent was 
obtained from all study participants. The parent study was 
approved by the ethics review boards of Interactive Research 
and Development and the Research Institute of the McGill 
University Health Centre. Additional approval for the present 
analysis was not required, as it used only aggregate, previously 
reported data from the parent study without any individual pa-
tient data or identifiers.

RESULTS

The projected costs and outcomes for the various diagnostic al-
gorithms are summarized in Table 4.

Base Case I: Acid-Fast Smear Microscopy as the Standard Microbiologic 
Test

Relative to a current standard of care based on upfront smear 
microscopy, the AI-based triage strategies without or with en-
hanced follow-up (1A and 1B) were projected to save 19% from 
the base value of $23 233 per 1000 persons, and to increase TB 
detection by 0.5%–1.2% from the base value of 117.5 TB pa-
tients correctly diagnosed per 1000 persons (perfect case detec-
tion would correspond to 120 TB patients correctly diagnosed 
per 1000 persons evaluated).

The AI-based triage strategies reduced false-positive clinical 
diagnoses by 78% (from 69.5 to 15.1 per 1000 persons). False-
positive treatments were a key determinant of cost, accounting 
for 37% of the total cost ($8635 per 1000 persons) and this pro-
portion was reduced to 11% ($2061 per 1000 persons) with the 
AI-based triage strategies. Although diagnostic test costs doubled 
with AI-based triage strategies, this increase was more than offset 
by savings from averted false-positive treatment starts.

Table 3.  Cost Inputs

Cost/ Fee Value (2021 USD) Data Source (Year) 

AI-based CXR interpretation $2.70 Fee schedule IHN TB Clinic, GHD-IHN, Delft imagery systems (2018)

AFB smear microscopy $1.26 Fee schedule Dow diagnostic (2019)

Xpert test $21.28 Fee schedule IHN TB clinic (2018)

Digital CXR in Karachi $1.70 Fee schedule IHN TB clinic (2018)

Prediagnosis antibioticsa $1.29  [30] (2019)

Radiograph reading by clinical officer $0.30 Personal communication with Khan RM (2019)

Radiograph reading by doctor $0.45 Personal communication with Dow University of Health Sciences (2018)

Standard TB treatmentb $114.82 Calculated from various sources (NTP, IHN TB clinic, Aga Khan University, Dow University) 
(2017–2018)

Abbreviations: AFB, acid-fast bacilli; AI, artificial intelligence; CXR, chest radiograph; GHD-IHN, Global Health Directorate–Indus Health Network, IHN, Indus Health Network; NTP, Pakistan 
National TB Program; TB, tuberculosis; USD, United States dollars.
aIndividuals missed with each subsequent microbiological test were assumed to take ciprofloxacin 500 mg (14 tablets) for 7 days based on NTP diagnosis guidelines.
bMonthly and directly observed therapy visits, 6-month medication, treatment monitoring, and hospitalizations.

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab567#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab567#supplementary-data
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Base Case II: Xpert as the Standard Microbiologic Test

Relative to a current standard of care based on upfront Xpert, the 
AI-based triage strategies without or with enhanced follow-up 
(3A and 3B) were projected to reduce costs by 37% compared 
to upfront Xpert (from $34  346 per 1000 persons). The same 
strategies averted 4% additional DALYs (from 369 DALYs per 
1000 persons) and increased patients correctly diagnosed by 1%.

AI-based triage strategies reduced the number of microbi-
ologic tests by 74% relative to a status quo with upfront Xpert 
(from 936 tests per 1000 persons). Diagnosis with upfront 
Xpert accounted for 58% of the total cost in the standard of 
care strategy ($19 932 per 1000 persons); it was reduced by 73% 
(to $5321 per 1000 persons) in the AI-based triage strategies.

Incremental cost-effectiveness ratios comparing strategies 
are summarized in Tables 5 and 6. AI-based triage strategies 
(1A, 1B, 3A, and 3B) were consistently cheaper with better out-
comes when compared to upfront smear microscopy and Xpert, 
in all simulations. The “reinforced follow-up after AI triage” 
strategies (1B and 3B) were projected to be the dominant strat-
egies when either smear microscopy or Xpert was used for mi-
crobiologic diagnosis. Figures 2 and 3 show how these strategies 
were consistently cost-effective with respect to cost per DALY 
averted when compared to the next best alternative strategies: 
$39 (95% UR, $32–$46) and $40 ($12–$41) per DALY averted, 
for the reinforced follow-up vs AI-based triage only strategies. 
These estimates fell well below the willingness-to-pay threshold 
of $195 per DALY averted.

Scenario and Sensitivity Analyses

Sensitivity of conventional CXR read by either clinical officers 
or radiologists is comparable to AI-based CXR interpretation 
sensitivity, resulting in similar numbers of patients correctly 
diagnosed with TB. The lower specificity when the CXR was 
read by clinical officers led to more false positives. False posi-
tives with the upfront smear microscopy strategy were reduced 
by 44% when the subsequent CXR (done for persons with neg-
ative smears but persistent symptoms) was read by a radiologist 
(to 38.8 false positives per 1000 persons). Hence, the impact of 
CXR triage on empiric treatment and total cost was reduced 
(for details, see Supplementary Table 7).

When the patient referral rate for upfront microbiologic 
testing was increased from 91% to 100% in status quo simula-
tions, costs increased as did diagnostic yield of upfront testing. 
However, the triage strategies remained cheaper, while the en-
hanced AI-based triage strategies (1B and 3B) were associated 
with slightly more true-positive diagnoses (see Supplementary 
Table 8 for details).

When the diagnostic performance of AI-based CXR inter-
pretation was varied, more accurate testing predictably led 
to additional savings and increased TB detection. The better 
the diagnostic performance, the lower the TB prevalence can 
be for CXR-based triage to be cost-effective. Similarly, as the 
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prevalence of TB increased among persons evaluated for symp-
toms, the triage tests became more cost-effective. TB treatment 
cost was the most influential cost variable, as shown in the tor-
nado diagrams in Supplementary Figure 1.

In probabilistic sensitivity analyses, AI-based triage strategies 
with or without enhanced follow-up (1A, 3A, 1B, 3B) were pro-
jected to be cost-saving relative to the status quo in 100% of 
simulations, reducing false-positive treatment (Supplementary 
Figures 2 and 3).

Additional scenario analyses included triage scenarios where 
the CXR was read by a human reader. These scenarios were 
dominated when compared to the AI-based triage strategies 
(Supplementary Table 9).

We also tabulated TB treatment starts according to bacteri-
ological and clinical diagnoses. The triage strategies reduced 
inappropriate treatment starts and excessive microbiological 
tests—generating cost savings with comparable health out-
comes (Supplementary Table 10).

DISCUSSION

Our analysis builds on a trial-based evaluation of 2 packages 
for deep learning AI-based CXR interpretation among persons 
with suspected TB in Karachi, Pakistan. It suggests that triage 
using AI-based CXR interpretation can be cost-effective and 
even cost-saving relative to standard practice. The strategy with 
the most clinical benefit appeared to be the one where persons 
with TB symptoms and CXRs with AI-based interpretation 
compatible with possible TB underwent microbiologic testing; 
if microbiologic results were negative, they were retested 2 
weeks later, that is, reinforced microbiologic follow-up testing.

The analysis further suggests that the use of AI-supported 
CXR interpretation could potentially reduce unnecessary 

empiric treatment in individuals with persistent symptoms, a 
diagnostic limitation which has been documented elsewhere 
[10, 35–37]. As compared with the upfront use of Xpert for 
persons with presumptive TB, incorporating AI-based CXR 
triage is expected to generate substantial savings by reducing 
the number of Xpert tests, without sacrificing diagnostic yield.

These results are likely applicable to other low-income, high-
TB-burden settings. Key costs as well as diagnostic performance 
were taken directly from a rigorous prospective cohort study 
in Pakistan [6]. The diagnostic algorithms we considered were 
reflective of current practices, or potential use cases for CXR 
among persons with presumptive TB. To further address the 
robustness and generalizability of these results, we conducted 
extensive scenario and sensitivity analyses that incorporated 
different triage thresholds. The specificity of human readers and 
a wide range of TB prevalence in the target population were also 
considered

We used local data, obtained in the type of setting where this 
technology will most likely be useful. The analysis reflected esti-
mated test characteristics for 2 commercially available software 
packages in this setting.

One limitation is that the analysis reflects use of AI-based 
CXR interpretation in a setting with low HIV prevalence. The 
performance of these specific software packages in persons 
living with HIV has not been evaluated, but it is well established 
that HIV modifies the sensitivity and specificity of CXR for the 
diagnosis of pulmonary TB, and hence is likely to affect the ac-
curacy of these software. Moreover, limited evidence suggested 
that accuracy was lower among people living with HIV for prior 
versions of one of the software programs, which were not based 
on deep learning [5, 8]. Similarly, this analysis evaluated a co-
hort with a low prevalence of drug-resistant TB. The lower spec-
ificity of the software among persons with prior tuberculosis, 

Table 5.  Projected Incremental Savings and Health Outcomes per 1000 Persons

Diagnostic Strategya 
Incremental Savings vs 
Status Quo (95% UR)b 

Additional TB Patients Diag-
nosed vs Status Quo (95% UR) 

TB Deaths Averted vs 
Status Quo (95% UR) 

DALYs Averted vs 
Status Quo (95% UR) 

Smear as microbiologic test

  I. Status quo A: AFB smear (comparator)

 � 1A. Triage with AI-based CXR  
interpretation before AFB smear

$4500 ($3593–$5474) 0.6 (0.0–1.2) 0.4 (0.3–0.59) 12.8 (3.6–17.8)

 � 1B. Reinforced follow-up based on triage 
with AI-based CXR interpretation before 
AFB smear

$4383 ($3466–$5350) 1.5 (0.9–2.1) 0.5 (0.2–0.7) 15.7 (6.6–20.6)

Xpert as microbiologic test

  II. Status quo B: Xpert (comparator)

 � 3A. Triage with AI-based CXR  
interpretation before Xpert

$12 637 ($12 229–$13 093) 0.7 (0.7–0.9) 0.4 (0.1–0.6) 12.8 (3.6–17.8)

 � 3B. Reinforced follow-up based on triage 
with AI-based CXR interpretation before 
Xpert

$12 550 ($12 092–$12 989) 1.2 (0.8–1.9) 0.5 (0.3–0.8) 15.0 (7.6–26.6)

Abbreviations: AFB, acid-fast bacilli; AI, artificial intelligence; CXR, chest radiograph; DALY, disability-adjusted life-year; TB, tuberculosis; UR, uncertainty range.
aResults for software 1, using the status quo AFB smear and Xpert strategies as comparators. (As all strategies were associated with savings relative to the status quo, incremental cost-ef-
fectiveness ratios are not shown.)
bNegative values indicate incremental cost.

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab567#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab567#supplementary-data
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http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab567#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab567#supplementary-data
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along with the higher cost of treating drug-resistant TB, means 
that cost-effectiveness could change in settings where drug re-
sistance is more prevalent.

Another limitation is that our analysis did not address the use 
of this technology in children. The original study was restricted 
to adults, and there are no published estimates of the diagnostic 
accuracy of these software packages in children.

We further assumed 100% adherence to microbiologic 
testing following positive triage CXRs, as observed in the parent 

study. For the “status quo” strategy, we did not have local data 
for adherence to microbiologic testing, but referred to a similar 
Indian setting where adherence was 91%. When this parameter 
was increased to 100% in sensitivity analysis, key results were 
similar.

Perhaps most importantly, with current test characteristics, 
the threshold CXR score with the requisite sensitivity (95%) is 
associated with specificity below the optimal 80% threshold in 
the target product profile outlined by the WHO [1, 6].
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Figure 2.  Probabilistic sensitivity analysis for smear-based algorithms—cost-effectiveness planes. Negative values on the y-axis indicate cost savings and the red line 
corresponds to the willingness-to-pay threshold per disability-adjusted life-year (DALY) averted ($195/DALY averted). Each point reflects cost and DALY outputs from 1 of the 
10 000 model runs. The status quo, upfront smear strategy is not shown as it was consistently dominated by the triage strategies. Abbreviations: AFB, acid-fast bacilli; AI, 
artificial intelligence; CXR, chest radiograph; DALY, disability-adjusted life-year; $US, United States dollars. 
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This is the first full economic evaluation of AI-based CXR 
interpretation as triage tests; previous studies focused on di-
agnostic performance and direct testing costs [7, 9, 38–42]. A 
retrospective study in Nepal and Cameroon used the same soft-
ware evaluated here; it suggested a substantial reduction in the 
need for Xpert testing [43]. In our analysis, upfront Xpert tests 
represent a major determinant of cost, and hence account for 
significant savings in the triage strategies.

The 2 AI software packages have also been evaluated as po-
tential TB screening tools in persons who have not sought med-
ical care (ie, active case-finding). To date, there is no economic 
analysis addressing their use in the screening context. To be 
cost-effective, these would require better diagnostic perfor-
mance than for the triage use case, since the prevalence of active 
TB is substantially lower among unselected individuals [44–47].

Further real-world studies and economic evaluations of 
AI-based CXR interpretations will be warranted as future re-
leases of these technologies eventually meet the WHO recom-
mendations for optimal diagnostic performance in the triage 
setting [1]. It is likely that future versions will be even more 
cost-effective in low- and middle-income countries, if the 
cost of licensing and reading remains similar or even lower. 
Currently, cost is linked to volumes; the cost per read decreases 
with increasing volumes.

In conclusion, the addition of AI-based CXR interpreta-
tion to focus microbiologic testing for TB, in settings of low 
HIV prevalence, can reduce costs and empiric treatment while 
averting deaths and DALYs. Our study suggests that this tech-
nology is highly cost-effective, and supports its use for triage of 
HIV-uninfected persons presenting with symptoms consistent 
with TB, in settings with limited availability of radiologists or 
highly skilled readers.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 
online. Consisting of data provided by the authors to benefit the reader, 
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