
fmed-09-950452 August 29, 2022 Time: 16:55 # 1

TYPE Original Research
PUBLISHED 06 September 2022
DOI 10.3389/fmed.2022.950452

OPEN ACCESS

EDITED BY

Jiuliang Zhao,
Peking Union Medical College Hospital
(CAMS), China

REVIEWED BY

Consuelo Romero-Sanchez,
El Bosque University, Colombia
Feliciano Chanana Paquissi,
Clinica Girassol, Angola

*CORRESPONDENCE

Ignacio Sanz
ignacio.sanz@emory.edu

SPECIALTY SECTION

This article was submitted to
Rheumatology,
a section of the journal
Frontiers in Medicine

RECEIVED 22 May 2022
ACCEPTED 15 August 2022
PUBLISHED 06 September 2022

CITATION

Hurtado C, Rojas-Gualdrón DF,
Urrego R, Cashman K,
Vásquez-Trespalacios EM,
Díaz-Coronado JC, Rojas M, Jenks S,
Vásquez G and Sanz I (2022) Altered B
cell phenotype and CD27+ memory B
cells are associated with clinical
features and environmental exposure
in Colombian systemic lupus
erythematosus patients.
Front. Med. 9:950452.
doi: 10.3389/fmed.2022.950452

COPYRIGHT

© 2022 Hurtado, Rojas-Gualdrón,
Urrego, Cashman,
Vásquez-Trespalacios, Díaz-Coronado,
Rojas, Jenks, Vásquez and Sanz. This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided
the original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Altered B cell phenotype and
CD27+ memory B cells are
associated with clinical features
and environmental exposure in
Colombian systemic lupus
erythematosus patients
Carolina Hurtado1,2, Diego Fernando Rojas-Gualdrón1,
Rodrigo Urrego3, Kevin Cashman4,
Elsa María Vásquez-Trespalacios1,
Juan Camilo Díaz-Coronado1,5, Mauricio Rojas6,7,
Scott Jenks4, Gloria Vásquez6 and Ignacio Sanz4*
1School of Medicine, Universidad CES, Medellín, Colombia, 2School of Graduate Studies,
Universidad CES, Medellín, Colombia, 3Group INCA-CES, School of Veterinary Medicine
and Zootechnic, Universidad CES, Medellín, Colombia, 4Lowance Center for Human Immunology,
Department of Medicine, Emory University, Atlanta, GA, United States, 5Group of Clinical
Information, Artmedica IPS, Medellín, Colombia, 6Grupo de Inmunología Celular e Inmunogenética,
Universidad de Antioquia, Medellín, Colombia, 7Unidad de Citometría de Flujo, Universidad
de Antioquia, Medellín, Colombia

Background: B lymphocytes are dysregulated in Systemic Lupus

Erythematosus (SLE) including the expansion of extrafollicular B cells in

patients with SLE of African American ancestry, which is associated with

disease activity and nephritis. The population of Colombia has a mixture of

European, Native American, and African ancestry. It is not known if Colombian

patients have the same B cell distributions described previously and if they are

associated with disease activity, clinical manifestations, and environmental

exposures.

Objective: To characterize B cell phenotype in a group of Colombian Systemic

Lupus Erythematosus patients with mixed ancestry and determine possible

associations with disease activity, clinical manifestations, the DNA methylation

status of the IFI44L gene and environmental exposures.

Materials and methods: Forty SLE patients and 17 healthy controls were

recruited. Cryopreserved peripheral B lymphocytes were analyzed by

multiparameter flow cytometry, and the DNA methylation status of the gene

IFI44L was evaluated in resting Naive B cells (rNAV).

Results: Extrafollicular active Naive (aNAV) and Double Negative type 2,

DN2 (CD27− IgD− CD21− CD11c+) B cells were expanded in severe active

patients and were associated with nephritis. Patients had hypomethylation

of the IFI44L gene in rNAV cells. Regarding environmental exposure,

patients occupationally exposed to organic solvents had increased memory

CD27+ cells (SWM).
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Conclusion: aNAV and DN2 extrafollicular cells showed significant clinical

associations in Colombian SLE patients, suggesting a relevant role in the

disease’s pathophysiology. Hypomethylation of the IFI44L gene in resting

Naive B cells suggests that epigenetic changes are established at exceedingly

early stages of B cell ontogeny. Also, an alteration in SWM memory cells was

observed for the first time in patients exposed to organic solvents. This opens

different clinical and basic research possibilities to corroborate these findings

and deepen the knowledge of the relationship between environmental

exposure and SLE.

KEYWORDS

autoimmunity, B lymphocytes, systemic lupus erythematosus, lupus nephritis, IFI44L,
solvents, occupational exposure

Introduction

Systemic lupus erythematosus (SLE) is a highly heterogenic
autoimmune disease (1). Symptoms and organ involvements
vary from patient to patient, and they can virtually affect any
system in the body (2). Patients also have different grades
of disease activity, characterized by periods of relapses and
flares that repeat over time (3). This clinical variability leads
to different treatment regimens according to specific clinical
characteristics like the presence of renal involvement (4).
Ethnicity also influences SLE. Latin-American patients have the
second-highest frequency of SLE, after African Americans (5).
Data from the cohort GLADEL, which enrolled patients from 9
Latin American countries, have also described specific clinical
characteristics associated with this population (6). They found
that African Latin American and Mestizo (mixed European and
Amerindian ancestry) patients had more severe disease and a
higher frequency of renal disease when compared to Caucasian
patients (7). Also, Mestizo patients have a worse prognosis (8)
and present renal activity earlier in the condition (9).

Among this heterogeneity, a common factor in all SLE
patients is the dysregulation of B cells, making them a vital
treatment target (10). These B cells abnormalities account for
frequency changes on subsets and functional alterations like
autoreactivity. While the decrease in the frequency of CD27+

IgD+ Unswitched B cells (USM) seems to be a widespread
change in most SLE patients (11), other changes, such as an
expansion of recently described extrafollicular effector double
negative type 2 (DN2) and activated naive (aNAV) B cells,

Abbreviations: NAV, Naive CD27−IgD+; DN, double negative
CD27−IgD−; rNAV, resting Naive CD21+ CD11c−; aNAV, active
Naive CD21− CD11c+; DN1, double negative type 1 CD21+ CD11c−;
DN2, double negative type 2 CD21− CD11c+; SWM, switched
memory CD27+IgD−; USM, unswitched memory CD27+IgD+; TCE,
trichloroethylene; OS, organic solvents.

are specific to specific patient subgroups such as patients of
African American ancestry with active disease status and renal
involvement (12). The population of Colombia is highly diverse
and it has a mixture of European, Native American, and African
ancestries (13). It is unknown if Colombian patients have
the same B cell distributions previously described and if they
are associated with clinical variables; therefore, we aimed to
characterize it in the present study.

Another factor playing an essential role in SLE is epigenetics,
which significantly changes DNA methylation, as these changes
respond to some environmental exposures (14). Interestingly,
ethnicity can also influence DNA methylation (15). Differences
have also been described in the methylation status of certain
genes, such as hypomethylation of specific genes such as
PLSCR1, IFIT1, and IFI44L, significant for patients of African
American origin, not for European American patients (16).
The methylation status of the promoter of the IFI44L gene
was also proposed as a diagnostic marker. This was validated
in 2 cohorts of patients of Chinese origin. However, when
validated in a cohort of European patients, sensitivity and
specificity dropped (17). This could indicate that some of these
new biomarkers could work better according to ethnicity. As
the methylation status of IFI44L could also variate by race,
finally, we also examined it in a cohort of Colombian patients
of mixed ethnicity.

On the other hand, B cell dysregulation could also be caused
by environmental factors like the Epstein Bar virus (18). In
addition, murine models exposed to trichloroethylene (TCE),
an organic solvent used in degreasers, showed an acceleration
of the autoimmune response, deposition of immune complexes,
increased antibody titers, and manifestations of activity (19).
Moreover, while alterations in T cells have been reported on
occupational organic solvent exposure (20), neither animal
models nor exposed human studies’ have explored possible
effects on B cell subpopulations. Indeed, very little is
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known regarding the association between environmental and
occupational factors, B cell subpopulations’ frequency, and its
relation to SLE.

Therefore, we characterized the B cell phenotype in
a group of Colombian SLE patients with mixed ancestry
and explored associations with disease activity, clinical
manifestations, the DNA methylation status of the IFI44L gene,
and environmental exposures.

Patients and methods

Patients and healthy controls

Systemic lupus erythematosus patients were recruited in
an outpatient care center, Artmedica, a reference center for
autoimmune disease treatment in Medellín, Colombia, from
April to July 2018. Inclusion criteria were patients over 18 years
old that fulfilled > 4 criteria of the modified ACR criteria
1982 at the diagnosis by the rheumatology service. Exclusion
criteria included drug-induced SLE, polyautoimmunity, recent
treatment with rituximab, infection, and cancer history. Healthy
Controls (HC) were selected by gender and age, to achieve
a composition similar to that of the patients and the same
exclusion criteria were applied. This study received approval
from the Ethics Committee on Research on Human Beings of
CES University with the record number 118, and all participants
signed informed consent. Also, a cohort of European American
patients was included as a control group for some analysis,
recruited through the Lowance Center for Human Immunology,
Emory University, United States. The Emory Institutional
Review Board (58515 and 58507) approved the study and all
participants signed informed consent.

Disease activity classification and
clinical data

The Mexican version of SLEDAI, Mex-SLEDAI score (21),
previously validated (22), was used to classify activity. To classify
patients on moderate and severe activity (23), score cut-off
values were: inactive Mex-SLEDAI < 2, moderate Mex-SLEDAI
3–7, and severe disease activity Mex-SLEDAI ≥ 8. Clinical
records were reviewed to obtain information on ACR criteria
at the diagnosis, history of organ damage, current treatment,
autoantibodies titers, and exclusion criteria.

Cell isolation, freezing, and cell
thawing

Blood samples were drawn by cubital fossa venipuncture,
and EDTA tubes were used for blood sample collection.

Peripheral blood mononuclear cells (PBMC) were isolated by
density gradient using Histopaque R© (Ref 10771 Sigma-Aldrich
Co. LLC, Darmstadt, Germany). Freezing media was prepared
with Fetal Bovine Serum (FBS ThermoFisher Scientific,
Waltham, MA, United States), and 10% of Dimethylsulfoxide
(DMSO) and cells were stored in liquid nitrogen at−196◦C until
thawing.

For cell thawing, cells were warmed at 37◦C in the
bath, then washed with 37◦C RPMI (Cat Number MT-
10043CV, ThermoFisher Scientific, Waltham, MA, United
States) supplemented with 20% FBS. After two washes with
phosphate buffered saline (PBS, ThermoFisher Scientific,
Waltham, MA, United States), trypan blue in a concentration of
1:10 was added to the cells. Finally, a counting and viability test
with trypan blue was performed with an automated cell counter
(Bio-Rad Hercules, CA, United States).

Flow cytometry and cell sorting

As Kaminski et al. (24) described, multiparametric Flow
Cytometry was used. Cells were characterized using CD3
(Clone SP34-2, BD Biosciences NJ, United States), CD19 (Clone
SJ25C1 BD Biosciences), CD38 (Clone HIT2, Ebioscience, San
Diego, CA, United States), CD27 (Clone L128, BD Biosciences),
IgD (clone IA6-2, BD Biosciences), CD11c (Clone B-ly6,
BD Bioscience), CD21 (Clone B-ly4, BD Bioscience), and
CXCR5 (Clone 51505, R&D) markers. Also, we excluded
CD38++ CD27++ Plasma Cells and dead cells with a
Fixable Viability Dye eFlour 506 (Thermo Fisher, Scientific,
Waltham, MA, United States). Anti-VH4.34 antibody (clone
9G4) was also used. The markers IgD+ CD27− CXCR5+
CD11c− were used for sorting resting Naive B cells. For
compensation, we used beads stained with each fluorochrome.
A BD LSR II cytometer was used for reading and BD
FACS Aria II SORP Cell Sorter. The B cell binding index
(BCB) was calculated as described in Jenks et al. (25),
using the following formula [Resting naive 9G4 + median
fluorescence intensity]/[SWM 9G4 + median fluorescence
intensity]. FlowJoTM v9/10 Software (BD Life Sciences) was used
for cytometric analysis.

Dimensionality reduction analysis

All dimensionality reduction analyses were performed
using FlowJoTM v9/10 Software (BD Life Sciences). We
first concatenated all files in one and then ran the UMAP
analysis plugin. Next, to identify the ideal number of clusters,
the X-Shift plugin was used, and, finally, to visualize the
marker’s expression levels on each cluster, we ran Cluster
Explorer Plugin.
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DNA extraction and methylation
analysis IFI44L

Genomic DNA from patients was subjected to bisulfite
conversion to study the methylation status of a region from
gen IFI44L. DNA was extracted with AllPrep DNA/RNA
Micro Kit (QIAGEN) according to manufacturer’s instructions.
Briefly, cells were disrupted with Buffer RLT Plus, homogenized
by vortexing, and the lysate was transferred to the DNA
spin column to centrifuge. After washing with buffers AW1
and 2, DNA was eluted with Buffer EB, and quality was
evaluated with a NanoDrop Spectrophotometer. DNA was
stored at −80◦C until its use. The methylation status of
two CpG sites within the IFI44L promoter, Site1 (Chr1: 79
085 222) and Site2 (Chr1: 79 085 250; cg06872964), were
then analyzed by pyrosequencing, and specific primers
were used to amplify the target promoter fragment:
forward 5′- GTAGTTTTATTTAGTTTTGGGGTATTTG-3′;
reverse 5′- CCCCACCCCTTATAAATCCAATACTATCAC-
3′ tagged with biotin at 5′ end. The PCR product was
sequenced by pyrosequencing with the specific probe: 5′-
AGTAAGGAAGTTAGGAGAATA-3′. All samples were
sequenced using PyroMark Q48 Autoprep (QIAGEN) in
Macrogen CO. (Seoul, South Korea).

Organic solvent exposure survey

To determine environmental exposure, we used a
questionnaire-based instrument constructed to characterize
relevant environmental exposures, designed explicitly for SLE
patients, in a previous study (26). This instrument allowed us to
define which patients and HC were occupationally exposed to
organic solvents.

Statistical analysis

Descriptive analysis was carried out using frequencies
and means and standard deviation or median with 95% CI.
Mann–Whitney test or Welch test was used for comparison
between two independent samples. Multivariate Analysis
of Variance (MANOVA) was used to analyze differences
for three or more groups, as suggested by Genser et al.
for statistical analysis of immunological data like cell
subsets (27). Associations between frequencies of B cell
subpopulations, disease activity, clinical characteristics, and
ethnicity were analyzed using multivariate linear regression,
taking the logarithms of the subpopulation frequencies as
dependent variables and adjusting for clinical characteristics.
In addition, a hierarchical cluster analysis was performed and
presented as a heatmap.

The level of significance was defined at 0.05. Statistical
analysis was executed on Stata 15.1 (College Station,
TX, United States) and the figures and some analysis on
GraphPrism 8.1.2.

Results

Clinical and demographic
characteristics

Forty SLE patients and 17 HC were evaluated; 90% were
female, with a mean of 39 years of age (SD 15). The distribution
of SLE patients by activity comprised 10 active and 30 inactive
patients classified according to MEX-SLEDAI; 80% of them had
joint and renal involvement and were treated with different
immunosuppressant regimes. Demographic characteristics are
depicted in Supplementary Table 1.

Severe active systemic lupus
erythematosus patients have even
higher aNAV and DN2 cell frequencies
than moderate or inactive systemic
lupus erythematosus patients

B cell frequency was determined according to three groups
of disease activity: inactive, moderate activity, and severe activity
groups (described in Section “Patients and methods”). To
characterize B cell subsets, CD19+ B cells were classified on
IgD and CD27 markers into Switched Memory CD27+IgD−

(SWM); Unswitched Memory CD27+IgD+ (USM); Naive
CD27−IgD+ (NAV); and Double Negative CD27−IgD− (DN)
B cells. NAV cells were further classified into resting Naive
CD21+ CD11c− (rNAV) and active Naive CD21− CD11c+

(aNAV). DN was also divided into DN1: CD21+ CD11c− and
DN2: CD21− CD11c+. The strategy of analysis and illustrative
expansion of aNAV and DN2 cells on active patients is shown in
Figure 1A.

Severe active patients had the highest frequency of aNAV
cells, compared to moderate and inactive patients and HC
(34.1 vs. 8.07 p = 0.0001) (Figure 1B). DN2 cells were also
increased on severe patients compared with HC (15.6 vs. 2.9
p = 0.002), but the difference was not significant with moderate
or inactive SLE patients (35.05 vs. 31.9, respectively p = 0.998)
(Figure 1C).

Regarding memory B cells, USM cells decreased in severe
active patients compared to HC (6.9 vs. 1.7 p = 0.0001) but did
not differ between moderate or inactive patients (1.77 vs. 2.93
p = 0.915), and this contrasts with SWM cells that did not vary
by activity (Supplementary Figure 1B).
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FIGURE 1

B cell subsets and disease activity. (A) Gating strategy for B cell subsets analysis. Mex-SLEDAI scores for an inactive patient were 3, and 9 for an
active patient. (B) Active (aNAV) and resting (rNAV) B cells in Healthy Controls (clear blue), Inactive (dark blue), Moderate (purple), and Severe
(dark pink) active SLE patients. Multivariate Analysis of Variance (MANOVA) was used for analysis and means, and SD are depicted in the figures.
(C) DN1 and DN2 cells in Healthy Controls (clear blue), Inactive (dark blue), Moderate (purple), and Severe (dark pink) active SLE patients.
Multivariate Analysis of Variance (MANOVA) were used for analysis and means, and SD are depicted in the figures. (D) Principal Component
Analysis of B cell subsets. (E) Hierarchical cluster analysis of B cell subpopulations. (F) Percentage of patients with severe activity, moderate
activity, inactive and healthy controls in each detected cluster. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.
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To explore further this association of extrafollicular B
cells and disease activity, we performed Principal Component
Analysis (PCA), and it explained 71% of the variance and
Principal Component 1 (PC1) clustered together aNAV, DN2,
and DN subsets to Mex SLEDAI score (Figure 1D). In addition,
a heat map was made to picture the weight of each variable
in PC1. This is in line with the association of aNAV and
DN2 cells to the active status of the disease described in
Figures 1B,C.

Hierarchical cluster analysis allowed group patients
according to their activity status in Clusters II, III, and
IV and to discriminate them from HC in an independent
Cluster in Cluster I (Figure 1E). Indeed, most HC
was grouped in Cluster I, unlike patients with severe
activity mainly grouped in Cluster IV. Clusters II and
III consisted mainly of inactive or moderately active
patients (Figure 1F).

Changes in cell frequencies become more relevant in the
context of functionality. For this reason, we determined the
frequency of autoreactivity in B cell subsets by calculating the
frequency of 9G4 positive VH4.34 antibodies in the subsets
(28–30).

Patients tended to have more autoreactive cells in each of
the B cell subpopulations, and this difference was significant
for DN2 9G4+ cells compared to HC (0.7–1.4 p = 0.0303)
(Supplementary Figure 2A). Patients, but not HCD, also had
B cell binding 9G4+ antibodies (Supplementary Figure 2B),
which suggests a break in tolerance and the production of
autoreactive antibody secreting cells (31).

Dimensionality reduction analysis
confirmed clusters of B cells with
extrafollicular markers overexpressed
in severe active patients and identified
possible new related B cell subsets

Traditional gating strategies to analyze flow cytometry data
could have a weakness in detecting subsets with exceptionally
low frequencies; also, operator bias should be considered.
Dimensionality reduction analysis can overcome both (32).
Therefore, we performed a UMAP analysis and used X-Shift
and Cluster explorer plugins of Flowjo to further exploration.
Twenty-one clusters were detected (Figure 2A), each with a
differential expression of markers (Figures 2B,C). Then we
compared the expression of each cluster according to disease
activity and found a gradual and progressive change in the
expression of each cluster as the level of activity increased
(Figure 2D). Two of the overexpressed clusters in severe active
patients had markers compatible with aNAV and DN2, which
is in line with Figure 1. One cluster has memory compatible
markers, and the other two have Naive compatible markers,
and both could represent new B cell subsets associated with

severe activity (Figure 2E). However, this should be confirmed
in further research.

Extrafollicular B cell subsets are
associated with clinical features like
nephritis

We next explored B cell subsets distribution in patients with
nephritis. Patients with history of nephritis also had an increase
in aNAV (17.8 vs. 6.2; p = 0.0410), DN (26.6 vs. 19.4; p = 0.0359)
and DN2 (9.3 vs. 4.9; p = 0.0295) cells compared to patients
without nephritis (Figure 3A).

Another widespread manifestation of SLE is hematological
involvement, including leukopenia, lymphopenia, hemolytic
anemia, and thrombosis events. Because only leukopenia,
anemia, and thrombocytopenia score on Mex-SLEDAI we
grouped all history of hematological involvement to examine
the association with B cell subsets. We found an association
of increased aNAV (9.3 vs. 2.4; p = 0.0068), decreased rNAV
(94.5 vs. 86.3; p = 0.0139) and increased DN cells (27.20 vs. 19;
p = 0.0247) (Figure 3B) with hematological involvement.

Lower USM cells are associated with a
previous thrombosis event

After analyzing all events together, each type of
hematological compromise was also analyzed, and, interestingly,
patients with a previous thrombosis event had a reduction in
USM cells (2.9 vs. 1.2; p = 0.0256) (Figure 3C). This is an
exploratory observation, given the limitation in the number
of patients with thrombosis (n = 5). However, since it has
previously been thought that the loss of USW is a general
feature of autoimmunity (33), this is a novel finding that future
research should explore further.

Anti Sm, anti RNP, and low C3 were
associated with increased aNAV and
DN2 cells

The presence of autoantibodies is an important clinical
feature for diagnosing SLE; therefore, we determined possible
correlations of autoantibodies to B cell subsets distributions.
Anti Ro, Anti La, Anti Sm, and Anti RNP were obtained
from clinical registers; of the 30 patients with a complete
autoantibodies profile, 50% had positive Anti Ro and anti-
RNP 36.6% were positive for Anti Sm, and 20% had
Anti-La. Anti Sm was associated with increased frequencies
of aNAV (10.9 vs. 2.4 p = 0.0172), DN (36.3 vs. 19
p = 0.0213), and DN2 (14 vs. 2.9 p = 0.0093) (Supplementary
Figure 3A). Furthermore, Anti RNP was also associated
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FIGURE 2

Dimensionality reduction analysis to identify new B cell subsets. (A) UMAP analysis for dimensionality reduction and identified clusters. (B,C)
Heat map showing marker’s expression levels for each cluster. (D) Comparison of cluster’s expression in Healthy Controls (clear blue), Inactive
(dark blue), Moderate (purple), and Severe (dark pink) active SLE patients. (E) Clusters with a differential expression when comparing between
HC and patients with severe active SLE patients and its markers.
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FIGURE 3

B cell subsets distribution on patients and clinical associations. (A) B cell subpopulations associated with nephritis. Mann–Whitney T-test was
used for analysis, and median and 95% CI are depicted in the figures. (B) B cells are associated with a history of hematologic involvement.
Mann–Whitney T-test was used for analysis, and median and 95% CI are depicted in the figures. (C) Association of USM cells in patients with a
history of thrombosis Mann–Whitney T-test was used for analysis, and median and 95% CI are depicted in the figures. (D) B cells subsets
associated to low C3 levels. Mann–Whitney T-test was used for analysis, and median and 95% CI are depicted in the figures. (E) Clinical
characteristics associated with clusters identified in Figure 1E: renal activity and high DN2 values; the Chi-square test were used for analysis.
(F) Ethnicity and DN1 and DN2 Cells. AC, African Colombian; MC, Mestizo Colombian. Mann–Whitney T-test was used for analysis, and median
and 95% CI are depicted in the figures. (G) Ethnicity and rNAV and aNAV Cells. Mann–Whitney T-test was used for analysis, and median and 95%
CI are depicted in the figures. (H) Ethnicity and DN1 and DN2 Cells in Colombian and European American SLE patients. Mann–Whitney T-test
and Kruskal Wallis was used for analysis, and median and 95% CI are depicted in the figures. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.
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to increased aNAV (8.4 vs. 2.02 p = 0.0190), DN (23.9
vs. 16.9 p = 0.0454), and DN2 (11.6 vs. 2.4 p = 0.0037)
(Supplementary Figure 3B).

C3 and C4 consumption are useful in disease activity
measurement and are part of the SLEDAI. Although the number
of patients recorded was limited, it was observed that patients
with low C3 levels had higher aNAV cell frequencies (19.9 vs.
5.6, p = 0.0213), DN (47.5 vs. 21.9, p = 0.0049) and DN2 (15.3
vs. 7.5, p = 0.0139) (Figure 3D). A low level of C3 values
was < 80 mg/dL.

Also, more than 80% of the patients in cluster IV (Figure 1E)
had renal activity and high DN2 values, and the percentages
progressively increased from cluster I to IV (Figure 3E). The
same phenomenon was observed with positive Sm and RNP
antibodies (Supplementary Figure 3C).

African Colombian patients had the
highest frequencies of DN2 cells
compared to Mestizo-Colombian and
European American systemic lupus
erythematosus patients

It has been reported that DN2 frequency is higher in
patients of African American ancestry, and it is associated
with disease activity and lupus nephritis in these patients (12).
To characterize the association of ethnicity to DN2 cells, self-
reported ethnicity by the patients was classified into African-
Colombian and Mestizo—Colombian patients (Supplementary
Table 1). Although it is a limited number of patients,
African Colombian Patients had the highest frequencies of
DN2 cells (52.3 vs. 22.8; p = 0.0091) (Figure 3F). They
also had an increased frequency of aNAV cells (13.6 vs. 3.7;
p = 0.0182) (Figure 3G).

Furthermore, Colombian SLE patients had higher DN2 cells
than European American patients (9.45 vs. 4.84 p = 0.0479)
(Figure 3H). When we compared among ethnicities, African-
Colombian patients still had significantly highest DN2 cells than
European American patients (p = 0.0232) (Figure 3H).

This led us to ask, of all these associations that we observed
with clinical manifestations, which one will have more weight
or greater strength of association in each subpopulation of B
cells? A multivariate linear regression analysis was performed,
which considers the interdependence of the subpopulations to
establish if some clinical manifestations have more weight or
greater strength of association in each subpopulation of B cells.

After adjusting, the factor with the greatest association
strength for aNAV cells was severe activity (Log Coefficient 1.151
p = 0.037); for DN2, it was ethnicity (Log Coefficient 0.294
p = 0.047), and for USM, it was a history of thrombosis (Log
Coefficient−0.593 p = 0.013) (Supplementary Table 2).

Hypomethylation of promoter site 1
and 2 of IFI44L gene on rNAV B cells of
systemic lupus erythematosus patients

DNA methylation state has long been recognized to
play an important role in SLE physiopathology, and it
occurs differentially on both T and B cell subsets (34).
The hypomethylation of the IFI44L promoter has been
proposed as a diagnostic biomarker in SLE (17). Therefore,
to evaluate the DNA methylation status of IFI44L in B
cells, we selected rNAV cells as this is the earliest mature
B cell subpopulation that hallmark SLE epigenetic changes,
shared with subsequently differentiated B cells subsets (35).
SLE patients had hypomethylation of the site 1 (57.4 vs.
27.1; p = 0.0011) and site 2 (93.6 vs. 82.02; p = 0.0057) of
the promoter of IFI44L gene (Figures 4A,B) (SLE n = 19;
HC n = 10). Also, Inactive patients had the lowest DNA
methylation percentage, especially on-site 1, compared to active
patients; however, this was not significantly different (18.8
vs. 41.2; p = 0.1564) (Figures 4C,D). We also analyzed for
different methylation percentages in patients with DN2 cells
with high or low frequencies, but there were no differences
(Supplementary Figure 4).

Systemic lupus erythematosus patients
exposed to organic solvents had higher
frequencies of SWM cells

Given the relevance of environmental exposure in lupus, we
wanted to know if environmental events were associated with B
cells’ distributions. To answer this question, we constructed an
instrument to characterize exposure to relevant environmental
factors for SLE patients (26); this allowed us to classify patients
based on exposure to organic solvents. The most used solvent
was degreasers for cleaning in patients and HC, followed
by ketones such as nail polish remover. Finally, 46% of the
patients used protective equipment and none of the HC
(Supplementary Table 3).

It has been reported that exposure to solvents can
cause lymphopenia (36), but patients exposed to Organic
Solvents (OS) did not have fewer total lymphocytes or
CD19+ B cells than non-exposed individuals in this study
(Supplementary Figure 5).

We observed significant differences in the distribution of
SWM cells between SLE and OS-SLE (Figure 5A). Specifically,
exposed patients had an increase in SWM cells (means of 21.4%
for OS-SLE vs. 14.1% for SLE, p = 0.038) (Figure 5B).

DN1 cells are thought to be precursors of SWM cells
through the germinal center differentiation pathway (37), and
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FIGURE 4

DNA methylation status of IFI44L gene on rNAV B cells. (A) Percentage of DNA methylation of site 1 on the promoter of the gene IFI44L in HC
and SLE patients. Mann–Whitney T-test was used to analyze and median and 95% CI are depicted in the figures. (B) Percentage of DNA
methylation of site 2 on the promoter of the gene IFI44L in HC and SLE patients. Mann–Whitney T-test was used to analyze and median and
95% CI are depicted in the figures. (C) Percentage of DNA methylation of site 1 on the promoter of the gene IFI44L on HC, inactive and active
SLE patients. Kruskal Wallis with multiple comparisons used to analyze and median and 95% CI are depicted in the figures. (D) Percentage of
DNA methylation of site 2 on the promoter of the gene IFI44L on HC, inactive and active SLE patients. Kruskal Wallis with multiple comparisons
used to analyze and median and 95% CI are depicted in the figures. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.

a trend was observed in the increase of DN1 cells in exposed
patients (46.3 vs. 28.1 p = 0.054) (Figure 5C).

Exposure could also potentially affect the cells of the
extrafollicular pathway but the frequencies of DN2 cells did
not differ (Figure 5C), suggesting that solvents could have a
possible effect on the differentiation germinal center but not on
the extrafollicular pathway. This was further supported by the
Ratio of DN2/DN1 (0.456 vs.−9.441 p = 0.0456) (Figure 5D).

Further analysis indicated that the frequency of SWM cells
was higher in patients exposed to both degreasers (26.6% vs.
14.4% for SLE, p = 0.004) and ketones (26.8% for vs. 15.4%
for SLE, p = 0.037) (Figure 5E) and this association was not
influenced by the duration of the disease.

Evidence in murine models has shown an association
between activity and solvents; therefore, we asked whether
patients exposed to solvents would have more disease activity.
A higher proportion of active SLE patients were exposed to
OS (50% compared to 26% in the inactive group; Figure 5G).
However, group analysis failed to demonstrate significant
differences in the distribution of MEX-SLEDAI scores between
patients exposed or not to OS (Figure 5G).

Next, we questioned whether exposed healthy controls
would have alterations in B cell distribution. While these

findings should be considered preliminary based on the small
sample size, the two subjects available for analysis demonstrated
a striking decrease in USM cells to levels comparable to those
seen in SLE patients (Figure 5F).

Finally, we performed dimensionality reduction analysis to
identify possible new B cell subsets associated with solvents
exposure. Four subsets have markers compatible with SWM
cells and were overexpressed in exposed patients (Figures 5H,I),
aligning with our results.

Discussion

The B cell subpopulation profile of Colombian SLE patients
differs from that in HC; in line with the literature for other
populations of lupus patients (37, 38). We also found distinct
distributions of cells of the two differentiation pathways. In
the extrafollicular pathway, we observed an expansion of aNAV
and DN2 cells associated with severe activity and other clinical
features. In the germinal center differentiation pathway, we
observed increased frequencies of SWM and DN1 cells in
patients exposed to solvents; to our knowledge, this is the first
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FIGURE 5

Distribution of B cells in patients and healthy occupationally exposed to Organic Solvents. (A) Representative dot plots showing increased SWM
cells in exposed patients. (B) SWM cells in exposed or non-exposed HC and SLE patients. (C) DN1 and DN2 cells in exposed or non-exposed
patients. (D) DN2/DN1 ratio in exposed or non-exposed patients. (E) SWM cells and exposure to degreasers and ketones in patients. (F) USM
cells in exposed or non-exposed HC and SLE patients. (G) Percentage of exposed inactive and active patients and Mex-SLEDAI index in exposed
or not patients. (H) Dimensionality reduction analysis in exposed or non-exposed patients. (I) Clusters with a differential expression when
comparing between exposed or non-exposed patients and its markers. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.

description of this phenomenon. These findings and the main
elements of the discussion are summarized in Figure 6.

Our finding of an increase in extrafollicular cells associated
with severe disease activity, nephritis, positive Anti-Sm and Anti
RNP titers, and decreased C3 could be explained by a possible

pathogenetic role of these cells in SLE. Previous evidence has
shown hyperactivity to TLR7 (12), and in the presence of IFN,
they would be 100 times more sensitive (39). Additionally,
DN2 cells can produce autoantibodies (12), which could cause
organ damage. Since patients with SLE have defects in removing
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FIGURE 6

Summary of main findings and discussion elements. The dotted lines denote possible relationships or trends that require further validation
studies. This figure was designed with Biorender.com.

apoptotic bodies, the availability of RNA-type antigens would
increase and stimulate TLR7 again, which could lead to a
vicious cycle that could trigger a flare in patients. Actually, in
a longitudinal analysis, although it had a limited number of
patients, the increases in aNAV cells occurred before and after a
flare (40). Therefore, aNAV cells could have value as a predictive
biomarker of clinical relapse, but this phenomenon may vary
according to ethnicity.

Colombia’s population is highly diverse and it has a mixture
of ancestries (41). Ossa et al. described that the percentage of
each varies in some areas of the country. For example, in the
region near the Amazon, the population has more than 65%
of Native-American ancestry genes, while the population near
the Pacific coast has around 63% African contribution. SLE
Patients recruited in this study were from Medellin city, located
in the country’s central region, near the Andes Mountains
range. The first Europeans in the country were established
here; therefore, the population of this part of the country had
67% of genes of European ancestry, 25% of Native-American
ancestry genes, and 7% of African genes (13). Thus, we had
hypothesized that the DN2 cell distribution of Mestizo patients
in this study would resemble what has been described for
European-American patients. Strikingly, DN2 cell distribution
in Mestizo SLE patients resembles closer to the reported data
of African- American patients, both on frequencies (87% of
patients had high DN2 cell frequencies) and in associations
with disease activity, nephritis, and anti-Sm and Anti RNP
autoantibodies. Consistent with studies in North America,
African Colombian patients had the highest frequencies of DN2

cells. Also, Colombian SLE patients showed higher DN2 cells
overall when compared to European American patients.

In a study conducted in a cohort of Asian patients with SLE,
an expansion of aNAV and DN2 B cells was associated with
disease activity (42). The similarity of their clinical associations
in a population of patients with Asian ancestry, which also
represents the third population in prevalence affected by SLE in
the world, suggests a role of B cell extrafollicular differentiation
pathway and a possible role in the pathophysiology of SLE,
previously described in African-American patients, evidenced
in Asian patients and confirmed in this study in Latin American
patients. Recent work on the immune response of patients with
severe COVID-19 also supports this hypothesis of a possible
pathogenic role of extrafollicular cells (43).

One of the most relevant clinical associations of
extrafollicular cells aNAV and DN2 was nephritis. To date,
the presence of aNAV or DN2 cells characterized by the markers
described in the present study has not been described in
samples of kidney tissue from patients with lupus nephritis.
However, some studies that use different discrimination
strategies for B cell subsets that likely correspond to DN2 cells
have been described in kidney tissues (44, 45). They described
a spectrum of B cells in situ that included cells with markers
reported on ABC cells (Age-Associated B cells). Regarding
ABC cells, these were initially described in animal models as
expanded extrafollicular B cells in mice with autoimmunity
and characterized by CD11c and T-bet. Recently, it has been
proposed that their human equivalents are aNAV and DN2
cells (46). This suggests that the intrarenal ABC cells described
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by Arazi et al. and Wang et al. may be the same as aNAV and
DN2 cells, which would help explain the association found with
nephritis. Indeed, a study described the association of atypical
memory cells with nephritis also detected intrarenal CD20+,
T-bet+B cells from Asian patients with SLE (47).

We also found a novel association between USM cells
and thrombosis. B cell dysregulation has been reported in
patients with antiphospholipid syndrome (APS), with decreased
USM, especially in patients with thrombosis (48). Although
the pathophysiology of B cell dysregulation on APS is not
known, associated APS is a clinical manifestation of SLE, and
this association could reflect the APS effect on B cells. Also,
decreased USM has been attributed to deficient spleen function
(49). Indeed, Hyposplenism has been described in SLE (50, 51),
and there are also reports of SLE patients with secondary APS
with autosplenectomy caused by spleen infarcts (52). This could
explain the decrease in USM seen in patients with a history of
thrombosis (Figure 2B).

Most interestingly, both the reversible decrease in USM
and the recovery of splenic deficiency have been observed in
Inflammatory Bowel Disease (IBD) patients treated with anti-
TNF (53). Therefore, hyposplenism seems to be a common
mechanism on SLE, secondary APS, and IBD that could relate
to low USM cells. However, spleen deficiency could be explained
by different physiopathological mechanisms in these diseases.
For APS, spleen infarcts could be the cause; for IBD, TNF
seems to play a role, and SLE inflammation could be the key.
Although TNF involvement in SLE needs more research, reports
on drug-induced SLE after anti-TNF treatment (54) could
suggest a different mechanism for spleen deficiency. On other
possibilities, USM cells are a marginal-zone equivalent (55) that
includes Regulatory B cells (Bregs) (56), and therefore their
decrease might correlate with impaired B regulatory function.

The present study found hypomethylation of the two IFI44L
gene promoter sites in the patients’ rNAV cell subpopulation.
This agrees with the literature regarding the methylation status
of the IFI44L gene in SLE, of which its hypomethylation has
been reported in total B cells, CD4 T lymphocytes, monocytes,
neutrophils, and PBMC (57). Finding this change in rNAV cells
suggests that it could also be found in other cells in later stages of
differentiation, given the epigenetic imprinting described in SLE
patients (35). On the other hand, these methylation patterns are
specific according to ethnicity (58). In this case, this is the first
study to analyze this gene in Latin American patients with SLE,
and the hypomethylation we found is again more similar to that
reported for African American patients (59).

B cell dysregulation could be explained by several factors,
including epigenetic changes and environmental exposure. To
our knowledge, this is the first analysis of the association and
possible influence of OS exposure on B cell regulation in SLE.
Although epidemiological studies have not been conclusive on
OS as a risk factor for SLE (60), there is enough evidence to
postulate such a role based on autoimmune responses in animal

models and the effects on SLE progression caused by exposure
to TCE (61). Of importance for our findings, degreasers were
the main OS to which both HC and SLE patients in this study
were exposed. This finding, therefore, indicates the need for
further research on the role of OS in human autoimmunity and
specifically in SLE.

Systemic lupus erythematosus activity was not associated
with OS exposure, but we noted a trend where patients with
high disease activity had more OS exposure. In line with this, Li
et al. found a higher risk of hospitalization among SLE patients
with occupations related to OS exposure, like artistic workers
and shoe and leather workers (62).

The most consistent difference observed between patients
exposed or not exposed to OS was a higher frequency of
CD27+ SWM B cells in exposed patients. While the loss of
USW that we and others have reported is common to all
lupus patients, and effector (12), activated (63), and antibody-
secreting cells (40) are elevated in specific patient subgroups,
patients with a predominance of SWM have been little studied.
It is presently unclear how OS exposure may favor the
development of SWM. CD27+ SWM is thought to be the
product of T/B interactions during germinal center reactions
(64). The influence of OS on SWM differentiation may be
mediated through CD4 T cells. Occupational exposure to TCE
results in reduced B and T lymphocytes, decreased IL10 (36),
IL4, and TNF-a, and increased IL2 and INF- γ (65). It is
essential to note that this is in healthy individuals and may be
different in the context of lupus; supporting this, we observed
a reduction in neither lymphocytes nor CD19 + B cells in OS-
exposed lupus patients (Supplementary Figure 4). Mouse lupus
models exposed to Trichloroethylene (TCE) have increased
T cell activation, particularly on CD4 + T cells expressing
activation markers and increased secretion of INF-γ (20); also,
a recent study on BALB/c mice exposed to TCE proposes
a tendency of T cells to differentiate toward a Th1 profile,
therefore altering the Th1/Th2 ratio (66). However, T cell
phenotyping in human exposure studies has been limited and
not done in autoimmune patients. Increased interferon-gamma
signaling causes excessive T follicular helper development
and germinal center formation in some mouse models (67),
and a similar mechanism may operate in OS-exposed lupus
patients. This is also supported by Kaneko et al.; they described
an immunoblastic cell-like structure in the spleen of MRL-
lpr/lpr mice exposed to TCE, suggesting an inclination to form
germinal centers (68).

A complementary process may be the development of
tertiary lymphoid organs in tissues at the site of exposure.
Indeed, studies on MRL+ mice exposed to TCE have shown
lymphocytic infiltration on the skin and resultant alopecia (19),
as well as a lymphocytic infiltration on kidneys, lungs, and
livers (69) of chronically exposed mice. Interestingly, while
DN2 B cells, were expanded in some patients, these cells were
not associated with OS exposure even though a substantial
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portion of these patients have active disease. Potentially, OS may
result in more germinal center-derived pathology in contrast
to the extra-follicular response found in other patients (46).
For example, ASC from OS-exposed patients may have more
somatic hypermutations and increased affinity maturation.

Longitudinal studies could be recommended further
validate this association. Further research on this association
between environmental factors and B cell subsets could
contribute to the understanding of flares prevention, which
could improve outcomes in SLE patients. The observation
that OS exposure may play a role in B cell dysregulation and
possibly, the development of clinical autoimmunity bears
multiple implications and open the door to epidemiological,
clinical, and immunological investigations, including a
dissection of the signaling pathways and molecular programs
triggered by these agents. Indeed, as an environmental factor,
OS could induce epigenetic changes in genes that orchestrate
the B cell differentiation process, as currently demonstrated for
SLE B cells (14).

The scope of the results of this study must be analyzed
within the framework of its limitations. The use of frozen
cells did not allow us to characterize ASC cells. It should
also be considered that it was not possible to measure
the presence of chemical substances in the patients’ blood
for a thorough characterization of environmental exposure.
Also, the main limitation of this study lies in the sample
size, which restricts the scope to an exploratory approach
in the analysis of environmental exposure. Finally, other
environmental factors that could play a role in SLE, such as
nutritional deficiencies of vitamins B12, and B6 or exposure to
mercury, were not measured.
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