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Abstract: Monitoring cattle behaviour is core to the early detection of health and welfare issues and
to optimise the fertility of large herds. Accelerometer-based sensor systems that provide activity
profiles are now used extensively on commercial farms and have evolved to identify behaviours such
as the time spent ruminating and eating at an individual animal level. Acquiring this information at
scale is central to informing on-farm management decisions. The paper presents the development of
a Convolutional Neural Network (CNN) that classifies cattle behavioural states (‘rumination’, ‘eating’
and ‘other’) using data generated from neck-mounted accelerometer collars. During three farm trials
in the United Kingdom (Easter Howgate Farm, Edinburgh, UK), 18 steers were monitored to provide
raw acceleration measurements, with ground truth data provided by muzzle-mounted pressure
sensor halters. A range of neural network architectures are explored and rigorous hyper-parameter
searches are performed to optimise the network. The computational complexity and memory
footprint of CNN models are not readily compatible with deployment on low-power processors which
are both memory and energy constrained. Thus, progressive reductions of the CNN were executed
with minimal loss of performance in order to address the practical implementation challenges,
defining the trade-off between model performance versus computation complexity and memory
footprint to permit deployment on micro-controller architectures. The proposed methodology
achieves a compression of 14.30 compared to the unpruned architecture but is nevertheless able to
accurately classify cattle behaviours with an overall F1 score of 0.82 for both FP32 and FP16 precision
while achieving a reasonable battery lifetime in excess of 5.7 years.

Keywords: precision agriculture; convolutional neural networks; cattle behaviour monitoring

1. Introduction

Sensor-based cattle behaviour monitoring has been driven by the need to optimise
herd fertility and improve animal welfare, both leading to increased production yields.
Economic pressures on the sector have resulted in the consolidation of small scale cattle
farming concerns. For example, in the UK, the number of milk producers has fallen from
over 35,000 in 1995 to under 12,200 in 2019 and the number of dairy cows from over
3.2 million in 1980 to under 1.9 million in 2019. During the same period, milk production
has slightly increased—13,320 M L in 2008 to 14,960 M L in 2020 [1].The increase in
productivity has been secured through improvements in genetic gain, but also through
the adoption of precision agriculture technologies [2,3]. An ever-increasing range of
measurement/monitoring devices and systems are commercially available, providing
dairy farmers with information, for example through alerts, on the early onset of health
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issues and highly accurate identification of the onset of oestrus (or ‘heat’), both integral
to optimising milk yield per animal [4–6]. Systems such as neck-mounted collars, leg and
ear tags are now in common use to monitor dairy and beef cattle, providing outputs that
inform farmers on the most appropriate and targeted management interventions [6–8].

One of the most insightful behavioural characteristics for assessing cattle welfare and
fertility is the time spent ruminating, the process during which the animal regurgitates
and masticates previously ingested food to aid the digestion process and improve nutrient
absorption [6,9,10]. The time spent ruminating is a key indicator of health as cattle that are
ill or injured eat less and thus ruminate less; therefore estimating the time spent ruminating
is critical information for effective herd welfare management. Moreover, the detection of
oestrus is essential to optimising herd fertility as the accurate identification of the optimum
window for cattle to be inseminated improves pregnancy rates and in turn increases milk
production. A missed oestrus cycle has a significant impact on yield, dependent on the
region and established management practices. For example, the lost revenue from a missed
heat event is in the region of GBP 120 based on current UK farm gate average price of GBP
0.286 per litre and a daily production of 20 L [11]. The onset of oestrus is also accompanied
by other changes in behaviour such as a drop in the time an individual animal typically
spends ruminating. Accelerometer-based sensor systems provide a means for observing
and classifying a range of behaviours continuously, carrying out time consuming tasks
traditionally executed through visual inspection.

The objective of the study was to examine the feasibility of utilising Deep Learning
(DL) Neural Network approaches to detect multiple cattle behaviours using neck-mounted
accelerometer-equipped collars with low-cost, low-power computationally constrained
micro-controllers. The proposed framework initially builds a CNN that eliminates the
burden of the feature engineering process that typically accompanies traditional Machine
Learning (ML) approaches, and it is often difficult to introduce new behaviour states in the
predictive model. The full CNN is subsequently pruned to minimise the memory, compu-
tation and consequently energy demands without sacrificing classification performance.
These elements make CNN approaches practical for deployment on resource-constraint
micro-controller devices and permit their adoption in on-farm/on-animal applications.

2. Related Work

Table 1 summarises solutions reported for the identification of cattle behaviours utilis-
ing a range of devices and machine learning algorithms. Furthermore, Table 1 presents the
data set sizes and the ground truth methodology used to validate each solution. In some
cases, the description of the data sets is ambiguous and thus unknown parameters are
represented by a ‘-’. Additionally, a performance comparison in terms of Accuracy, Pre-
cision, Recall and F1 score (where these have been reported) between the literature and
this study is shown within Table 1. It is important to note that it is hard to make direct
comparisons between studies as some report the performance of their best model while
others a range of models, sometimes for individual behaviours or aggregate across be-
haviours. Table 1 lists the metrics of the best model or the performance range where these
are available. Even when the reported performance metrics are identical, it is unclear
if the performance difference can be attributed to differences in animal breeds and/or
farming practise, data set size and ground truth methodology, algorithmic differences,
evaluation protocol, behaviours, number of behaviours, device or device location. Fur-
thermore, the definition of behaviour differs between studies (Table A1), for example,
Grazing [12]/Feeding [13]/Eating [14] or Moving [15]/Walking [16]/Travelling [17]. To
mitigate these issues, the current study makes the data set publicly available to permit
the community to perform direct algorithmic comparisons. Furthermore, the data set size
is comparable to that of other research reported in the literature in terms of the number
of animals, while the total number of observation hours is significantly higher (the data
set is publicly available at https://www.doi.org/10.5281/zenodo.4064801 (accessed on
9 June 2021)).

https://www.doi.org/10.5281/zenodo.4064801
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Table 1. Comparison of published literature on cattle behaviour classification.

Algorithm Device
Data Set Size

Ground Truth Number Performance (Best Model/Device)

Animals Days Hours of Behaviours Acc Pr Re F1

Abell et al. DT, RT, RF C/E/W 2 3 - V 4 0.76–0.97 0.02–0.96 0.78–0.94 -(2017) [18] A

Benaissa et al. k-NN, C/P 16 - 96 HO 3 0.99 0.96–0.99 0.96–1.00 -(2019) [13] Naive Bayes, SVM A V

Benaissa et al. SVM, DT C 10 5 60 HO 3 0.93 0.88–0.98 0.85–0.92 -(2019) [19] A

Diosdado et al. DT, SVM, C 6 6 34 HO 4 - 0.55–0.98 0.77–0.98 -(2015) [20] K-means, HMM A

Dutta et al. Ensemble C 24 10 - HO 5 0.96 - 0.97 0.89(2015) [12] A/M GPS

Gonzalez et al. DT C 58 31 43 HO 5 - - 0.90 -(2015)[17] A/M GPS

Hamilton et al. SVM B 3 16 181.8 C 2 - 0.83 0.89 0.86(2019) [10] A

Kasfi et al. CNN C 22 8 - HO 2 - 0.82 0.89 0.84(2016) [21] A

Martiskainen et al. SVM C 30 30 95.5 V 8 0.84–1.00 0.78 0.00–0.80 -(2009) [22] A

Peng et al. RNN/LSTM C 6 7 420 V 8 0.88 0.88 0.88 0.88(2019) [15] A/G/M

Rahman et al. Autoencoder/SVM C 22 8 - HO 9 - 0.40–0.82 0.45–0.95 0.63–0.85(2016) [16] A

Rahman et al. RF C/H/E - - - HO 3 - - - 0.89–0.93(2018) [23] A V

Robert et al. DT P 15 21 11 V 3 0.98 - - -(2009) [24] A

Smith et al. Ensemble C 24 8 - HO 4 - 0.77–0.97 0.69–0.99 0.73–0.98(2016) [25] A

Current Study CNN C 18 62 † 3460 H 3 - 0.83 0.82 0.82A

CNN—Convolutional Neural Networks; RNN-LSTM—Recurrent Neural Network with a Long Short-Time Memory; SVM—Support Vector Machines; DT—Decision Tree; RT—random tree; RF—Random Forest;
k-NN—k-Nearest Neighbors; C—Collar; H—Halter; E—Ear Tag; P—Pedometer; B—Bolus; W—Wither Tag; A—Accelerometer; G—Gyroscope; M—Magnetometer; V—Video; HO—Human Observation; † Note:
The number of days refers to the unique number of days in the data set. Animals were monitored in blocks and the average observation period per animal was 8.
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A number of classical machine learning algorithms approaches such as Support
Vector Machines [10,13,22] and Decision Trees [17,18,24] have been used to classify cattle
behaviours. However, these approaches required considerable effort to extract features
from sensor signals that permit accurate discrimination between behaviours. Feature
extraction is often a time-consuming and highly complex process, requiring a contribution
from domain knowledge experts with many years of on-farm operational experience.
Moreover, despite the fact that such features are effective in discriminating the targeted
behaviours, they are not extensible to additional behavioural classes; new classes demand
the engineering of new features. An approach that reduces the challenge inherent to manual
feature engineering utilises auto-encoders [16] that automate the feature extraction process
prior to the Support Vector Machine classifier. Here, data generated by 3-axis accelerometer
neck-mounted collar sensors were used to classify nine cattle behaviours. The data set from
the collars was acquired from 22 animals over a period of 8 days, and each animal was also
directly observed by humans over two hours at least once during three daily observational
periods. ‘Ground truth’ data, central to algorithm development, are often obtained through
direct animal observations [12,13,16,17,21] or through video annotations [13,15,18,22–24]
executed by animal scientists. Both methods require significant effort over long periods of
time, and as a consequence the ground truth sets are relatively small, comprising no more
than several days of data. Moreover, the recent adaptation of Deep Learning approaches for
cattle behaviour classification has dramatically increased the demand for larger data sets.

An alternative automated approach to ‘ground truth’ data generation is muzzle-
mounted halter pressure sensors enabling continuous acquisition without human interven-
tion. The halter measures the jaw movements of an animal directly through concomitant
changes in pressure of a strap around its muzzle, in so doing classifying behaviours such
as rumination and eating [26]. The halter is an accepted means of gathering ground truth
data since it has been shown to yield excellent correlations between the measured time
spent ruminating and eating with these times obtained through human observation. Stud-
ies [14,27] have reported a high Spearman correlation of 0.96 and 0.75 for rumination and
0.96 and 0.81 for eating, respectively. Furthermore, a similar study that utilised video
annotations [23] obtained a F1 Score of 0.932 for rumination. However, the halter is not
compatible with production settings since it is expensive, has a short battery lifetime and is
intrusive (full face harness and muzzle).

A study utilising a Deep Learning approach for cattle behaviour classification [21]
details the use of a Convolutional Neural Networks (CNNs) for the identification of
grazing and non-grazing periods. The data used within the study are as in [16] but
given that the target in [21] is binary, the classification is less challenging compared to
multi-state behaviour identifications. A Recurrent Neural Network with Long Short-
Term Memory (RNN-LSTM) has been demonstrated to classify eight behaviours such as
‘feeding’ ‘ruminating’, ‘licking salt’, ‘social licking’ and ‘head butting’ using data generated
by a combination of a 3-axis accelerometer/gyroscope/magnetometer as inputs to the
classifications [15]. Two cameras were used to record cattle behaviours over 7 days,
providing a highly appropriate validation set for the development of the algorithms. The
RNN-LSTM framework yielded accurate classifications, but its operational deployment in
low-cost embedded hardware characteristic of practical on-farm deployments, remains a
challenge owing to significant algorithm complexity.

In the work presented in the current study, the development of a Machine Learning
framework for the classification of multiple animal (cattle) behaviours based on CNNs
using 3-axis accelerometer data is reported and the performance of the network is evaluated.
A Deep Learning approach is adopted to allow features to be learned automatically from
raw accelerometer data, eliminating the burden of feature engineering/discovery. Similar
to Recurrent Neural Networks (RNNs), CNNs are complex models and consequently not
readily compatible with low processing power deployment. Thus, an examination of the
trade-off between performance and model size (memory footprint and computational
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complexity) to enable the engineering of a solution that can be implemented using low-cost,
low-complexity processors that do not consume significant levels of power is carried out.

3. Materials and Methods

A block diagram detailing the development process, which comprised data acquisi-
tion, data pre-processing, hyper-parameter search, network reduction and performance
evaluation is illustrated in Figure 1.

18 Limousin Cross-
Breed steers

(3 Precision Beef
Trials)

Neck Collar
x,y,z

Halter
(Behaviour

Classification)

Sensor Stream
Alignment and

Verification

Pre-Processing and
Class Behaviour

Aggregation 
(for each window

size)

Final Dataset
Time Series Data &

Behaviour Class

Training & Validation
Dataset
(for CV)

Test Dataset

Hyperparameter Tuning

Window SelectionArchitectural Search
Network Reduction
(Structured Iterative

Pruning)

Final Models
(FP16 & FP32)

Performance
Evaluation on
Pruned Model

Optimal
Architecture and

Window Size

Performance
Evaluation on Full

Model

Figure 1. A block diagram showing all stages of the proposed methodology.

A series of data gathering exercises was conducted on three farm trials in the United
Kingdom (Easter Howgate Farm, Edinburgh, UK) to enable the development and eval-
uation of the performance of the proposed CNN trained on accelerometer-derived data
from neck-mounted collars. Neck-mounted collars are able to capture ‘rumination’, ‘eating’
and ‘other’ behaviours from measurements of the overall animal movement and from
contractions of neck muscles [28]. A total of 18 Limousin Cross-Breed steers from three
trials conducted in the period of June 2015 to October 2016 were equipped with Afimilk
Silent Herdsman [5] and Rumiwatch halters [26], the collar mounted on the neck and the
halter on the muzzle (Figure 2). The collar comprised a 3-axis accelerometer, an SD card for
data storage, and a Real Time Clock (RTC), whilst the halter consisted of a pressure sensor,
an SD card and RTC (both systems operated at a sampling frequency of 10 Hz). The collars
provided acceleration values orientated in x-, y- and z-directions capturing both head and
neck muscle motions (Figure 3), whilst the halter, through pressure changes induced by
movements of the jaw, provided the ground truth of the following animal states:

• Rumination—the animal regurgitates partially digested feed, which is re-chewed
and re-swallowed, aiding the further breaking down of the feed and thus improving
nutrient absorption.

• Eating—the animal is ingesting food from a feed source.
• Other—the animal is engaged in activity which is neither ruminating nor eating.
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Figure 2. Placement of Rumiwatch halter on steer muzzle, Afimilk Silent Herdsman collar around
animal’s neck.

Figure 3. Example of raw 3-axis accelerometer data over a 30 min window at 10 Hz sampling frequency.

Although every attempt was made to mount collars in identical positions around the
necks of individual steers, differences in the anatomy between animals and continuous
motion result in collars shifting and rotating. Although a weight is positioned on the
bottom of the collar (Figure 4) in an effort to maintain a constant collar position, residual
time varying biases are created because of orientation of the accelerometer with respect to
the gravitational field. To eliminate these offsets and capture only the accelerations due to
animal motion, the discrete difference along each axis is computed as;

∆s[t] = s[t]− s[t− 1], ∀s ∈ {x, y, z} (1)

where s[t] is the raw acceleration signals for all axes (x, y and z), ∆s[t] is the resultant signal
for a given axis at time step t.

The steers were housed indoors on a straw bedding and fed a Total Mixed Ration
(TMR) ad libitum. A total of 3460 h of data were acquired from both sensor systems and
verified for time alignment. After the study was completed, both the collars and halters
were removed and the data from their SD cards were recovered; both streams were merged
by timestamp into unified data sets per animal as ‘.csv’ files.
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Figure 4. Activity collars on cattle.

4. Results and Discussion
4.1. CNN Design and Performance

The classifier architecture was based on a multi-class CNN that takes as an input three
time series segments (one for each axis x, y and z) and outputs the predicted class. The basic
architecture consists of two logical blocks as shown in Figure 5; feature extractor and head.
The feature extractor consists of 4 blocks of convolutional Dropout [29], BatchNorm [30] and
ReLU [31] layers. The kernel size and strides for all layers is shown in Figure 5. Note that
in the last layer, the kernel size is 1 which permits the expansion of the feature map from
64 to 512. Finally, the extractor contains an Adaptive Average Pooling layer to aggregate
features on the spatial dimension and create a consistent output size for cases where
the input length varies, necessary to allow exploration of the impact of window size on
performance described in Section 4.1.3. The head consists of a single fully connected layer
with 512 inputs and 3 outputs, followed by Softmax to produce the classified output.

4.1.1. Training and Validation

Initially, the accelerometer data were segmented into 90 s blocks (note, that the pro-
posed system is evaluated on various window lengths in Section 4.1.3) with each data block
labelled as one behaviour state only for truthing. Considering that the halter provides a
label at a frequency of 10 Hz there are instances the truthing data indicates more than one
behaviour state during the 90 s block, e.g., ‘eating’ with a transient shift into ‘rumination’.
For these instances, a majority vote was applied within each block to indicate the primary
behaviour. Naturally, each steer spends varying amounts of time in each of the behaviour
states and for that reason, each steer data set was stratified to yield a balanced (equal)
representation of each behaviour.

The resulting data were then divided into two sets, one for training/validation, the
other for testing. Three complete steer traces, one from each farm trial, were selected
randomly to create the test set. The remaining 15 steer traces are then used for training
and validation. The training/validation data set was sliced using 5-fold cross-validation
for each animal. The validation process was achieved by inserting all the unique steer



Sensors 2021, 21, 4050 8 of 18

identifiers in a vector, shuffling the vector and slicing into 5 folds. Thus, each fold contained
3 animals, in effect resulting in 12 animals in the training set and 3 in the validation set for
each of the 5 splits. Every animal is included once in the validation set and the other four
times as a compound of the training set. Finally, in order to ensure that there are no biases
from individual animals, the training set was stratified to include equal representation
from all 12 animals.
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Figure 5. 1D CNN Architecture consisting of a feature extractor and head segments.

The network was trained with AdamW optimiser [32] at a learning rate of 1 × 10−4

utilising a one-cycle training policy [33] and cosine learning rate annealing. The batch size
was set to 256. The network was trained to a maximum of 50 epochs with early ending
when validation loss reached a plateau [34] at a patience of 15 epochs and delta change
0.01. Furthermore for all results, a weight decay at a λ of 0.01 was used. The optimum
model is selected from the training cycle after the completion of the process.

The F1 score was used to evaluate CNN performance, defined as the harmonic mean
of precision and recall as;

F1 = 2× precision× recall
precision + recall

(2)

where precision and recall are defined as

precision =
True Positives

True Positives + False Positives
(3)

recall =
True Positives

True Positives + False Negatives
(4)

A True Positive (TP) is defined as an instance where one of the classes is correctly
identified; a False Positive (FP) is a prediction of a certain class during a period where the
steer was not in that behavioural class; a False Negative (FN) identifies a case where a
period of a certain activity was incorrectly judged as some other activity.

4.1.2. Hyper-Parameter Tuning

A hyper-parameter search was performed to optimise the number of convolutional
blocks in the feature extractor, the kernel size of the convolutional filters and the proba-
bilities of the Dropout layers. The number of filters for the feature extractor is shown in
Figure 5 which remained constant throughout the hyper-parameter search. Considering the
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stochastic nature of model training, the process was repeated 5 times and the model with
the highest average F1 score across all 5 folds was selected. A CNN with four convolutional
blocks, kernel size of 16 and Dropout probability of 0.25, yielded the best performance.
The mean validation performance for these parameters was a F1 score, precision and recall
of 0.82, 0.83 and 0.82, respectively. The average validation confusion matrix is shown
in Figure 6 along with the standard deviation for all cells. For instance, the normalised
TP performance for ‘eating’ is 0.81 ± 0.04, while ‘rumination’ is mis-classified as ‘eating’
0.16 ± 0.03. In all cases the standard deviation is below 0.04. Assuming the average time
spent ruminating is around 400 min per day, an increase in sensitivity of 1% would result
in an increase of around 4 min of time spent ruminating daily.

Othe
r

Rum
ina

tio
n

Ea
tin

g

Predicted label

Other

Rumination

Eating

Tr
ue

 la
be

l

0.89 ± 0.03 0.01 ± 0.01 0.10 ± 0.03

0.07 ± 0.03 0.77 ± 0.04 0.16 ± 0.03

0.14 ± 0.04 0.06 ± 0.03 0.81 ± 0.04

Figure 6. Confusion matrix of the full network after hyper-parameter tuning—validation set.

The model with the best performance on the validation set was then selected for
evaluation on the test set. The performance of the validation set was F1 score, precision
and recall of 0.86, 0.87, 0.86, respectively, while the test set F1 score, precision and recall
of 0.82, 0.84, 0.82, respectively. Finally, the confusion matrix on the test set is shown in
Figure 7. Since ‘eating’ and ‘rumination’ are characterised by similar jaw motions, the
model suffers the most confusion between these two states; the confusion between other
states is significantly lower.

For the full test data set, without stratification or balancing (i.e., all the data from all
three test steer traces), the weighted performance metrics F1 score, precision and recall
were 0.82, 0.87, 0.81, respectively.



Sensors 2021, 21, 4050 10 of 18

Othe
r

Rum
ina

tio
n

Ea
tin

g

Predicted label

Other

Rumination

Eating

Tr
ue

 la
be

l

0.90 0.02 0.08

0.06 0.71 0.23

0.10 0.03 0.87

Figure 7. Confusion matrix of the full network after hyper-parameter tuning—test set.

4.1.3. Window Lengths

The definition of the classification window is essential for the practical implementation
of animal behaviour classification, i.e., how frequent should the classifications be performed.
Behaviour varies from animal to animal and certain behaviours occur for a few seconds
whilst others typically last a few minutes. For instance, rumination contractions typically
occur at 40–60 s intervals, while sudden head movements are in relation ‘instantaneous’.
Thus, the selection of an inappropriately time-restricted classification window will lead
to higher granularity of the classification, resulting in missed behaviours and increased
classifier confusion (behaviours which are captured incompletely). Conversely, a window
length which is excessively large leads to coarser classification and each time window will
contain multiple behaviours in turn increasing classifier confusion. Therefore an evaluation
of the sensitivity of the classifier performance of the proposed network architecture as a
function of window lengths was carried out. Furthermore, a classifier trained on data of a
predefined window length, can be used to classify behaviours of other lengths given that
the last layer of the feature extractor in Figure 5 implements Adaptive Average Pooling.

Figure 8, shows the F1 score performance of models trained on 60 s, 90 s and 120 s
window lengths and evaluated on 60 s, 90 s and 120 s data. The bar heights represent the
average F1 score for the 5-fold cross-validation and for 5 random repetitions for the corre-
sponding models obtained after hyper-parameter tuning (described in Section 4.1.2), while
the error bar represents the 95% confidence interval (the Confidence Interval is computed
with boot-strapping [35]) of the performance. Evident is that models trained on 120 s data
yield lower performance compared to 60 s and 90 s owing to the severe aggregation of
behaviours in 120 s data. The 60 s and 90 s models exhibit almost identical performance,
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however the 60 s model has lower memory footprint, computational complexity and hence
is preferred. It should be noted that the above window size is at odds with the current
window length utilised by the commercial collar system such as the Afimilk Silent Herds-
man [5] and for that reason, the remainder of the evaluation utilises models with window
length of 90 s.

60s 90s 120s
Window length

0.60

0.65

0.70

0.75

0.80

0.85

F1
 sc

or
e

Model trained on:
60s
90s
120s

Figure 8. Performance of models trained and evaluated on different window lengths.

4.2. Network Reduction

Although the proposed CNN offers a high performance for the classification of steer
behaviours, the model size in terms of computation complexity and memory footprint is
a significant barrier to deployment on low-cost, low-power micro-controllers, typical in
commercial neck-mounted collar implementations. Furthermore, on-farm sensor systems
rely on battery power and high energy consumption applications limit device lifetime
rendering solutions impractical.

A number of techniques have been proposed to reduce memory and energy con-
sumption requirements of neural network models, such as weight low-rank approxima-
tion [36,37], knowledge distillation [38], weight quantisation [39–41] and network prun-
ing [42], all with the proviso that any approach must not compromise network performance
significantly. Here, although network pruning is evaluated in the goal to reduce the net-
work size and computational overhead, the other methods could be utilised in tandem to
provide further reductions. Broadly speaking, network pruning can be categorised as struc-
tured and unstructured; for the latter [43–46], individual parameters with low significance
are removed from the network and although the technique increases sparsity, this does
not necessarily result in memory or computation benefits. Unstructured pruning is often
implemented by zeroing the weights, however these weights still exist in the parameters
matrices occupying memory and consuming computations. On the other hand, structured
pruning [47–50] allows the elimination of complete segments of the parameters matrices
resulting in benefits in respect of both memory storage and computation, making models
more amenable to deployment on micro-controllers.

The impact of structured pruning on the performance of the CNN has been evaluated
under the principle that neurons with small weights are less significant and filters with
the smallest weights are the most likely candidates for pruning. An example is the use of
convolutional filter importance—determined using `1-norm, i.e., the sum of its absolute
weights—with one-shot pruning [47] , although it is acknowledged that iterative pruning
may yield an improvement in performance. Here, the pruning was performed over multiple
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stages where each stage contains both an iterative pruning and fine-tuning phase. The
initial pruning phase is applied to the optimal network architecture discovered through
the hyper-parameter search stage described in Section 4.1.2 and the number of filters in all
convolutional layers was set to 64.

Pruning is performed gradually within each pruning iteration following the schedule
defined by Equation (5) [51]. The sparsity st at each iteration (epoch) t is;

st = s f − s f × (1− t
n∆t

)3, t ∈ {0, ∆t, ..., n∆t} (5)

s f represents sparsity at the end of the pruning phase, i.e., the proportion of filters that
need to be pruned, set to 50% for all pruning phases. For the first phase, the filters in each
layer are reduced from 64 to 32. The parameter n represents the total number of pruning
iterations within each pruning phase and is set to 35 epochs for all phases; parameter t
represents the current pruning iteration in the phase; and the parameter ∆t defines the
pruning frequency, i.e., how often pruning is allowed. In this case ∆t was set to 1 thus
allowing pruning at every epoch. It is important to note that unpruned filters between
stages and iterations are not re-initialised and maintain their values from the preceding
process. Finally, after each pruning stage, the network is fine-tuned for an additional
15 epochs before the execution of the next pruning stage. Using this policy yields the
pruning profile shown in Figure 9. Training is executed at a constant learning rate of
1× 10−4 during the pruning phase, as identified by the previous training stage; no learning
rate annealing was applied since in every pruning iteration the learning rate is maintained
at a constant high value to ensure adequate learning is performed between iterations.
However, the fine-tuning phase is executed using the one-cycle training policy described
in Section 4.1.1.

Further experimentation to reduce the network memory footprint was performed
utilising a mixed precision training policy. Under this policy, the precision of the weights
is reduced from single floating point precision (FP32) to half-precision (FP16), the only
exception being the trainable parameters for the BatchNorm layers which are sustained at
FP32 to ensure numerical stability. The pruning procedure described above, is invoked
throughout the experiments, starting from the network architecture identified from the
hyper-parameter search and trained for a maximum of 50 epochs using the early stopping
criterion as described in Section 4.1.1.

All experiments were repeated 5 times. The mean F1 score at the 95% confidence
interval on the validation data set, along with the memory reduction for all pruned models
for single and half precision are shown in Figure 10. The F1 score performance remains
identical with almost half the memory footprint for zero filters pruned. As the number
of pruned filters increases to 32, the memory footprint decreases from approximately
666 kB to 173 kB for FP32 without loss in performance. The trend continues until the
number of pruned filters reaches 56, after which the performance starts to degrade. Inter-
estingly, the F1 score for 60 pruned filters is slightly higher for FP16 compared to FP32;
0.79 ± 0.02 and 0.78 ± 0.02, respectively. The number of operations (ops) as a function
of the performance of the pruned models is shown in Figure 11. The original model re-
quires approximately 52.7 M operations whilst the model with 60 number of pruned filters
requires 419.8 k operations.
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Figure 10. Model performance and memory footprint for different number of filters.

Inspection of Figures 10 and 11 indicates that the model that balances the trade-off
between complexity and classification performance is the 48 pruned filters for both single
and half precision. Finally, the model was evaluated on the test set and the F1 score
performance achieved was 0.82 for both FP32 and FP16, respectively. Test results are
summarised in Table 2 for the original (unpruned) and pruned models for FP32 and FP16
precision. Additionally, the estimated weighted performance in terms of the F1 score for
the full test data set, without stratification or balancing, for both pruned models with FP32
and FP16 precision was 0.83.
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Figure 11. Model performance and network complexity for different number of filters.

Table 2. A comparison of the performance, memory usage and computation complexity for pruned and original networks
for FP16 and FP32.

Pruned Filters FP Precision precision recall F1 Score Params Compression Operations Speed-Up Memory (kB)

0 FP32 0.84 0.82 0.82 170,563 - 5.2× 107 - 666.2
48 FP32 0.83 0.82 0.82 11,923 14.30 3.9 × 106 13.3 46.6
60 FP32 0.81 0.81 0.81 1063 160.45 0.4× 106 125.7 4.1

0 FP16 0.83 0.82 0.82 170,563 - 5.2× 107 - 333.1
48 FP16 0.83 0.82 0.82 11,923 14.30 3.9 × 106 13.3 23.3
60 FP16 0.84 0.83 0.83 1063 160.45 0.4× 106 125.7 2.0

4.3. Practical Implementation on Low-Power Micro-Controllers

One of the key bottlenecks in deploying Deep Learning Neural Networks on wearable
animal sensors is the ability to fit the algorithms in terms of memory footprint and computa-
tional complexity on constrained micro-controllers. The gulf between the device capabilities
and the model complexity has recently narrowed. On one hand, micro-controller memory
and computation speed have increased significantly while maintaining low-power oper-
ation. For instance, the Cortex-M4 STM32L476RG (ARM, Cambridge, UK) operates at a
clock frequency of 80 MHz with 128 kB of SRAM and 1 MB of flash. On the other hand, the
pruning analysis presented allows a reduction of the memory footprint and computation
complexity of the algorithm without significant loss in performance. These two factors
reduces the barrier to providing practical implementations of DL on animal devices.

If the model with 48 pruned filters from Table 2 is considered, its memory require-
ments are 46.6 kB and 23.3 kB for FP32 and FP16, respectively, which can fit comfortably
on the SRAM of the STM32L476RG. Furthermore, according to the manufacturer [52], ap-
proximately 9 CPU clock cycles are required to complete an FP32 Multiply-and-accumulate
(MACC) operation and given that the number of operations for the 48 pruned filters model
is 3.9× 106, a total number of CPU clock cycles is 35.1× 106. Given the CPU clock speed is
80 MHz, 438.75 ms are required to complete a forward pass.

From the perspective of power consumption, the STM32L476RG at 80 MHz clock
consumes 10.2 mA while on low-power mode (STOP2) 1.6 µA. Given that an inference
is performed every 90 s (according to the window length analysis in Section 4.1.3), an
active current of 10.2 mA for 438.75 ms and a sleep current draw of 1.6 µA for 89.56125 s is
required. Hence, the average current consumption is 51.357 µA. A typical 3.6 V AA-size
battery such as LS14500 [53] 2600 mAh capacity gives an operational lifetime in excess of
5.7 years. Note that this battery life estimate does not consider the current consumption
for sampling the accelerometer but typically the average current consumption is in the
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order of tens of µA (for instance, the MPU-6050 [54] has an average current consumption
of 70 µA sampling at 20 Hz). The use of two battery cells in parallel boosts the available
capacity to 4800 mAh without compromising the on-farm implementation.

5. Conclusions

CNN implementations have been proven to yield accurate classifications over a range
of cattle behavioural states utilising 3-axis accelerometer data from a neck-mounted collar.
Hyper-parameter tuning was performed to optimise model architecture, the performance
of which was evaluated as a function of time window length. Since the implementation of
classification models for on-animal solutions are low-cost with low-power consumption
and are thus governed by restrictions in computational resources, full CNN network de-
ployment is challenging since the architectures are relatively complex. Hence, an evaluation
of the impact on CNN performance as a function of iterative structured pruning and mixed
precision training has been carried out. Results confirm that high performance can still
be achieved with significant model reductions that in turn lower the computation com-
plexity and memory footprint requirements significantly. The CNN model with 48 pruned
filters is able to classify three cattle behaviours—‘eating’, ‘rumination’ and ‘other’—with
an overall F1 score of 0.82 for both FP32 and FP16. This performance is comparable to
classic machine learning and deep learning approaches reported in the literature and it
is unclear if differences in performance can be attributed to different data sets or model
architecture and training methodologies. To aid direct comparisons the data set used in this
current study, which is by far the largest reported in the literature, has been made publicly
available including raw data and ‘ground truth’ annotations (doi:10.5281/zenodo.4064801).
Finally, the proposed model architecture can comfortably fit in the constrained memory of
a representative low-power micro-controller such as the ARM Cortex-M4 STM32L476RG,
achieving an operational battery-powered lifetime in excess of 5.7 years.

Building on the algorithmic foundation reported within the paper, future research
could adopt transfer learning methodologies for the identification of other cattle behaviours
of value such as standing, lying and walking. Applicability examination of the proposed
algorithmic frameworks to identify walking in free-roaming or grazing animals with the
intention of targeting the early identification of the onset of illness (e.g., mastitis, lameness)
could be of particular interest for the future study.
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Appendix A

Table A1. Related work: Cattle behaviours.

Cattle Behaviours

Abell et al. (2017) [18] Lying, Mounting, Standing & Walking

Benaissa et al. (2019) [13] Feeding, Lying & Standing

Benaissa et al. (2019) [19] Feeding, Ruminating & Other

Diosdado et al. (2015) [20] Feeding, Lying, Standing & Transitions between Standing and Lying

Dutta et al. (2015) [12] Grazing, Resting, Ruminating, Scratching or urinating & Searching

Gonzalez et al. (2015) [17] Foraging, Resting, Ruminating, Traveling & Other active behaviors

Hamilton et al. (2019) [10] Rumination & Non-Rumination

Kasfi et al. (2016) [21] Grazing & Other

Martiskainen et al. (2009) [22] Feeding, Lame Walking, Lying, Lying down, Ruminating, Standing,
Standing up & Walking normally

Peng et al. (2019) [15] Feeding, Head butt, Licking salt, Lying, Moving, Ruminating-Lying,
Ruminating-Standing & Social licking

Rahman et al. (2016) [16] Chewing, Grazing, Resting-Lying, Resting-Standing, Ruminating-Lying or
Sitting, Ruminating-Standing, Searching, Walking & Other

Rahman et al. (2018) [23] Grazing, Ruminating & Standing

Robert et al. (2009) [24] Lying, Standing & Walking

Smith et al. (2016) [25] Grazing, Resting, Ruminating & Walking

Current Study Eating, Rumination & Other
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