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Infection withM. tuberculosis remains one of the most common infections in the world. The outcome of the infection depends on
host ability to mount effective protection and balance inflammatory responses. Neutrophils are innate immune cells implicated in
both processes. Accordingly, duringM. tuberculosis infection, they play a dual role. Particularly, they contribute to the generation of
effector T cells, participate in the formation of granuloma, and are directly involved in tissue necrosis, destruction, and infection
dissemination. Neutrophils have a high bactericidal potential. However, data on their ability to eliminate M. tuberculosis are
controversial, and the results of neutrophil depletion experiments are not uniform. Thus, the overall roles of neutrophils during
M. tuberculosis infection and factors that determine these roles are not fully understood. This review analyzes data on
neutrophil defensive and pathological functions during tuberculosis and considers hypotheses explaining the dualism of
neutrophils during M. tuberculosis infection and tuberculosis disease.

1. Introduction

Inflammatory response is a part of host biological response to
infection. As such, it is aimed to protect host against invading
organisms and sustain host homeostasis. However, the
response can also be detrimental and contribute to pathol-
ogy. The dual role of inflammation is especially apparent
during chronic infections, due to permanent immune stimu-
lation by pathogen-derived signals.

Tuberculosis (TB) is an infectious disease, in which the
extent and the quality of host inflammatory reactions play
an exceptionally significant role in both protection and
pathology. At the initial stage ofM. tuberculosis (Mtb) infec-
tion, proinflammatory cytokines and chemokines released
by diverse cells induce immune cell migration to the infec-
tious site, start granuloma formation, and initiate host
protective responses. Cellular populations implicated in the
responses involve alveolar macrophages, dendritic cells
(DC), neutrophils, NK cells, epithelial cells, and other cells.
Further protection against Mtb largely relies on T lympho-
cytes, particularly, Th1 effector cells [1, 2]. Th1 lymphocytes
operate primarily by secreting a wide range of proinflamma-
tory factors able to activate macrophages for Mtb killing

(e.g., IFN-γ, TNF-α), recruit new immune cells at the infec-
tious site (e.g., CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-
1β, CCL5/RANTES, and GM-CSF), and mediate granuloma
formation [3, 4]. The generation of Th1 lymphocytes is
driven by pathogen-specific antigens and governed by sev-
eral cytokines secreted by innate immune cells. Deficiency
in CD4 cells or cytokines involved in Th1 generation and/
or function results in severe experimental Mtb infection in
mice and increased risk of mycobacterial infections in
humans [5–9]. Thus, TB is often regarded as a disease that
develops due to immune deficiency.

On the other hand, since Koch’s studies, TB has been
considered an immunopathological disease, developed due
to immune hyperreactivity. Immunological reactions asso-
ciated with TB pathology involve uncontrolled secretion
of proinflammatory cytokines and chemokines, extensive
neutrophilic infiltration, and exacerbated T cell responses,
including those of Th1 cells [10–14]. Thus, the same
immune cells that are needed for the protection are impli-
cated in TB pathology.

Among immune cell populations, playing a dual role
during TB, probably least understood are neutrophils. Up
to now, the information on the role for neutrophils in
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TB protection and pathology is highly contradictory, with
some data implicating neutrophils in the TB control and
others associating them with TB pathology.

In this review, we analyze data on neutrophil defensive
and pathological functions during TB and consider hypothe-
ses explaining the dualism of these innate immune cells dur-
ing Mtb infection and TB disease.

2. Neutrophil Bactericidal Activity

2.1. General Properties. Neutrophils are short-living and at
the same time the most abundant leukocytes in the blood.
Following infection, neutrophils arrive first at the inflamma-
tory/infectious site [15]. The process is multistep and
requires interactions between multiple neutrophil receptors
(such as G-protein-coupled receptors (GPCR), Toll-like
receptors, nucleotide-binding oligomerization domain-like
receptors, C-type lectins, and cytokine and chemokine
receptors) and microbial products, endothelial cell receptors,
molecules released by dying cells, and inflammatory cyto-
kines and chemokines (reviewed in details in [16–18]).

Upon their arrival at the infectious site, neutrophils
phagocytose bacteria recognizing them either directly or
through Fcγ and complement receptors [19]. Phagocytosis
and subsequent pathogen killing require neutrophil activa-
tion that is a two-step process and includes initial neutrophil
priming. The latter depends on neutrophil exposure to cyto-
kines (e.g., TNF-α, IL-1β), pathogen-associated molecular
patterns (PAMPs), chemokines, and growth factors (e.g.,
CXCL2/MIP-2α, LTB4, and GM-CSF) or cell interaction
with activated endothelial surfaces [18, 20].

Killing of engulfed bacteria is mediated through the
degranulation, the generation of reactive oxygen intermedi-
ates (ROI), and the formation of neutrophil extracellular
traps (NETs). Following the degranulation, granule-
associated bactericidal proteins and peptides are discharged
into the microbe-containing phagocytic vacuole. Neutrophil
bactericidal molecules are numerous and include neutral
proteinases cathepsin G, elastase, and proteinase 3; bacteri-
cidal/permeability-increasing protein (BPI); defensins (e.g.,
human neutrophil proteins 1–3, HNP-1–3); cathelicidin
LL-37; lactoferrin; and lysozyme [19, 21, 22]. ROI are gener-
ated by NADPH-dependent oxidase and superoxide dismut-
ase. Hypochlorous acid and chloramines are generated by
metalloperoxidase. Activated neutrophils can also produce
nitric oxide (NO), although much less efficient than ROI,
and peroxynitrate, a highly reactive product of nitric oxide
oxidation [16]. Besides discharging granule-derived media-
tors into the phagosomes, neutrophils also release them
extracellularly, which helps in killing extracellular bacteria,
but also causes tissue damage. Extracellular release largely
occurs during the formation of NETs that are composed of
a web of DNA, histones, and granule-derived antimicrobial
proteins and function to kill or at least restrict the growth
of extracellular bacilli [16, 23–25]. Neutrophil degranulation,
respiratory burst, and NET formation are stimulated by
bacteria products and inflammatory molecules signaling
through TLRs, Fc receptors, GPCR, and receptors for TNF-
α, IFN-γ, and IL-18 [18].

Overall, neutrophils have evolved into efficient pathogen-
killing machinery. Their essential role in the resistance to
various bacterial and fungal infections is confirmed by the
development of progressive infections with a wide range of
organisms in neutropenia conditions [22].

2.2. Bactericidal Activity of Neutrophils during Mtb Infection.
During Mtb infection, neutrophils are among the first cells
that migrate to the infectious focus [15]. The ability of neu-
trophils to phagocyte Mtb has been demonstrated in many
studies, both in vitro and in vivo [26–29]. Particularly,
in vivo, neutrophils accumulated in the lung tissue and in
the airspaces of mice challenged with BCG or Mtb one-day
postchallenge and 1.6% of neutrophils contained mycobac-
teria [28]. In isolated human lung tissue infected in vitro with
various mycobacterial strains, approximately 7% of the
infected cells were neutrophils [29].

In contrast to the phagocytosis, data on neutrophil capac-
ity to killMtb are conflicting. Several in vitro studies reported
poor antimycobacterial activity of neutrophils, even when the
cells were stimulated with IFN-γ, a cytokine known for its
ability to activate antimycobacterial properties of macro-
phages [27, 30]. Other groups showed that neutrophils and
neutrophil-derived bactericidal molecules do kill Mtb
in vitro [26, 31–33]. In the study by Kisich and coauthors
[26], mycobacterial killing depended on the activation of
neutrophils by TNF-α, suggesting that poor mycobactericidal
activity of neutrophils observed in other studies could be
attributed to an inappropriate cell stimulation. However, in
some studies, neutrophils did not alter Mtb survival even
upon priming with TNF-α [34, 35]. In the study by Corleis
and coauthors, neutrophils did not kill Mtb but were able
to kill M. smegmatis and mutant Mtb H37RvΔRD1 strain,
demonstrating that Mtb escape from neutrophil-mediated
killing depends on the RD1 virulence region [35].

A part of neutrophil bactericidal activity is mediated by
NETs. Neutrophils stimulated by Mtb in vitro were shown
to release NETs containing neutrophil elastase and histones,
yet they were unable to kill Mtb [36]. Furthermore, it was
suggested that NETs may provide a platform for extracellular
Mtb growth and in this way contribute to the rapid enlarge-
ment of the pulmonary lesions [37, 38].

A poor capacity of neutrophils for Mtb killing allowed
some authors to consider them “Trojan horse” hiding Mtb
from potentially bactericidal macrophages [27, 39]. On the
other side, neutrophils were shown to increase the bacteri-
cidal activity of macrophages: in the study by Tan and coau-
thors, macrophages phagocyted apoptotic neutrophils and
utilized their bactericidal peptides to combat intracellular
Mtb [40]. Data on the ability of neutrophils to kill Mtb
in vivo are also conflicting. Neutrophils found in the sputum
and BAL fluids of patients with active pulmonary TB were
shown to contain replicating Mtb, which was considered an
indication of cell inability to control the pathogen [41]. On
the other hand, multiple associative studies have linked neu-
trophils to the protection against TB disease. Particularly, in
TB contacts, the counts of peripheral blood neutrophils
inversely correlated with the risk of TB development. In the
same study, Black African participants (known to have high
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susceptibility to TB) had lower counts of neutrophils and
lower concentrations of circulating HNP1–3 and lipocalin 2
peptides compared to White participants [33]. In another
study, low plasma levels of HNP1–3 have been associated
with the development of multidrug-resistant TB [42].

While an association between TB protection and neutro-
phil counts may be indirect (e.g., mediated by neutrophil-
dependent activation of other immune cells), an association
between the protection and HNP-1–3 levels suggests the
direct involvement of neutrophils in TB prevention. In line
with this, several experimental studies reported antimyco-
bacterial effects of neutrophils in vivo. In rats, LPS-induced
transient neutrophilia reduced pulmonary CFU counts fol-
lowing subsequent animal challenge with Mtb, and neutro-
phils obtained by bronchoalveolar lavage of rats 24 h after
the intratracheal introduction of LPS (i.e., in vivo activated
neutrophils) were able to kill Mtb in vitro [43]. In zebrafish,
granuloma-associated neutrophils phagocyted Mycobacte-
rium marinum and destroyed them utilizing NADPH
oxidase-dependent mechanism [44]. Mincle, the member of
C-type lectin superfamily, is expressed by neutrophils and
recognizes trehalose dimycolate (TDM), a cord factor of
Mtb. The recognition leads to neutrophil activation. In
Mincle−/− mice, the recruitment of neutrophils to the lungs
was reduced which was accompanied by increased myco-
bacterial loads, supporting the involvement of neutrophils
in early protection against Mtb [45].

To summarize, there is a great controversy as to whether
neutrophils are able to kill Mtb. The question on why these
cells with exceptionally high bactericidal potential are not
unequivocally bactericidal against mycobacteria is yet to be
answered.

3. Neutrophil Interactions with Other Immune
Cells

3.1. General Properties. Neutrophils secrete a wide range of
cytokines, chemokines, and enzymes, such as IL-1β, IL-1α,
TNF-α, CXCL1/KC, CXCL8/IL-8, CCL3/MIP-1α, CCL4/
MIP-1β, GM-CSF, and metalloproteinases (MMPs) [46–52].
Factors secreted by neutrophils and molecules expressed
on their surface underlie neutrophil cross-talk with other
immune cells and induce immune cell activation, recruit-
ment to the infectious site, and immune response genera-
tion and regulation.

Among different immune cells affected by neutrophil-
derived factors are neutrophils themselves: IL-1β and TNF-
α stimulate neutrophil migration, degranulation, oxidative
burst, and secretory activity; CXCL1 and CXCL8 are the
main neutrophil-attracting factors; and MMP-8 and elastase
hydrolyse extracellular matrix proteins facilitate the process
of immune cell migration throughout the extracellular
matrix and cleave chemokines increasing their attractant
activity (e.g., CXCL5 [53]).

Lacteferrin, α-defensins, and chemokines released by
neutrophils are attractant for DC, monocytes, and lympho-
cytes. Binding of neutrophils to DC promotes DCmaturation
[16]. DC are able to internalize neutrophils acquiring patho-
gen antigens and cross-presenting them to T lymphocytes

[54, 55]. Thus, a role for neutrophils in “concentrating” anti-
gens has been proposed [55].

For T lymphocytes, neutrophils can serve as antigen-
presenting cells [56, 57]. Neutrophils were shown to carry
antigens from the peripheral sites to the lymph nodes and
bone marrow and facilitate the generation of Th1, Th17,
and CD8+ memory responses [57–59]. NETs released by
human neutrophils can directly prime T cells by reducing
their activation threshold [60]. Neutrophils can also activate
NK cells and support the survival of B lymphocytes, basically
through the production of BAFF (reviewed in [16]).

Of particular importance for TB are neutrophil inter-
actions with macrophages (reviewed in details in [61]).
Chemokines, granule proteins, and other molecules released
by neutrophils (e.g., CCL2, CCL3, CCL19, CCL20, S100A8,
and S100A9) recruit monocytes to the site of infection [16].
Macrophages phagocyte apoptotic neutrophils by efferocyto-
sis, which leads to several consequences, that is, removing
neutrophils and preventing tissue injury, allowing macro-
phages to utilize neutrophil granule proteins for antimicrobial
defense, and altering cytokine production by macrophages
[40, 62, 63]. The latter depends on neutrophil-derived signals
and inflammatorymilieu. In inflammatory conditions, effero-
cytosis enhances IL-10 and/or TGF-β production stimulating
M2 polarization and the resolution of inflammation [62, 64].

Neutrophils can also exert immunoregulatory activity
towards other immune cells. Particularly, they can inhibit
proliferation and IFN-γ production by T lymphocytes, shut
down Th17 cells, and limit γδT cell function using IL-10,
arginase-I, and ROS-dependent mechanisms [59, 65].

3.2. Neutrophils in T Cell Activation and Early Granuloma
Formation during TB. At the setting of Mtb infection, the
interactions of neutrophils with DC and T lymphocytes are
well documented. The studies are not numerous, but uni-
form. In mice infected with Mtb, neutrophils are among the
first cells to arrive at the infectious site and their peak pre-
cedes the peak of the infected DC in the lungs. Neutrophils
increased trafficking of DC to the lymph nodes and captured
and delivered Mtb to DC in a form that made DC more
effective initiators of CD4 T cell activation [66]. Following
subcutaneous inoculation of BCG, neutrophils phagocyted
mycobacteria and carried them to the draining lymph node
[67]. Depletion of neutrophils during BCG vaccination abro-
gated the induction of Th1-specific responses and prohibited
the reduction of bacterial load observed in vaccinated ani-
mals [68]. After the onset of T cell response, the cross-talk
between neutrophils and T lymphocytes is maintained by
T cell secretion of cytokines and chemokines able to recruit
neutrophils to the sites of infection, activate them, and sup-
port their survival (e.g., IL-17 [59]).

Several observations suggest a role for neutrophils in the
early organization of granuloma [69]. Initial TB foci contain
a mixture of neutrophils, macrophages, and lymphocytes
[37, 38]. Neutrophils secrete a set of chemokines attracting
monocytes and T lymphocytes, such as CXCL2, CXCL9/
MIG, CXCL10/IP-10, CXCL11/I-TAC, CCL3, and CCL4.
In neutrophil-depleted mice, the formation of granulomas
was reduced in terms of their number, size, and density.
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Similar results were obtained in Cxcr3−/− mice and mice
treated with anti-MIG antibodies [70]. Lack of IL-17 ham-
pered both neutrophil recruitment to the lungs and the
generation of granulomas [71]. Neutrophils also played
an important role in granuloma formation in a mouse
model of hypersensitivity pneumonitis [72].

With the appearance of antigen-specific Th1 and Th17
cells, a mixture of immune cells present in the incipient
granulomas becomes organized. The organized granulomas
may evolve in different ways dominated by proliferative or
exudative processes, resulting in the formation of structur-
ally heterogeneous lesions, including tuberculoma, cavitary,
fibro-calcified, necrotic, and other types of lesions. At this
stage of disease, large-scale infiltration of neutrophils is asso-
ciated with exudative processes, lesion necrosis, and bacillary
growth [37, 38, 73, 74]. It has recently been shown that an
enormous heterogeneity of tuberculosis lesions coexists
within a single individual [73]. This raises a question on the
underlying mechanisms, including those that regulate neu-
trophilic response within each particular granuloma.

Overall, at the early stage of Mtb infection, neutrophils
may contribute to the protection by favoring the generation
of effector T cells and participating in the formation of granu-
lomas. Supporting data are generally uniform, but not numer-
ous. Further analyses are needed to unravel mechanisms and
the extent to which neutrophil response is implicated in these
processes during the onset ofMtb infection. At later stages of
disease, neutrophils become largely detrimental.

4. Neutrophils in Inflammation and Tissue
Damage

4.1. General Properties. Bactericidal and proinflammatory
molecules produced by neutrophils are needed to ensure host
immune protection. However, the same factors can be detri-
mental and trigger tissue damage via multiple mechanisms.
Particularly, ROI and chlorinated oxidants are directly cyto-
toxic and induce tissue necrosis. They also activate MMPs
and inactivate the inhibitors of proteinases which multiplies
the inflammatory process [19, 75, 76]. ROI are implicated in
the generation of NETs. NET-associated molecules (i.e.,
MPO, elastase, histones, and proteases) destruct the connec-
tive tissue, cleave host proteins, degrade heparan sulfate pro-
teoglycan, and are directly cytotoxic for endothelial and
epithelial cells [25]. Proinflammatory cytokines and chemo-
kines, such as IL-1β, TNF-α, CXCL8, CCL3, and CCL4, prop-
agate the inflammation [25, 46, 47].

At a single-cell level, neutrophil secretion of proinflam-
matory cytokines is not high. However, it becomes promi-
nent when the cells accumulate in high numbers, especially
due to a positive feedback regulation of neutrophilic inflam-
mation: most of the cytokines and chemokines released by
neutrophils act as neutrophil activators and attractants. In
steady-state conditions, neutrophils spontaneously die by
apoptosis and are engulfed by macrophages during the effer-
ocytosis process that dampens the inflammation. During
infections, neutrophil apoptosis delays and activated neutro-
phils die by necrosis, which leads to a defective removal of
dead cells and progressive tissue damage [77]. The main

inhibitors of cytokine production by neutrophils are IL-10,
IL-4, and IL-13 [19]. However, during TB, these factors are
poorly produced, meaning that once initiated, neutrophilic
inflammation would be difficult to terminate. Pathogen
clearance is the main way to resolve neutrophilic inflamma-
tion, but in the case of TB, this is a slow process.

In summary, biological properties of neutrophils suggest
their dual role during TB: (i) providing a mechanism for bac-
teria killing, participating in the generation of acquired
immunity and immune cell cooperation, and (ii) inducing
hyperinflammatory response and tissue damage. In line with
this dualism, data concerning neutrophil function during
Mtb infection are highly contradictory.

4.2. Neutrophils in Inflammation and Pathology during
Tuberculosis. While neutrophils have been associated with
TB protection in some studies, most of the studies in the
field are focused on their pathological role. In experimen-
tal setting, mice of TB-susceptible strains (i.e., I/St, DBA/2,
and C3HeB/FeJ) developed extensive neutrophilic inflamma-
tion, which was not observed in more resistant mouse strains
[27, 78–80]. Three studies examined immunological corre-
lates of disease pathology using genetically heterogeneous
populations of mice, that is, F2 mice generated by crossing
TB-susceptible I/St and TB-resistant A/Sn mice, diversity
outbred mice, and more recently highly diverse inbred mouse
strains, consisting of the founder and recombinant strain
progeny. In all three models, severe infection correlated
strongly with the accumulation of neutrophil-like cells in
the lungs [10, 81, 82].

In humans, active TB and disease severity have also
been associated with neutrophilic response. In the study
by Sutherland and coauthors, an increase in granulocytes
and high granulocyte/lymphocyte ratio distinguished TB
patients from tuberculin skin test-positive healthy contacts
[83]. Berry and coauthors identified overexpression of
IFN-inducible genes in purified blood neutrophils as the
main transcript signature of active TB [84]. Within the
group of TB patients, extensive neutrophilic response is a
sign of TB severity and, specifically, has been associated
with pulmonary destruction. Barry and coauthors showed
that tuberculosis cavities contain more neutrophils and less
lymphocytes compared to undestructive pulmonary infil-
trates and radiologically unaffected lobes of the lungs [85].
In line with this, neutrophil-derived collagenase MMP-8
was upregulated in TB patients and caused matrix destruc-
tion in vitro and in respiratory samples of TB patients [86].
During pleural TB, the accumulation of neutrophils in pleu-
ral effusions was associated with significantly higher inflam-
matory serum markers and a more frequent detection of
Mtb in pleural fluid and smear, thus linking neutrophils,
intense inflammatory response, and a degree of pathogen
excretion/load [87].

An association between neutrophil recruitment and over-
production of inflammatory cytokines and chemokines has
been observed in many studies. In F2 hybrid mice and diverse
outbred mice, an enhanced infiltration of the lung tissue with
neutrophil-like cells coincided with the exuberant pulmonary
expression of IL-1β, IL-6, CCL3, CCL4, MMP-8, and other
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factors [10, 81]. Mice susceptible to Mtb infection due to
deletion of various genes developed both enhanced neutro-
philic infiltration and overexpression of many inflammatory
factors. Some examples are provided below.

IL-18 is involved in the generation of IFN-γ-producing
CD4 and cytotoxic CD8 T cells. Mice deficient in IL-18
promptly succumbed to Mtb infection. Besides having
decreased Th1 response, they exhibited neutrophilic (Gr-1+

cell) infiltration and enhanced protein and/or mRNA levels
of IL-6, IL-17, CXCL1, CXCL2, CCL2, and CCL3 in the sera
and the lung tissue [88].

CARD9 is an adaptor molecule that samples signals from
pattern recognition receptors and mediates activation of
innate immunity. After aerosol Mtb challenge, Card−/− mice
succumbed early to the infection with higher Mtb burden,
accelerated granulocyte (MPO-expressing cell) recruitment,
and higher abundance of the proinflammatory factors
CCL2, CXCL1, and G-CSF [89].

Macrophage migration inhibitory factor (MIF) is an
innate cytokine released by macrophages, lymphocytes, and
pulmonary epithelial cells in response to microbial stimuli.
Mif−/− mice succumbed more quickly to Mtb infection with
higherMtb burden, increased pulmonary neutrophil accumu-
lation, and increased production of CXCL2 andG-CSF (albeit
a decreased production of TNF-α, IL-12, and IL-10) [90].

Bone marrow chimeric mice with IFN-γ-unresponsive
lung epithelial and endothelial cells exhibited earlier mortal-
ity and higher bacterial burdens than control mice. The chi-
meric mice developed massive neutrophilic inflammation in
the lungs accompanied by overproduction of CCL3, CXCL2,
CXCL5, IL-1β, MMP-9, and other inflammatory factors [91].

C-type lectin receptor Mincle is involved in neutrophil
migration driven by TDM. InMincle−/−mice challenged with
TDM, neutrophils did not accumulate in the lungs and the
mice had decreased mRNA levels of IL-6, TNF-α, and
CXCL2 in the lungs [45].

In Mtb-infected Cxcl5−/− mice, enhanced survival was
accompanied by impaired neutrophil recruitment and
decreased levels of CXCL1, CXCL2, CCL2, CCL3, CCL4,
and CXCL10 in the bronchoalveolar lavage fluid [92].

There are multiple pathways whereby neutrophils and
excessive inflammation may induce tissue pathology.
Among them, the breakdown of extracellular matrix seems
to be the main that leads to pulmonary destruction [93].
Neutrophil-derived MMP-8 is one of the main players in
this process [86, 94].

Overall, there is an undeniable association between
neutrophilic infiltration and the exuberant production of
proinflammatory cytokines/chemokines at advanced TB
stages. The underlying mechanisms are bidirectional and
form a positive self-amplifying feedback loop: neutrophils
transcribe a wide range of proinflammatory proteins
attracting immune cells at the site of infection and activat-
ing them [19, 61, 95]; immune, endothelial, and epithelial
cells secrete proinflammatory cytokines and chemokines
that influence neutrophil differentiation, mobilization,
and recruitment. Particularly, CXCL1, CXCL2, CXCL5,
TNF-α, and G/GM-CSF stimulate neutrophil migration;
TNF-α and IFN-γ activate neutrophils for cytokine/

chemokine production; and IL-1β, G/GM-CSF, and IL-3
prolong neutrophil survival and are involved in granulo-
poiesis [19, 20, 61, 96]. Both the level of inflammation
and intrinsic capacity of neutrophils to migrate to inflam-
matory stimuli were suggested as factors determining TB
pathology [13, 78].

Of note, neutrophilic infiltration and exacerbated inflam-
mation accompany severe disease in hosts with diverse
genetic backgrounds and/or different gene mutations. This
means that both processes are rather a result than an initial
cause of disease progression. This and a positive feedback
loop existing between both processes suggest that indepen-
dently on the initial (genetic) factor(s) causing TB suscepti-
bility, it might be possible to ameliorate the disease by
interrupting neutrophil response. With this regard, in many
studies, depletion of neutrophils at the advanced disease
stage abrogated the inflammation and reversed Mtb-suscep-
tible phenotype, posing neutrophils as the major mediators
of dysfunctional responses during TB [97]. However, the
results are, again, conflicting (discussed below).

To summarize, neutrophilic infiltration and exuberant
inflammation represent characteristic features of severe TB
pointing to the commonality of the immunopathological
pathways operating at advanced stages of disease in geneti-
cally different hosts. This provides an opportunity to develop
strategies for host-directed therapy during TB irrespective of
host genetic background and mechanisms underlying disease
susceptibility.

5. Neutrophils during TB: Do Disease Stage and
Cell Quantities Play a Role?

Large discrepancy of neutrophil data may partly be explained
by their differential roles in the protection againstMtb infec-
tion and during TB disease and/or at early and advanced dis-
ease stages. Indeed, in humans, the background levels of
neutrophils and HNP-1–3 correlated with the protection
against active TB, whereas the accumulation of neutrophils
in TB patients was associated with disease progression and
pulmonary destruction [33, 41, 42, 83, 85, 86]. In a mouse
model of TB, neutrophils were shown to enter the lungs in
two waves, peaking around days 3 (T cell-independent wave)
and 23–56 (T cell-dependent wave) postinfection [15, 28]. It
has been suggested that early-wave neutrophils have high
potential for pathogen clearance, whereas at later stages, the
cells rather contribute to pathology [12, 39].

To unravel neutrophil function during Mtb infection,
many experimental studies used a mean of cell depletion with
neutralizing anti-Gr-1 or anti-Ly-6G antibodies. The results
are highly controversial. Most studies that depleted neutro-
phils in TB-resistant mice (e.g., B6 or BALB/c) before and/
or very early following the infection (up to day 4) reported
increased bacillary loads and worsened disease, suggesting a
contribution of neutrophils to mycobacterial control [98,
99]. However, in the study by Seiler and coauthors, neutro-
phil depletion did not affect mycobacterial CFUs and mice
survival, but only hampered granuloma formation [70].
Keller and coauthors reported that early neutrophil
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depletion did not affect the disease in resistant B6 mice
and had beneficial effect on susceptible DBA/2 mice [78].

The depletion of neutrophils later following the infection
(starting day 7 or later) mostly led to beneficial effects. How-
ever, most of the studies utilized KO mice developing severe
inflammatory and neutrophilic responses following Mtb
infection. For example, late neutrophil depletion reversed
inflammatory reactions in the lungs, ameliorated the disease,
and significantly prolonged the survival of Card−/−, Ifnar−/−,
and Atg5fl/fl-LysM-Cre mice [89, 97, 100]. In the study by
Schneider and coauthors, the administration of neutrophil-
neutralizing antibodies on days 10 and 16 postchallenge
slightly decreased Mtb burden in susceptible Il18−/− mice,
but did not affect B6 mice [88].

Lombard et al. [28] analyzed the effects of neutrophil
depletion on B6 mice challenged with different doses of
Mtb or BCG. The depletion decreased the load of Mtb
but not that of BCG. Of note, at the time of depletion,
mice had similar bacterial loads but different neutrophil
counts in the lungs (higher in Mtb-challenged mice). Thus,
the data link the effect of neutrophil depletion with their
background quantities.

Overall, the overview of depletion experiments shows
that only partly can the contradictory results be explained
by the differential role of neutrophils at early and advanced
disease stages. Rather, the effects seem to depend on host
TB susceptibility and the extent of the background neutro-
philic/inflammatory responses. This hypothesis, however,
explains the effects of late neutrophil depletion. The first
neutrophil wave is usually transient, not exuberant and
not associated with overwhelmed inflammation. Thus, it
is still unclear why early depletion of neutrophils benefits
the host (in some studies), why the effect depends on host
TB susceptibility, and what are mechanisms mediating
pathological effects of neutrophils at the early infection
stage. One recent hypothesis suggests that NETs provide
a platform for extracellular Mtb growth and that extracel-
lular bacilli are responsible for the transition from infec-
tion to active TB [37]. This hypothesis, however, implies
the existence of intrinsic differences between neutrophils
from TB-resistant and TB-susceptible mice (independent
on genetic factors implicated in TB susceptibility), which
raises further questions.

To summarize, in humans, neutrophil response has been
associated with both protection against TB disease and pul-
monary pathology during the disease, suggesting a differen-
tial cell role at different stages of Mtb infection. In mice,
depletion experiments give contradictory results that depend
primarily not only on the level of the background inflamma-
tion but also on other factors that are not fully understood.

6. Neutrophils during TB: Are They the Same
Cells as in Steady-State Conditions?

In mouse studies, neutrophils are most often identified based
on the expression of Gr-1 (expressed by granulocytes and
monocytes) or Ly-6G (known to be exclusively expressed
by granulocytes). However, it was previously shown that
Mtb infection dramatically decreases the levels of Gr-1/Ly-

6G expression [10]. This suggested changes in neutrophil
population during Mtb infection. The subsequent examina-
tion of Gr-1-/Ly-6G-expressing cells confirmed the hypothe-
sis and discovered a heterogeneity of neutrophilic population
during Mtb infection. Neutrophil heterogeneity and qualita-
tive changes that these cells undergo during Mtb infection
are an emerging area of research, and not many studies have
been published in the field so far. A brief summary of avail-
able data is presented below.

6.1. Myeloid-Derived Suppressor Cells. Examination of cells
with low Gr-1/Ly-6G expression (Gr-1dim cells) accumulat-
ing in the lungs of Mtb-infected mice showed that the cells
belong to immature myeloid population [101–103]. In the
study by Tsiganov and coauthors, the cells coexpressed neu-
trophilic (Gr-1, Ly-6G), monocytic (F4-80), and myeloid
(CD11b) cell markers and had immaturity signs, such as
increased expression of CD117, CD135, and unsegmented
nuclei. Functional characteristic of Gr-1dim cells showed that
they inhibited T cell proliferation and IFN-γ secretion in an
NO-dependent manner; that is, the cells were myeloid-
derived suppressor cells (MDSC) [102]. In the study by
Knaul and coauthors, MDSC released proinflammatory
(IL-6, IL-1α) and anti-inflammatory (IL-10) cytokines and
were able to phagocyte Mtb; their depletion ameliorated
Mtb-induced disease, suggesting that the cells could provide
a niche for pathogen survival and tailor immunity in
TB [103]. Gr-1dim cells were shown to accumulate in differ-
ent TB-susceptible necrosis-prone mouse strains (i.e., I/St,
Nos2−/−, Rag−/−, and C3HeB/FeJ) [101, 102]. Of note, their
accumulation was accompanied by a dramatic drop in the
numbers of neutrophils expressing typical Gr-1/Ly-6Ghi phe-
notype [102]. Thus, one of the outcomes of these studies is an
indication that severe TB may be associated with a deficiency
in true neutrophils instead of their excess.

The accumulation of MDSC is not a trait of only experi-
mental Mtb infection; it was also reported in TB patients. In
humans,MDSCare identifiedasHLA-DR−/lowCD11b+CD33+

cells expressing CD14 or CD15/CD66b markers (monocytic
and granulocytic MDSC, resp.). TB patients were shown to
have higher frequencies of granulocytic MDSC compared to
healthy controls. MDSC obtained from TB patients sup-
pressedT cell response in anNO-dependentmanner andwere
associated with a higher inflammatory response in coculture
(i.e., higher IL-1, IL-6, IL-8, G-CSF, and GM-CSF) [104,
105]. Successful TB treatment reduced MDSC population,
suggesting a role for MDSC during active TB disease [105].
Due to a limited number of studies, it is not yet clear whether
MDSC contribute to TB pathology (e.g., by dampening T
cell-mediated protection and/or exuberating inflammation)
or represent a regulatory population aimed to limit excessive
immune response.

6.2. TB-Associated Neutrophils (TBAN). Changes to neutro-
phil population occurring during TB disease are not limited
only to the generation of MDSC. Another feature of mouse
TB is an alteration of “Gr-1/Ly-6Ghi” population. It has been
demonstrated that cells that inMtb-infected mice fall into the
“Gr-1/Ly-6Ghi” gates (TBAN) differ from Gr-1/Ly-6Ghi
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neutrophils found in steady-state conditions (“steady-state
neutrophils” (SSN)): TBAN had lower expression levels
of Gr-1/Ly-6G, elevated expression of immaturity markers
CD115 and CD135, and, in contrast to SSN, were able to
inhibit T cell proliferation [102]. It was previously shown
that the levels of Gr-1 and Ly-6G expression correlate with
the degree of granulocytic differentiation and maturation
[106, 107]. Thus, the data strongly indicate on a less mature
state of TBAN compared to that of SSN. Whether these
changes alter neutrophil capacity for mycobacterial control
during TB is not yet clear.

6.3. Low-Density Neutrophils. Further heterogeneity of
neutrophil-like populations during TB comes from changes
in their density. Low-density granulocytes (LDG) have been
previously described in several pathological conditions, such
as systemic lupus erythematosus, rheumatoid arthritis,
asthma, and HIV infection, where elevated LDG levels corre-
lated with disease severity [108–111]. A characteristic feature
of LDG is their remaining in the PBMC layer after density-
gradient centrifugation along with the expression of the main
neutrophil markers (i.e., CD15, CD66b, and CD11b) and lack
of the expression of CD14. Several studies reported that the
pattern of mRNA transcripts in LDG, that is, the expression
of granule enzymes and bactericidal proteins, is characteristic
of immature neutrophils. Functional analyses showed
decreased phagocytic activity of LDG, their enhanced capacity
to form NETs, and increased secretion of proinflammatory
cytokines, suggesting cell implication in the inflammatory
and tissue damaging processes and pathogenesis of diverse
diseases [112].

The first study examining LDG during TB has recently
been published by Deng and coauthors [113]. The authors
reported the accumulation of LDG in patients with active
TB and higher LDG levels in patients with more advanced
disease compared to those with mild-to-moderate disease.
Interestingly, LDG could be generated in vitro from
normal-density granulocytes (NDG) cultured in the presence
of Mtb, allowing the authors to suppose that LDG were not
immature neutrophils but represented activated mature neu-
trophils that had degranulated. This contrasts several other
studies that examined LDG during other diseases and consid-
ered them immature granulocytes. Overall, the origin, signals
inducing LDG generation, and their precise role during TB
are unclear. However, there is no doubt that the cells repre-
sent a subset of neutrophilic cells and contribute to neutro-
phil heterogeneity during TB disease.

6.4. Neutrophil Heterogeneity in Cancer. While the heteroge-
neity of neutrophils during TB only starts to be appreciated,
neutrophil diversity in other diseases, particularly, in cancer,
has been studied in more details. In cancer, the existence of
multiple subsets and phenotypes of neutrophils has been
demonstrated, including MDSC, type 1 (N1) and type 2
(N2) neutrophils, and hybrid tumor-associated neutrophils
(TAN) [114–116]. Most of these subsets express
neutrophil-specific markers (CD15/CD66b) but differ by
other phenotypic and functional characteristics and exhibit
differential roles during the disease. Particularly, N1 are

proinflammatory and antitumorogenic. In contrast, N2
are immunosuppressive and protumorogenic. “Hybrid”
TAN exhibit characteristics of both neutrophils and
antigen-presenting cells, originate from mature neutrophils
in tumor microenvironment, and serve as antigen-
presenting cells stimulating T cell response at the earliest
stages of lung cancer [116, 117]. In contrast, granulocytic
MDSC accumulate at the late cancer stages, are immature,
and inhibit proliferation of activated autologous T cells
and IFN-γ production [118]. Each of these subsets seems
to be further heterogeneous with regard to the surface
phenotype, nuclear morphology, and other characteristics.
The relationships between differential neutrophil-like sub-
sets are not fully understood. However, it was suggested
that the existence of the subsets exhibiting sometimes
opposing effects (e.g., inhibiting or stimulating T cells)
may underlie the opposing functions of neutrophils in
cancer.

In summary, neutrophil population is highly heteroge-
neous and composed of different subsets that differ by their
maturity, phenotype, and functional properties. This hetero-
geneity documents alterations, which neutrophil population
undergo during pathological conditions, including TB, and
may underlie the controversy of the existing data on neutro-
phil function in tuberculosis.

7. Conclusions

Neutrophils are multifunctional cells and during TB play a
dual role. Particularly, they participate in the generation of
the acquired immunity and granuloma formation and may
killMtb. At the same time, the cells can supportMtb growth;
have been implicated in the transition from infection to
active TB; and mediate tissue destruction, disease severity,
and progression. It is largely assumed that protective activity
of neutrophils is more pronounced at the early stage of
disease, whereas at the advanced TB stages, neutrophils
become detrimental. This “two-stage” concept raises sev-
eral questions. Particularly, why neutrophil effects differ
so profoundly depending on the stage of TB infection? If
neutrophil can kill Mtb during the onset of the infection,
why do they fail to do so at later infection stages? Based
on the analysis of several recent studies, we suggest that
TB disease dramatically alters neutrophil population, leading
to the accumulation of heterogeneous subsets of immature
and activated dysfunctional cells and a decline in true neu-
trophils. The origin of these cells, signals leading to their
generation, and their precise role during TB are yet to
be determined.
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