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Abstract: An improved method of physical activity accelerometer data processing, involving a wider
frequency filter than the most commonly used ActiGraph filter, has been shown to better capture
variations in physical activity intensity in a lab setting. The aim of the study was to investigate how
this improved measure of physical activity affected the relationship with markers of cardiometabolic
health. Accelerometer data and markers of cardiometabolic health from 725 adults from two samples,
LIV 2013 and SCAPIS pilot, were analyzed. The accelerometer data was processed using both
the original ActiGraph method with a low-pass cut-off at 1.6 Hz and the improved method with
a low-pass cut-off at 10 Hz. The relationship between the physical activity intensity spectrum and
a cardiometabolic health composite score was investigated using partial least squares regression.
The strongest association between physical activity and cardiometabolic health was shifted towards
higher intensities with the 10 Hz output compared to the ActiGraph method. In addition, the total
explained variance was higher with the improved method. The 10 Hz output enables correctly
measuring and interpreting high intensity physical activity and shows that physical activity at
this intensity is stronger related to cardiometabolic health compared to the most commonly used
ActiGraph method.

Keywords: frequency filtering; vigorous physical activity; ActiGraph; multivariate analysis; partial
least squares regression; cardiovascular disease; SCAPIS; LIV

1. Introduction

As objective measurement of physical activity (PA) have become widespread in epidemiological
and clinical studies, a lot of work has been put into the development of these methods. In general,
the methods consist of the following steps: collection of raw data, processing to useful metrics,
calibration to represent PA and reduction to output variables to be used in further analysis [1].
The most common way of doing this is to capture raw data from an accelerometer, process this
data to ActiGraph (AG) counts, calibrate these counts to energy expenditure and reduce this to the
number of minutes at moderate-to-vigorous intensity (MVPA). Initially, the method development
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was focused on the calibration of AG counts towards energy expenditure. This lead to numerous
calibrations for different populations, but also different calibrations for the same populations [2].
Usually, calibration is performed by identifying cut-points of the accelerometer output representing
light (LPA), moderate (MPA), vigorous (VPA) and very vigorous (VVPA) physical activity. These
were set to energy expenditure levels corresponding to 1.5, 3, 6 and 9 metabolic equivalents (METs).
Accelerometer output below 1.5 METs represents sedentary time (SED). Instead of improving the
methods of objective measurement of PA, the development of these many calibrations obstructs
comparability between studies [3].

A closer look at the calibration of AG counts towards energy expenditure reveals that the
relationship reaches a plateau at higher PA intensities than walking [4]. At even higher running
speeds the relationship is reversed, implying that the measured PA intensity will be lower with
increased running speed. Information about the processing of the AG counts was previously not
available. However, in 2017 Brønd et al. published the processing specifications of AG counts enabling
investigation and improvement of raw data processing [5]. One key step of the processing of AG
counts is the application of a frequency filter with a low-pass cut-off at 1.6 Hz, which implies that parts
of the acceleration signal above this frequency is attenuated. Investigation of the processing of AG
counts shows that the narrow frequency filter used removes the influence of higher step frequency [6].
High intensity PA is most often associated with higher step frequency, which explains the AG counts
inability to assess high intensity PA. By widening the frequency filter used in the processing of raw
accelerometer data to a low-pass cut-off at 10 Hz, the positive relationship between accelerometer
data and PA intensity remains at high intensity PA [6]. The 10 Hz frequency cut-off is sufficient to
capture the influence of step frequency as well as all acceleration related to human PA and lead to
less variation between subjects performing the same activity. This suggests that the wider filter better
captures variations in PA intensity and the movement pattern.

Although a 10 Hz filter better captures PA in a lab setting, a major concern when implementing
a wider frequency filter in the processing of free living data is the possible side-effect of capturing
noise. However, when comparing the output from the AG filter and the 10 Hz filter, epoch by epoch,
the wider filter does not seem to capture more noise in a free-living setting. With this comparison
it is also apparent that, relative to the 10 Hz filter, the AG output yields much more high intensity
PA. This can be explained by the lab results showing that the relationship between AG output and
energy expenditure is very weak at high intensity, suggesting that the epochs are mainly classified by
random [7].

A main reason of PA assessment in research and clinical practice is its relation to mortality and
cardiometabolic health [1,8]. Ultimately, each methodology has to be assessed by its relation to clinical
variables and outcomes. Since the output from the different methods described above is highly different
with regard to high intensity PA, it is necessary to assess the validity of the methods. This could be
done by investigating the relationship between the different outputs and markers for cardiometabolic
health (referred to as predictive validity). As the AG output does not seem to be able to capture high
intensity PA accurately, no previous studies have been able to investigate the relationship between
high intensity PA and cardiometabolic health properly.

The most common intensity classification using cut-points is highly dependent on exactly where
the actual cut-points are set [3]. In addition, this division is a very crude way of reducing the PA
intensity spectrum, removing much of the information in the accelerometer data. Dividing the intensity
spectrum into many small blocks avoids the problem with cut-points while also keeping more of
the information [9]. However, because of the collinear nature of the PA intensity spectrum variables
a multivariate analysis approach must be applied [10].

Thus, the aim of this study was to investigate how the improved measure of physical activity
intensity, using a 10 Hz frequency filter instead of the standard 1.6 Hz AG filter, affected the relationship
with markers of cardiometabolic health. Our hypothesis was that the association between high intensity
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PA and cardiometabolic health would be stronger with the 10 Hz filter compared to the AG filter and
that the total explained variation of the model would be higher.

2. Materials and Methods

2.1. Study Sample

Study participants consisted of adults from two different cohorts, the LIV 2013 study (Swedish
phrase “Livsstil, Prestation, Hälsa”, “Lifestyle, Performance, Health” in English) [11] and the SCAPIS
pilot study (Swedish CArdioPulmonary BioImage Study) [12]. The LIV 2013 study consisted of
a random sample of the Swedish population between ages 20 and 65. The SCAPIS pilot study consisted
of a random sample, stratified for socioeconomic status, from the city of Gothenburg between ages
50 and 64. More detailed description of the recruitment process and data collection are available
elsewhere [11–13]. Ethical approval was obtained from the Regional Ethical Review Board in Stockholm
for the LIV 2013 study (no. 1338-31) and from the ethics board at Umeå University for the SCAPIS
study (no. 2010-228-31M). Informed consent was retrieved from all participants. The two samples
were combined in order to achieve a stable statistical model.

2.2. Markers of Cardiometabolic Health

Six different markers for cardiometabolic health was measured; systolic blood pressure,
triglycerides, total cholesterol to high density lipoprotein ratio, insulin resistance from a homeostatic
model assessment (HOMA), waist to height ratio and cardiorespiratory fitness. Systolic blood pressure
(mmHg) was measured by an automatic device (Omron M10-IT, Omron Health care Co, Kyoto, Japan)
in the SCAPIS pilot study and by manual auscultation with a sphygmomanometer in the LIV 2013
study. A fasting blood sample was used for measuring triglycerides (mmol/L), total cholesterol to high
density lipoprotein ratio and HOMA. HOMA was estimated from the fasting blood glucose (mmol/L)
and insulin (pmol/L) measurements (glucose·insulin/22.5) [9]. Cardiorespiratory fitness (mL/kg/min)
was estimated from a submaximal cycle test [14]. Remaining variables were measured using standard
clinical procedures [11,13]. The six variables were combined to a composite score (CS) as done in
previous studies [9,15]. Each variable was standardized to a mean of zero and standard deviation
of one. Before standardization all variables except fitness was reversed (turned to negative values),
which implies that for all variables a higher value indicates better cardiometabolic health. The CS was
calculated as the mean of the six standardized variables for each participant.

2.3. Physical Activity

To measure PA, raw accelerometer data was captured using ActiGraph model GT3X or GT3X+

(ActiGraph, Pensacola, FL, USA). The two models used, GT3X and GT3X+, have been shown to
have high agreement and can be used interchangeably within the same study [16]. Participants were
instructed to wear the accelerometer on their right hip for seven consecutive days and to remove it
during sleep. The accelerometers were set to record acceleration with a sample rate of 30 Hz and
a range of +/- 6 g, where 1 g is equivalent to the gravity on earth. Raw acceleration data was extracted
according to the available specifications [17].

Extracted raw acceleration was processed to the output mean mg of 3 s epochs using either the
standard AG filter or a modified filter with a 10 Hz low-pass cut-off. Technical details of the processing
has been published previously [7]. Night time between 00:00 and 06:00 was removed from the analysis.
Non-wear time was defined as at least 60 min of consecutive zeros with an allowance of up to 2 min of
output between 0 and the sedentary threshold (19.1 mg (g·10−3); accelerometer output equivalent to
1.5 METs, see below) [18]. This is common procedure when analyzing AG output, therefore non-wear
classification of the AG output was the reference for the 10 Hz output as well. A valid measurement was
considered at least four valid days, which in turn was defined as at least eight hours of wear-time [9].
Previously published energy expenditure cut-points for 1.5, 3, 6 and 9 METs representing LPA, MPA,
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VPA and VVPA intensity was considered reference for PA intensity [7]. The AG cut-points were 19.1,
63.0, 171.0 and 300.2 mg and the 10 Hz cut-points were 38.9, 167.2, 582.3 and 994.1 mg. To allow for
more detailed analyses of the PA intensity spectrum, the intensity spectrum was divided into smaller
bins. The width of the bins was chosen to ensure enough detail at low intensity in relation to the
met cut-points without being too detailed on the high intensities. For the AG output the bin edges
were 0, 10, 20, 40, 60 mg and so forth, increasing with 20 mg. Since the output from the 10 Hz filter is
approximately four times higher than AG at high intensities the bin edges for the 10 Hz filter was 0, 40,
80, 160, 240 mg and so forth, increasing with 80 mg.

2.4. Sample Characteristics

The number of participants with a valid PA measurement and a complete measurement of markers
for cardiometabolic health was 725. The sample characteristics are presented in Table 1. Although
the age range was wider in the LIV 2013 study, the mean age of the two samples were relatively
similar (51.9 years in LIV 2013 and 57.3 years in SCAPIS Pilot). This is because the number of young
participants in the LIV 2013 study was small.

Table 1. Sample characteristics.

Mean (SD)

N (% female) 725 (52%)
Age (years) 55.9 (7.2)

Markers of cardiometabolic health
Systolic blood pressure (mmHg) 123.2 (16.6)

Triglycerides (mmol/L) 1.20 (0.79)
Total cholesterol:HDL (ratio) 3.59 (1.16)

HOMA (index) 2.11 (2.75)
Waist:height (ratio) 0.54 (0.06)
Fitness (mL/kg/min) 33.5 (7.4)

Physical activity assessment
Valid days (days) 7.63 (2.13)

Wear time (hours per day) 14.1 (1.3)
Physical activity ActiGraph filter

(Minutes per day)
Sedentary 869.0 (55.3)

Light physical activity 114.9 (33.4)
Moderate physical activity 90.0 (29.5)
Vigorous physical activity 4.29 (5.29)

Very vigorous physical activity 1.17 (2.58)
Physical activity 10 Hz filter

(Minutes per day)
Sedentary 870.6 (56.0)

Light physical activity 135.0 (40.3)
Moderate physical activity 71.9 (25.6)
Vigorous physical activity 1.62 (3.46)

Very vigorous physical activity 0.37 (1.51)
1 SD, standard deviation; HDL, high density lipoprotein; HOMA, homeostatic model assessment.

2.5. Statistical Analyses

The statistical analysis was based on a method first implemented into PA research by Aadland
et al. [9]. Since dividing the PA intensity spectrum into many small bins causes high collinearity
between variables, using a multiple linear regression to investigate the relationship between PA
intensity and CS is not appropriate. Instead, using a multivariate analysis approach by applying
a partial least squares regression (PLS) handles this problem [10]. The PLS method decomposes
the PA intensity variables (bins) into one or more latent variables called PLS components, similar
to a principal component analysis (PCA). However, instead of maximizing the explained variance
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in the original variables on each latent variable as done with PCA, PLS maximizes the components
covariance with the response variable (in this case the CS) [19]. To facilitate interpretation of the
model, the predictive variance of the PLS components were combined to a single predictive component
by target projection (representing all the PA intensity spectrum variables) [20]. A selectivity ratio
was calculated as the ratio between predicted variance and residual variance for each PA intensity
variable on the target-projected component. The selectivity ratio is a variance independent metric
of the association between each PA intensity variable and the response variable CS. Since variance
dependent metrics could overestimate the importance of PA intensity variables with large variance but
small correlation with CS, the selectivity ratio is a more appropriate way of presenting the results [20].
The direction of the selectivity ratio, positive or negative, was retrieved from the target projection
loadings. In theory, the same number of PLS components as the number of input variables can be
generated. However, this would overfit the model. Instead, Monte Carlo resampling was applied,
randomly using half of the samples to generate a PLS model and calculate the root mean squared
error. This was repeated 100 times each for an increasing number of PLS components. The number
of components that generated the lowest median root mean squared error was selected in the final
model [21]. The results from the Monte Carlo resampling were also used to calculate 95% confidence
intervals (CI) for the selectivity ratios and the total explained variance (R2) of each model.

All variables were standardized before input to the PLS model. The number of PA intensity
variables (bins) included was based on where there was no more association between the accelerometer
output and CS. Selectivity ratio plots were used to display the association between the PA intensity
spectrum variables and the CS. Data processing and statistical analyses was performed in MATLAB
R2018b (MathWorks, Natick, MA, USA).

3. Results

In both models, there was a relationship between the PA output and CS using up to 22 PA intensity
variables (bins) with the widths specified above. The proportion of participants with at least one epoch
(3 s) is reported for each PA intensity bin in Figure 1. With the AG output the proportion of participants
with at least one epoch never reached below 97% for any intensity bin. With the 10 Hz output on the
other hand, the proportion of participants with at least one epoch started to decline already at the mid
VPA level, reached 50% at the lower part of VVPA and only 7% had one or more epochs at the last
intensity bin.
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Figure 1. The proportion of participants with at least one epoch (3 s) for all physical activity intensity
variables (bins) investigated from the ActiGraph output (left) and the 10 Hz output (right). Traditional
intensity classification as reference; SED, sedentary; LPA, light physical activity; MPA, moderate
physical activity; VPA, vigorous physical activity; VVPA, very vigorous physical activity; Inf, infinity.
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The association between the PA output processed using the AG filter and the CS is presented as
a selectivity ratio plot in Figure 2. Sedentary time was associated with lower CS. All PA were associated
with higher CS with an increasing association from the mid MPA range and upwards, peaking in the
mid VPA range. At VVPA intensity the strength of the association decreased to be very weak at the
highest intensity. One PLS component was used in the model and the total explained variance (R2)
was 12.6% (CI: 12.1-13.1%).
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Figure 2. Selectivity ratio plot with confidence intervals of the association between each physical
activity intensity variable (bin) using the ActiGraph filter and the cardiometabolic health composite
store (CS). A positive bar indicates more time spent at that intensity is associated with higher CS and
a negative bar indicates more time spent at that intensity is associated with lower CS. Traditional
intensity classification as reference; SED, sedentary; LPA, light physical activity; MPA, moderate
physical activity; VPA, vigorous physical activity; VVPA, very vigorous physical activity; Inf, infinity.

The association between the PA output processed using the 10 Hz filter and the CS is presented in
Figure 3. Like the AG output, sedentary time was associated with lower CS and all PA was associated
with higher CS. The association was slightly increasing with higher intensity up to the mid VPA
range where the association strengthened rapidly to peak at the VPA-VVPA cut-point. The association
with CS remained for majority of the VVPA bins before declining to no association with the last bin
investigated. One PLS component was used in the model and the total explained variance (R2) was
14.2% (CI: 13.7–14.7%).
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Figure 3. Selectivity ratio plot with confidence intervals of the association between each physical
activity intensity variable (bin) using the 10 Hz filter and the cardiometabolic health composite store
(CS). A positive bar indicates more time spent at that intensity is associated with higher CS and
a negative bar indicates more time spent at that intensity is associated with lower CS. Traditional
intensity classification as reference; SED, sedentary; LPA, light physical activity; MPA, moderate
physical activity; VPA, vigorous physical activity; VVPA, very vigorous physical activity; Inf, infinity.

4. Discussion

The main result of the present study was that when applying the new method with the 10 Hz filter,
which is wider than the most commonly used AG filter, to the processing of raw acceleration data the
association between PA and cardiometabolic health was shifted towards higher intensities. Although
both models show a peak of the relationship at an intensity higher than regular walking, the peak of
the AG output was equivalent to the walking–running transition whereas the peak of the 10 Hz output
was at higher running speeds (Figures 2 and 3) [7]. More importantly, the association did not decline
immediately with higher running speeds with the 10 Hz output as with the AG output. Clinically,
this means that higher intensities of PA were more strongly related to cardiometabolic health. These
findings are of importance for future studies on the relationship between high intensity activity and
health and clinically for public health messages.

With the 10 Hz output the proportion of participants with at least one epoch above the VVPA
cut-point dropped rapidly (Figure 1). At the 10 Hz outputs selectivity ratio peak, 71% had at least
one epoch, which was just before where the slope in Figure 1 was steepest. This suggests that the
reason why the association between the 10 Hz output and CS was weakened might be due to very few
participants performing PA at the intensity of the highest part of VVPA. With the AG output on the
other hand, the proportion of participants with at least one epoch was very high even at the highest
intensity. In this case, the reason why the association declined was not because of too few participants
having data on the high intensities but that the information in the data was not related to the health
outcome. Which implies that the specificity of the AG output was low.
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The total explained variation of the 10 Hz model was significantly higher than the AG model from
a statistical point of view, although the absolute improvement was not large. A majority of the PA
among adults was performed at lower intensities than where the difference between the 10 Hz and
the AG method was obvious. Since time spent at these lower intensities also seemed to be associated
with health, the majority of the information regarding the association between an individual’s PA and
health was sufficiently captured with the AG output. With a larger variation in high intensity PA in
the study sample, the difference between the models might have been larger. In the current study the
average time spent at VPA or VVPA was 5.5 min per day with the AG output and 2.0 min per day with
the 10 Hz output (Table 1), which is similar to previous studies [22,23]. Even though most people did
not perform PA at the intensity where the AG output was no longer correct, the interpretation of the
AG results was problematic. This should be considered when interpreting previous research based on
the AG output.

The results of the current study are in line with previous published results regarding the
relationship between AG and the 10 Hz output. Lab based results show that there is no association
between high AG output and energy expenditure whereas with the 10 Hz filter the association remains
at high intensity [6]. Previous results also suggests that AG heavily overestimates the amount of high
intensity PA compared to 10 Hz [7]. Since lab based results suggests that the 10 Hz filter better captures
high intensity PA, high intensity 10 Hz output should be considered of higher quality and closer to the
true PA than the AG output at the same intensity. It might seem contradictive that despite being better
at capturing high intensity PA, the 10 Hz method captures less of it. However, since the AG output is
calibrated towards energy expenditure even though there is no association, epochs at this intensity will
be classified by random [7]. This explains the low specificity of the AG output and why the association
between the AG output and CS decreased with intensity in the VVPA range (Figure 2) although most
participants had data at that intensity (Figure 1). Previous results also suggest that the 10 Hz filter is
not more sensitive to capturing noise than the AG filter [7]. The current study supports this finding by
showing that the association between CS and sedentary and low intensity PA was similar with the
different processing methods.

Similar to the results from the 10 Hz output that VVPA is strongly related to health, previous
intervention studies have shown high intensity interval training (HIIT) to be very effective in improving
cardiometabolic health [24]. The current results suggest that the AG output is not able to capture
HIIT and therefore misses the health benefits of this kind of PA in epidemiological research. The 2018
American Physical Activity Guidelines Advisory Committee Scientific Report states that the evidence
of the effect of different PA intensities on cardiometabolic health is limited [25]. The use of AG filter in
the processing of raw acceleration data have obstructed studying of the effect of PA intensity but using
the 10 Hz filter overcomes this problem. The report also states that there is a need for studying the long
term effects of HIIT on health outcomes [25]. Applying the 10 Hz filter in epidemiological research
enables studying of HIIT equivalent PA intensity without the need of intervention studies. Aside from
the relation to cardiometabolic health, the impact of the 10 Hz vs AG filter should in further studies
be investigated in regard to skeletal health. For example, the bone mineral density of the femoral
cortical surface has been related to MVPA using AG data [26]. The optimal intensity of PA is most
likely obscured by the AG filters, and proper advice therefore cannot be produced. The results suggest
that the effects of high intensity PA could be underestimated in research based on AG data.

Estimation of the relationship between PA and cardiometabolic health from a cross sectional sample
has several limitations, which is generally the case in physical activity research. Anthropometrics and
aerobic fitness is considered relatively stable markers of cardiometabolic health but the blood sample
markers and systolic blood pressure is varying on a day-to-day basis [27,28]. Physical activity also
displays large variation depending on the intensity level investigated. The habitual sedentary time can
be assessed reasonably well by collecting 2–3 days of data whereas 182 days of data might be necessary
to capture an individual’s habitual level of VPA [29]. Other parameters in the processing of PA data
such as valid day criteria and non-wear time algorithm could have a small effect on the relationship



Sensors 2020, 20, 1118 9 of 11

between PA and cardiometabolic health [30], but the comparison between the filtering methods is
likely not affected. The cross sectional study design also limits investigation of the causation of the
relationship between PA and cardiometabolic health. The strength of this study is the quality of the PA
and cardiometabolic measurements performed, including a wear time of 14.1 h per day and 7.6 valid
days on average (Table 1).

5. Conclusions

When applying a 10 Hz frequency filter in the processing of raw accelerometer data instead of
the most commonly used ActiGraph (AG) filter, the strongest association between cardiometabolic
health and physical activity (PA) is shifted towards higher PA intensities. The total explained variation
from a multivariate analysis between the PA output and cardiometabolic health is also statistically
higher with the 10 Hz filter than with the AG filter. Although most participants have AG output at
VVPA intensity, the association of this intensity to cardiometabolic health is very weak. The association
between 10 Hz output and cardiometabolic health is higher at the VVPA intensity level compared
to AG and the reason that the association weakens at even higher intensities seems to be that there
are very few subjects with data at those intensities. The 10 Hz output enables correctly measuring
and interpreting high intensity PA and enables showing that PA at this intensity is stronger related to
cardiometabolic health. This should be considered in the development of PA guidelines for public
health as well as in clinical settings for individual PA prescriptions.

Author Contributions: Conceptualization, J.F. and D.A.; methodology, J.F.; software, J.F.; formal analysis, J.F.;
investigation, E.E.-B. and Ö.E.; resources, E.E.-B., Ö.E. and M.B.; data curation, E.E.-B. and Ö.E.; writing—original
draft preparation, J.F.; writing—review and editing, M.B., E.E.-B., Ö.E. and D.A.; visualization, J.F.; supervision,
M.B., D.A.; All authors have read and agreed to the published version of the manuscript.

Funding: The data collection of the LIV sample was funded by the Swedish School of Sport and Health Sciences
funding, the National Board of Health and Welfare, ICA Sverige AB, Monark Exercise AB, and Apoteket Hjärtat.
The data collection of the SCAPIS pilot sample was funded by the Swedish Heart and Lung Foundation, grant
number 20180379.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Arvidsson, D.; Fridolfsson, J.; Börjesson, M. Measurement of physical activity in clinical practice using
accelerometers. J. Intern. Med. 2019, 286, 137–153. [CrossRef] [PubMed]

2. Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Nyström, C.D.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.;
Ruiz, J.R.; Ortega, F.B. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity
and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med. 2017, 47, 1821–1845.
[CrossRef] [PubMed]

3. Fröberg, A.; Berg, C.; Larsson, C.; Boldemann, C.; Raustorp, A. Combinations of Epoch Durations and
Cut-Points to Estimate Sedentary Time and Physical Activity Among Adolescents. Meas. Phys. Educ.
Exerc. Sci. 2017, 21, 154–160. [CrossRef]

4. John, D.; Miller, R.; Kozey-Keadle, S.; Caldwell, G.; Freedson, P. Biomechanical Examination of the ‘Plateau
Phenomenon’ in ActiGraph Vertical Activity Counts. Physiol. Meas. 2012, 33, 219–230. [CrossRef]

5. Brønd, J.C.; Andersen, L.B.; Arvidsson, D. Generating Actigraph Counts from Raw Acceleration Recorded
by an Alternative Monitor. Med. Sci. Sports Exerc. 2017, 49, 2351–2360. [CrossRef] [PubMed]

6. Fridolfsson, J.; Börjesson, M.; Arvidsson, D. A Biomechanical Re-Examination of Physical Activity
Measurement with Accelerometers. Sensors 2018, 18, 3399. [CrossRef]

7. Fridolfsson, J.; Börjesson, M.; Buck, C.; Ekblom, Ö.; Ekblom-Bak, E.; Hunsberger, M.; Lissner, L.; Arvidsson, D.
Effects of Frequency Filtering on Intensity and Noise in Accelerometer-Based Physical Activity Measurements.
Sensors 2019, 19, 2186. [CrossRef]

http://dx.doi.org/10.1111/joim.12908
http://www.ncbi.nlm.nih.gov/pubmed/30993807
http://dx.doi.org/10.1007/s40279-017-0716-0
http://www.ncbi.nlm.nih.gov/pubmed/28303543
http://dx.doi.org/10.1080/1091367X.2017.1309657
http://dx.doi.org/10.1088/0967-3334/33/2/219
http://dx.doi.org/10.1249/MSS.0000000000001344
http://www.ncbi.nlm.nih.gov/pubmed/28604558
http://dx.doi.org/10.3390/s18103399
http://dx.doi.org/10.3390/s19092186


Sensors 2020, 20, 1118 10 of 11

8. Lear, S.A.; Hu, W.; Rangarajan, S.; Gasevic, D.; Leong, D.; Iqbal, R.; Casanova, A.; Swaminathan, S.;
Anjana, R.M.; Kumar, R.; et al. The effect of physical activity on mortality and cardiovascular disease in
130,000 people from 17 high-income, middle-income, and low-income countries: The PURE study. Lancet
2017, 390, 2643–2654. [CrossRef]

9. Aadland, E.; Kvalheim, O.M.; Anderssen, S.A.; Resaland, G.K.; Andersen, L.B. The multivariate physical
activity signature associated with metabolic health in children. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 77.
[CrossRef] [PubMed]

10. Aadland, E.; Kvalheim, O.M.; Anderssen, S.A.; Resaland, G.K.; Andersen, L.B. Multicollinear physical
activity accelerometry data and associations to cardiometabolic health: Challenges, pitfalls, and potential
solutions. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 74. [CrossRef]

11. Olsson, S.J.G. Studies of Physical Activity in the Swedish Population. Ph.D. Thesis, Swedish School of Sport
and Health Sciences, Stockholm, Sweden, 2016.

12. Ekblom-Bak, E.; Olsson, G.; Ekblom, Ö.; Ekblom, B.; Bergström, G.; Börjesson, M. The Daily Movement
Pattern and Fulfilment of Physical Activity Recommendations in Swedish Middle-Aged Adults: The SCAPIS
Pilot Study. PLoS ONE 2015, 10, e0126336. [CrossRef] [PubMed]

13. Bergström, G.; Berglund, G.; Blomberg, A.; Brandberg, J.; Engström, G.; Engvall, J.; Eriksson, M.; de Faire, U.;
Flinck, A.; Hansson, M.G.; et al. The Swedish CArdioPulmonary BioImage Study: Objectives and design.
J. Intern. Med. 2015, 278, 645–659. [CrossRef] [PubMed]

14. Ekblom-Bak, E.; Björkman, F.; Hellenius, M.-L.; Ekblom, B. A new submaximal cycle ergometer test for
prediction of VO2max. Scand. J. Med. Sci. Sports 2014, 24, 319–326. [CrossRef] [PubMed]

15. Andersen, L.B.; Harro, M.; Sardinha, L.B.; Froberg, K.; Ekelund, U.; Brage, S.; Anderssen, S.A. Physical
activity and clustered cardiovascular risk in children: A cross-sectional study (The European Youth Heart
Study). Lancet 2006, 368, 299–304. [CrossRef]

16. Robusto, K.M.; Trost, S.G. Comparison of three generations of ActiGraphTM activity monitors in children
and adolescents. J. Sports Sci. 2012, 30, 1429–1435. [CrossRef]

17. Judge, D.; Maygarden, J. ActiGraph .gt3x File Format. Available online: https://github.com/actigraph/GT3X-
File-Format (accessed on 2 April 2019).

18. Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Masse, L.C.; Tilert, T.; Mcdowell, M. Physical Activity in the United
States Measured by Accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188. [CrossRef]

19. Wold, S.; Ruhe, A.; Wold, H.; Dunn, I.W.J. The Collinearity Problem in Linear Regression. The Partial Least
Squares (PLS) Approach to Generalized Inverses. SIAM J. Sci. Stat. Comput. 1984, 5, 735–743. [CrossRef]

20. Kvalheim, O.M. Interpretation of partial least squares regression models by means of target projection and
selectivity ratio plots. J. Chemom. 2010, 24, 496–504. [CrossRef]

21. Kvalheim, O.M.; Arneberg, R.; Grung, B.; Rajalahti, T. Determination of optimum number of components in
partial least squares regression from distributions of the root-mean-squared error obtained by Monte Carlo
resampling. J. Chemom. 2018, 32, e2993. [CrossRef]

22. Loprinzi, P.D.; Cardinal, B.J. Association between Biologic Outcomes and Objectively Measured Physical
Activity Accumulated in ≥ 10-Minute Bouts and < 10-Minute Bouts. Am. J. Health Promot. 2013, 27, 143–151.

23. Arvidsson, D.; Lindblad, U.; Sundquist, J.; Sundquist, K.; Groop, L.; Bennet, L. Vigorous Physical Activity
may be Important for the Insulin Sensitivity in Immigrants from the Middle East and Native Swedes. J. Phys.
Act. Health 2015, 12, 273–281. [CrossRef] [PubMed]

24. Batacan, R.B.; Duncan, M.J.; Dalbo, V.J.; Tucker, P.S.; Fenning, A.S. Effects of high-intensity interval training
on cardiometabolic health: A systematic review and meta-analysis of intervention studies. Br. J. Sports Med.
2017, 51, 494–503. [CrossRef] [PubMed]

25. 2018 Physical Activity Guidelines Advisory Committee. 2018 Physical Activity Guidelines Advisory Committee
Scientific Report; U.S. Department of Health and Human Services: Washington, DC, USA, 2018; p. 779.

26. Ng, C.-A.; McMillan, L.B.; Beck, B.; Humbert, L.; Ebeling, P.R.; Scott, D. Associations between physical
activity and bone structure in older adults: Does the use of self-reported versus objective assessments of
physical activity influence the relationship? Osteoporos. Int. 2019, 1–11. [CrossRef] [PubMed]

27. Pereira, M.A.; Weggemans, R.M.; Jacobs, D.R.; Hannan, P.J.; Zock, P.L.; Ordovas, J.M.; Katan, M.B.
Within-person variation in serum lipids: Implications for clinical trials. Int. J. Epidemiol. 2004, 33, 534–541.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0140-6736(17)31634-3
http://dx.doi.org/10.1186/s12966-018-0707-z
http://www.ncbi.nlm.nih.gov/pubmed/30111365
http://dx.doi.org/10.1186/s12966-019-0836-z
http://dx.doi.org/10.1371/journal.pone.0126336
http://www.ncbi.nlm.nih.gov/pubmed/25970580
http://dx.doi.org/10.1111/joim.12384
http://www.ncbi.nlm.nih.gov/pubmed/26096600
http://dx.doi.org/10.1111/sms.12014
http://www.ncbi.nlm.nih.gov/pubmed/23126417
http://dx.doi.org/10.1016/S0140-6736(06)69075-2
http://dx.doi.org/10.1080/02640414.2012.710761
https://github.com/actigraph/GT3X-File-Format
https://github.com/actigraph/GT3X-File-Format
http://dx.doi.org/10.1249/mss.0b013e31815a51b3
http://dx.doi.org/10.1137/0905052
http://dx.doi.org/10.1002/cem.1289
http://dx.doi.org/10.1002/cem.2993
http://dx.doi.org/10.1123/jpah.2013-0222
http://www.ncbi.nlm.nih.gov/pubmed/24809593
http://dx.doi.org/10.1136/bjsports-2015-095841
http://www.ncbi.nlm.nih.gov/pubmed/27797726
http://dx.doi.org/10.1007/s00198-019-05208-y
http://www.ncbi.nlm.nih.gov/pubmed/31720706
http://dx.doi.org/10.1093/ije/dyh057
http://www.ncbi.nlm.nih.gov/pubmed/15020568


Sensors 2020, 20, 1118 11 of 11

28. Kikuya, M.; Ohkubo, T.; Metoki, H.; Asayama, K.; Hara, A.; Obara, T.; Inoue, R.; Hoshi, H.; Hashimoto, J.;
Totsune, K.; et al. Day-by-Day Variability of Blood Pressure and Heart Rate at Home as a Novel Predictor of
Prognosis. Hypertension 2008, 52, 1045–1050. [CrossRef] [PubMed]

29. Bergman, P. The number of repeated observations needed to estimate the habitual physical activity of an
individual to a given level of precision. PLoS ONE 2018, 13, e0192117. [CrossRef] [PubMed]

30. Miller, G.D.; Jakicic, J.M.; Rejeski, W.J.; Whit-Glover, M.; Lang, W.; Walkup, M.P.; Hodges, M. Effect of Varying
Accelerometry Criteria on Physical Activity: The Look AHEAD Study. Obesity 2013, 21, 32–44. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.104620
http://www.ncbi.nlm.nih.gov/pubmed/18981332
http://dx.doi.org/10.1371/journal.pone.0192117
http://www.ncbi.nlm.nih.gov/pubmed/29390010
http://dx.doi.org/10.1002/oby.20234
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Sample 
	Markers of Cardiometabolic Health 
	Physical Activity 
	Sample Characteristics 
	Statistical Analyses 

	Results 
	Discussion 
	Conclusions 
	References

