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A B S T R A C T   

Mitochondria harbor a unique fatty acid synthesis pathway (mtFAS) with mysterious functions gaining 
increasing interest, while its involvement in metabolic regulation is essentially unknown. Here we show that 3- 
Hydroxyacyl-ACP dehydratase (HTD2), a key enzyme in mtFAS pathway was primarily downregulated in adi-
pocytes of mice under metabolic disorders, accompanied by decreased de novo production of lipoic acid, which is 
the byproduct of mtFAS pathway. Knockdown of Htd2 in 3T3-L1 preadipocytes or differentiated 3T3-L1 mature 
adipocytes impaired mitochondrial function via suppression of complex I activity, resulting in enhanced 
oxidative stress and impaired insulin sensitivity, which were all attenuated by supplement of lipoic acid. 
Moreover, lipidomic study revealed limited lipid alterations in mtFAS deficient cells which primarily presenting 
accumulation of triglycerides, attributed to mitochondrial dysfunction. Collectively, the present study high-
lighted the pivotal role of mtFAS pathway in regulating mitochondrial function and adipocytes insulin sensi-
tivity, demonstrating supportive evidence for lipoic acid being potential effective nutrient for improving insulin 
resistance and related metabolic disorders.   

1. Introduction 

White adipose tissue (WAT) is known as active endocrine organ for 
regulating energy balance, glucose and lipid metabolism and immunity 
in response to various nutritional statuses, insulin, inflammation, and 
aging [1–4]. Despite of heterogeneity, adipocyte remains the predomi-
nate cell type in WAT, and increased WAT mass is the distinct feature of 
obesity, which has been considered as the driving force in insulin 
resistance and pathogenesis of metabolic syndrome [2,5]. It’s becoming 
more apparent that WATs at different locations like visceral and sub-
cutaneous depots have diverse effects in the development of insulin 
resistance with the fact that certain individuals are relatively resistant to 
metabolic syndrome [5–9]. This implies the importance of understand-
ing intricate networks inside adipocytes under physiological and path-
ological conditions for unveiling their contributions in health 

management. 
In the process of obesity, adipose tissues go through dynamic and 

complex cellular changes to expand tissue size via either hypertrophy 
(increase in size of existing adipocytes) or hyperplasia (formation of new 
adipocytes through adipogenesis from preadipocytes) [5,10]. Both ac-
tivities involve fatty acid synthase (FASN) mediated De Novo lipogenesis 
pathway, which utilizes citrate from mitochondrial TCA cycle to syn-
thesize palmitate with the help of ATP citrate lyase and acetyl-CoA 
carboxylase [11]. It was reported that FASN is closely involved in the 
regulation of food intake, body weight and obesity via modulating 
adipocyte functionality [12–14]. Interestingly, previous studies have 
unveiled the second fatty acid synthesis pathway in mitochondria 
(mtFAS) in addition to cytoplasmic FASN [15,16]. Unlike FASN, which 
presents catalyzing activities in one protein complex, mtFAS is consti-
tuted of several enzymes (MCAT, malonyl-CoA/ACP transferase; OXSM, 
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3-Ketoacyl-ACP synthase; CBR4/HSD17B8, 3-Oxoacyl-ACP reductase; 
HTD2, 3-Hydroxyacyl-ACP dehydratase; MECR, 2-Enoyl-ACP reductase) 
catalyzing each step in the elongation of fatty acyl chain on soluble acyl 
carrier protein (ACP) scaffold [17]. Although enzymes responsible for 
each step of mtFAS pathway have been fully identified [18], their 
physiological and pathological involvements of cellular activities 
remain poorly understood. 

The bulk of fatty acid synthesis is primarily produced by FASN, while 
the fatty acid products of mtFAS have not been unambiguously settled. 
Previous studies have suggested that 3-hydroxymyristate (14:0), 3- 
hydroxylaurate (12:0), mitochondrial membrane phospholipids and 
cardiolipin were the mysterious products of mtFAS pathway, which 
remain extensive verification [15,19,20]. On the other hand, recent 
studies have well documented that mtFAS could produce octanoyl-ACP, 
a well-established precursor for lipoic acid synthesis in mitochondria 
[21]. Lipoic acid is the essential cofactor for several mitochondrial 
multienzyme complexes such as the pyruvate dehydrogenase complex 
(PDH), α-ketoglutarate dehydrogenase (α-OGDH), and branched-chain 
ketoacid dehydrogenase (BCKDH), all of which are closely involved in 
energy metabolism [22]. We have previously showed that external lipoic 
acid supplement could promote mitochondrial biogenesis in 3T3-L1 

adipocytes [23,24], which was further confirmed in overweight sub-
jects [25]. Together with other studies on glucose uptake and insulin 
signaling [26,27], supplement of lipoic acid has been suggested as 
feasible strategy against metabolic syndrome by targeting adipocyte 
function. However, the physiological and pathological involvements of 
endogenous lipoic acid synthesis in regulating adipocyte function 
remain limited. 

In the present study, we found that Htd2, the gene-encoding the 
enzyme catalyzing 3-hydroxyacyl-ACP to produce trans-2-Enoyl-ACP in 
mtFAS pathway, was consistently decreased in adipocytes of obese and 
diabetic animals. Downregulation of Htd2 in 3T3-L1 cells primarily 
suppressed mitochondrial complex I function and resulted in dramatic 
mitochondrial oxidative stress. Even though lowered lipoic acid pro-
duction and disrupted lipid composition were all observed in Htd2 
deficient cells, lipoic acid supplement could sufficiently restore mito-
chondrial activity and redox balance in cells with improved glucose 
uptake and insulin sensitivity. The study further highlights the vital role 
of mtFAS pathway in mediating adipocyte function, suggests that HTD2- 
involved endogenous lipoic acid synthesis is a key factor triggering 
response to mitochondrial oxidative stress and cellular dysfunction, and 
also provides new evidence for lipoic acid supplementation as an 

Fig. 1. Htd2 expression is decreased in adipocytes of obese and diabetic mice. C57BL6 mice were fed on chow or high-fat diet for 12 weeks, mRNA levels of 
Hsd17b8, Cbr4, Mecr, Htd2, Mcat, and Oxsm were analyzed in liver (A), muscle (B), BAT (C), and WAT (D); mRNA levels of Hsd17b8, Cbr4, Mecr, Htd2, Mcat, and Oxsm 
in liver (E), muscle (F), BAT (G), and WAT (H) of C57BL6 and db/db mice; mRNA level of Htd2 in liver, muscle, BAT, and WAT of C57BL6 and ob/ob mice. Values are 
mean ± SEM, n = 6, *p < 0.05, **p < 0.01. 
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effective strategy for metabolic disorders. 

2. Results 

Htd2 expression is decreased in adipocytes of obese and diabetic 
mice. To explore the expression pattern of mtFAS enzymes under con-
dition of metabolic disorders, we introduced obese and diabetic mice 
with HFD feeding for 12 weeks. Body weight gain, OGTT as well as ITT 
assays indicated an obvious obese and diabetic condition in mice with 
hyperlipidemia condition (Fig. S1). mRNA levels of mtFAS enzymes 
including Hsd17b8, Cbr4, Mecr, Htd2, Mcat, Oxsm were analyzed in 
multiple tissues. As shown in Fig. 1, Mecr and Htd2 were found 
decreased in the liver of HFD mice comparing to chow mice (Fig. 1A), 
while only Htd2 was decreased in muscle (Fig. 1B). In brown adipose 
tissue (BAT), Mecr, Htd2, as well as Mcat were significantly decreased in 
HFD group (Fig. 1C), and a broad decrease of mtFAS expression except 
Hsd17b8 was found in WAT of HFD group (Fig. 1D), suggesting generally 
suppressed mtFAS pathway under condition of metabolic disorders. In 

addition, the genetically diabetic db/db mice were also employed for 
analysis. mtFAS mRNA levels were not altered in the liver of db/db mice 
comparing to C57 control (Fig. 1E), and only Htd2 was uniquely 
decreased in muscle, BAT, and WAT of db/db mice (Fig. 1F–H). We 
further analyzed mRNA level of Htd2 in another genetic animal model 
(ob/ob) and found consistent decrease in both BAT and WAT (Fig. 1I). 
Even though, mtFAS enzymes presented various degrees of suppression 
in tissues of obese and diabetic animals, Htd2 mRNA showed consistent 
and significant decrease in WAT, indicating a potential important role of 
HTD2 in regulating adipocyte metabolic activity. 

Lipoylated proteins are reduced in WAT of obese and diabetic 
mice. In contrast to FASN catalyzing fatty acid synthesis within one 
enzyme complex, mtFAS pathway encompasses multiple enzymes in 
charge of each catalyzing step in an ACP-dependent manner [34]. HTD2 
as one of the enzymes in mtFAS converts 3-hydroxyacyl-ACP to 
trans-2-Enoyl-ACP, which works as a substrate for MECR to produce 
Acyl-ACP, the known precursor for endogenous lipoic acid synthesis 
(Fig. 2A). Despite the identification of mtFAS enzymes for quite long 

Fig. 2. Lipoylated proteins are reduced in WAT of obese and diabetic mice. (A) Schematic representation of a the fatty acid and lipoic acid de novo synthesis in 
mitochondria; Lipoylation levels of PDH-E2 and OGDH-E2 subunits in the muscle of C57BL6, db/db, and ob/ob mice: (B) Representative western blot images, (C) 
Statistical analysis); Lipoylation levels of PDH-E2 and OGDH-E2 subunits in the WAT of C57BL6, db/db, and ob/ob mice: (D) Representative western blot images, (E): 
Statistical analysis. Values are mean ± SEM, n = 4, **p < 0.01. ACP: Acyl carrier protein; CBR4: Carbonyl reductase 4; HTD2: Hydroxyacyl-thioester reductase type 2; 
HSD17B8: Hydroxysteroid 17-beta dehydrogenase 8; MCAT: Malonyl-CoA-acyl carrier protein transacylase; MECR: Mitochondrial trans-2-enoyl-CoA reductase; 
OXSM: 3-oxoacyl-ACP synthase; LIPT1: Lipoyltransferase 1; LIPT2: Lipoyl(octanoyl) transferase 2; LIAS: Lipoic acid synthetase. 

M. Zeng et al.                                                                                                                                                                                                                                    



Redox Biology 41 (2021) 101948

4

time, the fatty acid products of mtFAS remain uncertain, and lipoic acid 
is the only established byproduct which serves as a cofactor for mito-
chondrial enzymes by lipoylation [21]. We thereby analyzed lipoylated 
PDH and α-OGDH levels to evaluate the lipoic acid production in the 

muscle and WAT of HFD and db/db mice. As shown in Fig. 2, only a 
significant decrease of LA-PDH-E2 was observed in muscle while 
LA-OGDH-E2 was not altered (Fig. 2B and C). Meanwhile, dramatic 
decreases of LA-PDH-E2 and LA-OGDH-E2 were observed in the WAT of 

Fig. 3. Htd2 knockdown suppresses lipoic acid production with altered lipid profiles in 3T3-L1 cells. (A) Co-localization of HTD2 with mitochondria in HeLa 
cells; mRNA and protein levels of HTD2 after shRNA mediated knockdown in 3T3-L1 cells: (B) Representative western blot images, (C): Statistical analysis of mRNA 
and relative protein contents); Lipoylation levels of PDH-E2 and OGDH-E2 subunits in 3T3-L1 cells after HTD2 knockdown: (D) Representative western blot images, 
(E): Statistical analysis; Lipidomics analysis for lipid profile in 3T3-L1 cells after Htd2 knockdown: (F) Volcano plot with fold change, (G): Top metabolites with fold 
change, (H) KEGG pathway analysis. Values are mean ± SEM, n ≥ 3, **p < 0.01. Scale bar, 10 μM. LPA: lysophosphatidic acid; LPS: lysophosphatidylserine; PA: 
phosphatidic acid; PC: phosphatidylcholine; PG: phosphoglyceride; PS: phosphatidylserine; TG: triglyceride. 
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both HFD and db/db mice (Fig. 2D and E), indicating a more profound 
and dramatic suppression of mtFAS activity in WAT under metabolic 
disorders. 

Htd2 deficiency suppresses lipoic acid production with altered 
lipid profiles in 3T3-L1 cells. To further evaluate the details of HTD2 in 
regulating cellular activity, we firstly confirmed HTD2 subcellular 
localization through immunostaining. Consistent with previous report 
[35], HTD2 was found to localize in the mitochondria (Fig. 3A), over-
lapping coefficient analysis indicated average of 69% colocalization 
(Fig. S2A). Further cellular fractions analysis confirmed HTD2 locali-
zation in mitochondria (Fig. S2B). Meanwhile, we generated stable 
knockdown 3T3-L1 preadipocytes with shRNAs specifically targeting 
Htd2, which knocked down HTD2 mRNA and protein expressions by 
over 60% (Fig. 3B and C). As the key enzyme in mtFAS pathway, the 
byproduct of lipoic acid was consistently decreased in Htd2 knockdown 
cells (Fig. 3D and E). Lipidomic analysis of lipid profiles identified 938 
lipid metabolites in total, while only 35 metabolites (Fig. S3) were 
significantly altered (fold change ≥ 2, p < 0.05) and only 6 metabolites 
were decreased including one free fatty acid (Fig. 3F and G). This 
observation suggests that mtFAS suppression may have minor effect on 
de novo fatty acid synthesis, and whether the altered free fatty acid 
(24:2) is a direct product of mtFAS pathway requires further verifica-
tion. In addition, KEGG analysis of top 25 altered metabolites revealed 
that they are primarily involved in fat digestion and absorption among 
organismal systems, metabolic pathways among metabolism, and insu-
lin resistance among human diseases (Fig. 3H), further supporting a 

potential vital role of mtFAS in regulating adipose metabolic function. 
Htd2 deficiency provokes mitochondrial dysfunction. Since lip-

idomic analysis demonstrated that significantly altered lipids were pri-
marily increased after Htd2 knockdown, and those increased metabolites 
were enriched in triglycerides (Fig. 3G), we thereby verified the changes 
in 3T3-L1 cells with Nile staining, which revealed obvious increased 
lipid droplets in Htd2 knockdown cells (Fig. 4A). Moreover, coefficient 
correlation analysis with either Kendall, Pearson, or Spearman test 
showed consistently no correlation between downregulated metabolites 
with increased metabolites after Htd2 knockdown (Figs. S4–S6), indi-
cating an independent bioprocess was involved in accumulating lipids. 
In addition to de novo fatty acid synthesis, mtFAS as conserved pathway 
was suggested to play a key role in maintaining mitochondrial physi-
ology [34], and we previously showed that suppression of mtFAS 
pathway by inhibiting OXSM (HsmtKAS) activity could impair mito-
chondrial function [36]. We speculated that increased triglycerides were 
attributed to impaired fatty acid oxidation by suppression of mito-
chondrial function. As expected, Seahorse analysis showed that knock-
down of Htd2 induced significant decrease of mitochondrial maximal, 
spare and ATP associated respirations with increased proton leak 
(Fig. 4B). Intriguingly, further analysis showed that Htd2 knockdown 
specifically decreased mitochondrial complex I activity (Fig. 4C), which 
may be attributed to decreased complex I subunit expression encoded by 
mtDNA (Fig. 4D). These data suggest that mtFAS deficiency induces 
profound mitochondrial dysfunction and may contribute to extra lipid 
accumulation. 

Fig. 4. Htd2 knockdown impairs complex I activity and provokes mitochondrial dysfunction. (A) Nile red staining of lipid droplet in 3T3-L1 cells after Htd2 
knockdown, average fluorescence intensity was normalized to the scramble control and appeared on top of the image; (B) Seahorse analysis of mitochondrial oxygen 
consumption and (C) kinetic analysis of electron transport chain activity with isolated mitochondria in 3T3-L1 cells after Htd2 knockdown; (D) mRNA levels of 
mtDNA encoded complex I subunits in 3T3-L1 cells after Htd2 knockdown. Values are mean ± SEM, n ≥ 3, *p < 0.05, **p < 0.01, Scale bar, 10 μM. 
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Lipoic acid supplement restores mitochondrial function and 
antioxidant capacity in Htd2 knockdown cells. It’s been well 
demonstrated that lipoic acid is one of the key elements that modulate 
mitochondrial function and the primary cellular effects of mtFAS defi-
ciency were attributed to disrupted lipoic acid biosynthesis [21]. We 
thereby wonder whether supplement of lipoic acid could restore the 
mitochondrial function in Htd2 knockdown cells. As shown in Fig. 5A, 
supplement of lipoic acid at 100 μM could sufficiently restore mito-
chondrial respiration capacity in Htd2 knockdown cells by Seahorse 
analysis, accompanied by increased cellular ATP level (Fig. 5B). Mean-
while, the specific decrease of complex I activity was also improved by 
lipoic acid supplement (Fig. 5C). In addition, Mitosox staining indicated 
a dramatic increase of mitochondrial ROS production in Htd2 knock-
down cells which was normalized by lipoic acid (Fig. 5D), suggesting 
that deficient of HTD2 impaired complex I activity to promote mito-
chondrial stress and dysfunction via reducing lipoic acid production. 
Therefore, we further evaluate cellular stress and found decreased GSH 
level, total SOD, Mn-SOD, and CuZn-SOD activities in Htd2 knockdown 
cells, which were all restored to normal level by lipoic acid supplement 
(Fig. 6A–D). Meanwhile, protein oxidation by analyzing carbonyl pro-
tein was found significantly increased by Htd2 knockdown, and 
decreased by lipoic acid supplement (Fig. 6E and F). Taken together, 
these data suggested that complex I dysfunction and oxidative stress 
were the primary effects of HTD2 deficiency associated lipoic acid 
reduction. 

Suppression of mtFAS pathway impaires insulin sensitivity in 
3T3-L1 cells. It’s been well acknowledged that mitochondrial 
dysfunction is one of the key contributors to the development of insulin 
resistance. Lipidomic analysis also suggested that significant altered 

lipid metabolites in Htd2 knockdown cells were primarily associated 
with insulin resistance (Fig. 3H). We thereby analyzed the p-Akt level 
under insulin challenge, and found that Htd2 knockdown significantly 
decreased p-Akt level which was dramatically improved by lipoic acid 
supplement (Fig. 7A and B). Meanwhile, the protein level of GLU4 was 
decreased in Htd2 knockdown cells and restored by lipoic acid supple-
ment (Fig. 7C and D). As a result, the glucose uptake under insulin 
stimulation was suppressed in Htd2 knockdown cells and was improved 
by lipoic acid supplement (Fig. 7E). While, 3T3-L1 is well acknowledged 
as preadipocytes. To validate the effects of mtFAS pathway in mature 
adipocytes, 3T3-L1 cells were further differentiated into mature adipo-
cytes followed by Htd2 knockdown via lentivirus infection. Akt phos-
phorylation in response to insulin challenge was consistently decreased 
by Htd2 knockdown and was efficiently improved by lipoic acid sup-
plement (Fig. 7F and G). Similar changes were also observed on GLUT4 
expression and glucose uptake (Fig. 7H–J). These data suggest that 
lipoic acid production is the key factor coupling mtFAS pathway with 
adipocytes insulin sensitivity. 

3. Discussion 

WAT has been well acknowledged as the major storage site of excess 
energy for modulating whole-body metabolism, and adipocyte 
dysfunction was suggested to be linked to insulin resistance in obesity 
and type 2 diabetes [2,37]. Thereby, studies of detail mechanisms 
involving adipocyte dysfunction remain the top interest in the field. In 
the present study, we revealed that Htd2 in mtFAS pathway was the 
primary down-regulated gene in adipocytes under condition of meta-
bolic disorders. And down-regulated HTD2 could reduce the production 

Fig. 5. Lipoic acid supplement restores mitochondrial function in Htd2 knockdown cells. 3T3-L1 cells with stable Htd2 knockdown were further supplemented 
with lipoic acid for 24 h, (A) Seahorse analysis of mitochondrial oxygen consumption; (B) cellular ATP level, (C) mitochondrial electron transport chain activity, and 
(D) mitochondrial ROS level were analyzed, average fluorescence intensity was normalized to the scramble control and appeared on top of the image. Values are 
mean ± SEM, n ≥ 3, *p < 0.05, **p < 0.01, Scale bar, 10 μM. 
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of lipoic acid to trigger mitochondrial dysfunction and oxidative stress, 
leading to insulin resistance. 

Even though mtFAS pathway was identified long time ago, its 
involvement in cellular physiology remains limited [34]. Previous 
studies in yeast indicated that defects in mtFAS resulted in failure of 
multiple aspects of mitochondrial function and cellular metabolism [38, 
39]. Recent study in mice revealed that global knockout of MECR, the 
enzyme carrying last step of mtFAS, displayed embryonic lethality [40], 
while MECR knockout in purkinje cells led to neurodegeneration in 
mice, which were all attributed to the loss of mtFAS activity [41]. HTD2, 
catalyzing the previous step of MECR, was first identified in yeast pre-
senting close correlation with mitochondrial function and morphology 
[42]. Here we reported for the first time, that Htd2 was the primary 
downregulated gene of mtFAS in WAT under condition of insulin 
resistance in obesity and diabetes, suggesting potential involvement of 
HTD2 in WAT pathology of metabolic disorders. However, the detailed 
mechanisms accounting for downregulating Htd2 under such metabolic 
stress remain further investigation. 

In the decade following the initial discovery of mtFAS, one of the 
major research goals was to identify the ultimate products of mtFAS. 
Though 3-hydroxymyristate, 3-hydroxylaurate, mitochondrial phos-
pholipids and cardiolipin have been suggested to be the potential can-
didates, conclusive evidence remains limited [15,19,43,44]. On the 
contrary, accumulating studies have confirmed that mtFAS pathway 
could provide precursor for de novo lipoic acid biosynthesis, and defi-
ciency of mtFAS led to reduction of cellular lipoic acid level [45–47]. In 
addition to antioxidant activity, lipoic acid was well established to work 
as a cofactor for mitochondrial enzymes including PDH and OGDH [21]. 

Thereby, lipoylation level of E2 subunits within PDH and OGDH was 
usually evaluated to indirectly representing cellular lipoic acid pro-
duction. And consistent with decreased Htd2 expression in WAT of HFD 
and db/db mice, lipoylation levels of PDH and OGDH were found 
significantly decreased, while only decreased OGDH lipoylation was 
observed in BAT, which may be attributed to a less dramatic decrease of 
mtFAS enzymes, indicating that mtFAS may possess the highest sensi-
tivity to metabolic environment. Further knockdown of Htd2 in murine 
3T3-L1 cells also showed reductions of PDH and OGDH lipoylation, 
suggesting that HTD2 deficiency associated mtFAS dysfunction could 
directly suppress lipoic acid production. 

Given the fact that mtFAS locates in mitochondria, defection of 
mtFAS is expected to induce mitochondrial abnormalities which has 
been extensively reviewed recently [15,34]. Consistently, we found that 
knockdown of Htd2 in 3T3-L1 cells impaired maximal and spare mito-
chondrial oxygen consumption capacity without affecting basal OCR. 
Further enzymatic analysis of each mitochondrial complex revealed 
unique reduction of complex I activity, with significantly decreased 
expression of mtDNA encoded complex I subunits. It was previously 
shown that OGDH could interact with complex I of the electron transport 
chain, allowing a direct supplementation of NADH to the NADH 
oxidation site of complex I [48–50]. We thereby speculated that 
decreased lipoylation of OGDH-E2 subunit would impair the interaction 
with complex I activity which contributed to the suppressed mito-
chondrial OCR. Moreover, previous study also indicated that both 
OGDH and complex I were the major sites for mitochondrial ROS pro-
duction [49], we thus proposed that the impaired OGDH and complex 
interaction would result in excessive mitochondrial superoxide, which 

Fig. 6. Lipoic acid supplement attenuates oxidative stress in Htd2 knockdown cells. 3T3-L1 cells with stable Htd2 knockdown were further supplemented with 
lipoic acid for 24 h, (A) cellular GSH level, (B) total SOD activity, (C) Mn-SOD activity, and (D) CuZn-SOD activity was analyzed; Carbonyl protein level was analyzed 
by Western blot: (E) Representative western blot images, (F) Statistical analysis. Values are mean ± SEM, n ≥ 3, *p < 0.05, **p < 0.01. 
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was evidently confirmed by mitoSOX staining of Htd2 knockdown cells. 
The elevated mitochondrial oxidative status would further promote 
oxidation of mitochondrial lipids and proteins [51], as shown by the 
increased carbonylated proteins and decreased SOD activity. Interest-
ingly, supplement of lipoic acid sufficiently improved mitochondrial 
OCR and attenuated oxidative stress in Htd2 knockdown cells. We 
thereby conclude that mitochondrial complex I dysfunction and oxida-
tive stress were the primary cellular consequences induced by HTD2 
deficiency via reduction of lipoic acid level. 

Adipocytes are well acknowledged for actively responding to insulin 
signal for regulating systemic glucose and lipid homeostasis with the 
involvement of classic Akt phosphorylation and Glut4 translocation [3]. 

Previous studies have highlighted mitochondrial dysfunction as a 
pivotal factor contributing to disruption of adipose insulin sensitivity 
[52–54]. Following observation of mitochondrial oxidative stress 
induced by Htd2 knockdown, we consistently found that Htd2 knock-
down decreased Akt phosphorylation, GLUT4 expression, and glucose 
uptake under insulin stimuli in both preadipocytes and mature adipo-
cytes, further supporting the direct relation between mitochondrial 
dysfunction and adipocyte insulin resistance. As expected, lipoic acid 
supplement sufficiently improved the cellular response to insulin stim-
uli. Even though mtFAS pathway was identified for de novo synthesis of 
free fatty acid, while lipidomic analysis with Htd2 knockdown cells only 
identified 6 significantly decreased lipids including only one free fatty 

Fig. 7. Lipoic acid supplement improves insulin sensitivity in Htd2 knockdown cells. 3T3-L1 cells with stable Htd2 knockdown were further supplemented 
with lipoic acid for 24 h, followed by insulin challenge for 15 min, protein levels of p-Akt was analyzed (A: Western blot, B: Statistical analysis); 3T3-L1 cells with 
stable Htd2 knockdown were further supplemented with lipoic acid for 24 h, protein level of GLUT4 (C: Western blot, D: Statistical analysis) and glucose uptake (E) 
was analyzed. 3T3-L1 cells were differentiated into adipocytes followed by Htd2 shRNA knockdown for 48 hours. P-Akt level in response to insulin challenge (F: 
Western blot, G: Statistical analysis), GLUT4 expression (H: Western blot, I: Statistical analysis) as well as glucose uptake (J) was analyzed. Values are mean ± SEM, n 
≥ 3, *p < 0.05, **p < 0.01. 
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acid (24:2), which warrants further investigation to elucidate its asso-
ciation with mtFAS pathway. On the contrary, Htd2 knockdown cells 
presented multiple increased triglycerides which might be attributed to 
impaired mitochondrial function and closely associated with develop-
ment of insulin resistance based on KEGG analysis. Further lipoic acid 
supplement attenuated Htd2 knockdown induced mitochondrial 
dysfunction and cellular insulin resistance, demonstrating that lipoic 
acid is the vital player mediating mtFAS deficiency associated cellular 
dysfunction via modulating mitochondrial function. 

Taken together, the present study revealed that Htd2 is a sensitive 
gene of mtFAS pathway under metabolic stress. Downregulation of 
HTD2 could suppress mitochondrial lipoic acid production to impair 
mitochondrial complex I and OGDH activity, leading to excessive su-
peroxide production in adipocytes. Mitochondrial dysfunction associ-
ated oxidative stress further provoked insulin resistance in adipocytes, 
and lipoic acid, as an interesting mtFAS byproduct, could sufficiently 
improve mtFAS deficiency-induced adipocyte dysfunction. Collectively, 
the present study highlights the pivotal role of HTD2 in regulating 
mitochondrial function and adipocyte insulin sensitivity, providing 
supportive evidence for lipoic acid being an effective mitochondrial 
nutrient for improving insulin resistance in metabolic disorders. 

4. Materials and methods 

Chemicals and reagents. Insulin, ATP mix were purchased from 
Sigma (St. Louis, MO); Antibodies against p-Akt, Akt, and β-actin were 
from Cell Signaling Technology (Danvers, MA); Antibody against lipoic 
acid was from Millipore (Temecula, CA); Antibody against HTD2 was 
from Abcam (Cambridge, MA); The cell culture medium, Mito-Tracker 
Red and MitoSOX Red were from Life Technologies (San Diego, CA). 
Other reagents used in this study were purchased from Sigma (St. Louis, 
MO). R-alpha-lipoic acid was from? 

Animals. All mice were purchased from Vital River Laboratory An-
imal Technology Co., Ltd (Beijing, China). The mice were fed in a 
temperature- and light/dark cycle-controlled animal room with no 
limitations to food and water. All animals were maintained and used in 
accordance with the guidelines of the Institutional Animal Care and Use 
Committee of Xi’an Jiaotong University. 

For the high-fat diet (HFD) induced obese and diabetic mouse 
models, 5-week-old male C57BL/6J mice were randomly grouped into 
mice fed on normal diet (control, 10% kcal fat content, Cat #D12492, 
Research Diets, New Brunswick, NJ) and mice fed on HFD (60% kcal fat 
content, Cat #D12450, Research Diets, New Brunswick, NJ). Body 
weight was recorded twice per week, oral glucose tolerance test and oral 
insulin tolerance test after 8 weeks feeding were performed to determine 
the diabetic condition. Mice were then recovered for one week before 
fasting overnight and sacrificed; For genetic obese and diabetic mice, 8- 
week-old male db/db mice and ob/ob mice with the C57BL/6 genetic 
background were fed on normal diet (Research Diets, New Brunswick, 
NJ) for 2 weeks before fasting overnight and sacrificed. 

Cell culture. Mouse 3T3-L1 cell line was acquired from the ATCC 
(Manassas, VA). Cells were cultured in Dulbecco’s Modified Eagle’s 
Medium (DMEM) containing 100 U/mL penicillin, 100 μg/mL strepto-
mycin, 10% (v/v) fetal bovine serum and 0.22% sodium bicarbonate at 
37 ◦C in a cell incubator of 5% CO2. The cell medium was changed every 
two days. Transfection was performed using X-tremeGENE HP DNA 
Transfection Reagent (Roche, Basel, Switzerland) following manufac-
turers’ protocol, stable knockdown cells were selected after 6 days pu-
romycin treatment at 1 μg/ml. R-alpha-lipoic acid treatment was 
employed for 24 hours at the dose of 100 μM. 

Adipocyte differentiation. 3T3-L1 cells were cultured into over 
90% confluence for 24 h, adipocyte differentiation was initiated with 1 
mM insulin, 0.25 mM dexamethasone and 0.5 mM 3-isobutyl-1- meth-
ylxanthine in DMEM supplemented with 10% FBS. After 48 h, the cul-
ture medium was replaced with DMEM supplemented with 10% fetal 
bovine serum and 1 mM insulin. The culture medium was changed every 

other day with DMEM containing 10% FBS. Cells were used at 8th day 
following induction of differentiation, and when at least 90% exhibited 
the adipocyte phenotype. 

Confocal microscopy. For HTD2 localization, HeLa Cells were 
seeded onto coverslips which coated with poly-L-lysine and stained with 
Mitotacker Red for 30 min. The culture medium was then removed and 
the coverslips were washed three times with PBS. The cells were then 
fixed with 4% paraformaldehyde for 10 min, followed by 0.2%Triton-X- 
100 penetration for 5 min. The coverslips were blocked with bovine 
serum albumin (BSA) followed by incubation of anti-mouse-HTD2 
antibody at room temperature for 1 h. Then the cells were incubated 
with Alexa Fluor 555-conjugated anti-mouse IgG antibody. After 
washing with PBS, the cells were stained with DAPI (Invitrogen, Carls-
bad, CA). Images were visualized with a ZEISS LSM700 fluorescence 
microscope at 20x and 63x magnifications (Carl Zeiss, Chicago, IL). 
Colocalization analysis was performed on a pixel by pixel basis, coloc-
alization efficiency was calculated using ZEISS ZEN software following 
standard Pearson correlation coefficient method. For Nile Red and 
Mitosox staining, confocal microcopy was performed following standard 
procedure as suggested by manufacturer, average fluorescence signal 
was calculated from at least 100 cells and expressed as relative intensity 
to the control group. 

Glucose uptake. Mouse 3T3-L1 cells were washed by PBS and 
serum-starved with non-glucose DMEM (Gbico#11966025) for 3 h. In-
sulin (100 nM) was added and preincubated for 1 h, after changing into 
normal DMEM. glucose levels in the medium were detected using a 
Glucose Assay Kit (Bio Vision) according to the manufacturer’s in-
structions. The OD values were measured at 570 nm to determine 
cellular glucose levels. 

Intracellular GSH assay. GSH levels were analyzed with 2,3-naph-
thalenedicarboxyaldehyde (NDA) as previously described [28]. Briefly, 
20 μl of adjusted cell samples plus 180 μl of NDA derivatization solution 
(50 mM Tris (pH 10), 0.5 N NaOH, and 10 mM NDA in Me2SO; v/v/v, 
1.4/0.2/0.2) were added to each well of a 96-well plate. The plate was 
covered to avoid light and incubated at room temperature for 30 min. 
NDA-GSH fluorescence intensity was measured (472 excitation/528 
emission) using a microplate fluorometer (Fluoroskan Ascent, Thermo 
Fisher Scientific Inc., Waltham, MA). 

Intracellular ATP assay. 3T3-L1 cells were cultured in six-well 
plates. Cells were lysed using 0.5% Triton X-100 in 100 mM glycine 
buffer, pH 7.4. Assay to determine intracellular ATP levels was per-
formed using an ATP bioluminescent assay kit (Sigma). ATP was 
consumed and light was emitted when firefly luciferase catalyzed the 
oxidation of D-luciferin [29]. 

Assay for mitochondrial complex activities. Mitochondria of 3T3- 
L1cells were isolated as previously described [30]. Briefly, cells were 
collected and resuspended in 1.0 mL of hypotonic buffer (10 mmol/L 
NaCl, 2.5 mmol/L MgCl2, 10 mmol/L Tris base, pH 7.5) and homoge-
nized on ice with a glass homogenizer (Fisher Scientific, Pittsburgh, PA). 
Homogenates were then centrifuged at 1300 g for 5 min at 4 ◦C. Su-
pernatants were centrifuged at 17,000 g for 15 min at 4 ◦C, and mito-
chondrial pellets were resuspended in 100 μL of isotonic buffer (210 
mmol/L mannitol, 70 mmol/L sucrose, 5 mmol/L Tris base, 1 mmol/L 
EDTA⋅2Na, pH 7.5). Assays for reduced nicotinamide adenine dinucle-
otide (NADH)-ubiquinone reductase (complex I), succinate-CoQ oxido-
reductase (complex II), ubiquinol cytochrome c reductase (complex III), 
cytochrome c oxidase (complex IV) and Mg2+-ATPase (complex V) 
activities were performed according to previously described methods 
[31]. 

Mitochondrial superoxide measurement. 3T3-L1 cells were 
cultured at a density of 1×104 cells/ml in 24-well plates. The level of 
mitochondrial superoxide was observed by an MitoSOXTM Red Mito-
chondrial Superoxide Indicator (Thermo Fisher, USA). Briefly, cells were 
stained with 10 μM MitoSOXTM Red in serum-free medium for 10 min. 
After washing with PBS, the cells were visualized by laser scanning 
confocal microscopy (Zeiss, Jena, Germany). 
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Superoxide Dismutase (SOD) assay. Total SOD, GuZn-SOD, and 
Mn-SOD activities were analyzed using a Superoxide Dismutase (SOD) 
typed assay kit (Jian Cheng, Nanjing, China) following the manufac-
turer’s instruction. 

Assay for protein carbonyls. Level of protein carbonyls was 
determined using an OxyBlot Protein Oxidation Detection Kit (Cell 
Biolabs, San Diego, CA). Protein carbonyls were labeled with 2,4-dini-
trophenylhydrazine and detected by western blot analysis. As a 
loading control, equal amounts of samples were subjected to 10% SDS- 
PAGE and stained with Coomassie brilliant blue. To assess mitochon-
drial protein carbonylation, soluble mitochondrial proteins from 3T3-L1 
cells were isolated and analyzed using the above method. 

Oxygen consumption rate (OCR) assay. 3T3-L1 cells were cultured 
on XF 24-well microplates (Seahorse Bioscience, Billerica, MA), after 
treating with mitochondrial inhibitors (1 μM antimycin A, 0.5 μM FCCP 
and 1 μM oligomycin), the OCR was detected using an extracellular flux 
analyzer (Seahorse Bioscience, Billerica, MA). Basal respiration repre-
sents the baseline of the oxygen consumption value before the injection 
of the mitochondrial inhibitors. Maximal respiration represents the 
maximum OCR value after injection of FCCP. Spare respiratory capacity 
is calculated by recording the OCR response to FCCP and dividing the 
value by the basal respiration. The actual value of OCR was adjusted 
according to the cellular protein concentration [32]. 

Sample preparation for lipidomic analysis. Control and Htd2 
knockdown cells were prepared following previously published method 
[33]. Samples were placed in liquid nitrogen for 2 min, and thawed on 
ice for 5 min with gentle vortex. The procedure was repeated for 3 times, 
then the sample was centrifuged with 5,000 rpm at 4 ◦C for 1 min. Equal 
amount of supernatant was homogenized with 1 mL mixture (methanol, 
tert-butyl methyl ether, and internal standards). The mixture was vor-
texed for 10 min, added with 200 μL of water, vortexed for 1 min and 
centrifuged with 12,000 rpm at 4 ◦C for 10 min. 500 uL supernatant was 
concentrated after centrifugation. The powder was dissolved with 200 
uL mobile phase B (10% acetonitrile, 90% isopropanol, 0.04% acetic 
acid, and 5 mmol/L ammonium formate), and the dissolving solution 
was then used for UPLC-MS/MS analysis. 

Lipidomic analysis. The lipidomic profiling was performed using 
Ultra-Performance Liquid Chromatography Mass Spectrometry (UPLC- 
MS/MS) system (UPLC, Shim-pack UFLC SHIMADZU CBM30A; MS, 
Applied Biosystems SCIEX 6500+QTRAP) at Metware Biotechnology 
(Wuhan, China). Mass spectrometric data were processed with Analyst 
1.6.3 software (AB Sciex). Qualitative analysis was performed with 
built-in Metware database (MWDB) and the public database of metab-
olite information. The lipid metabolite structural analysis mainly 
referred to MassBank, KNAPSAcK, HMDB, Lipidmaps and METLIN 
database. First screening was based on the significant features, with p- 
value ≤0.05, fold change ≥2. Open source platforms KEGG, Metab-
oAnalyst and R software were applied for further analysis. 

Real-time PCR. Total RNA was extracted using TRIzol (Invitrogen, 
San Diego, CA) following the manufacturer’s protocol. Reverse tran-
scription was performed using a PrimeScript RT-PCR kit (Otsu, Shiga, 
Japan) and was followed by semiquantitative real-time PCR using spe-
cific primers. Data were normalized to the mRNA levels of beta-actin, 
which was used as a housekeeping gene and were analyzed by the 
2-ΔΔCT method. The final results are presented as relative level of the 
control. The primer sequences are presented in detail in Table S1. 

Western blot. Cell samples were washed with PBS and homogenized 
with Western and IP lysis buffer (Beyotime, Nanjing, China). The ho-
mogenates were centrifuged at 13,000 g for 15 min at 4 ◦C, and the 
supernatants were collected for subsequent detection of protein con-
centrations with a BCA Protein Assay kit (Pierce, Rockford, IL, Cat # 
23225). Equal aliquots of protein samples were loaded to SDS- 
polyacrylamide gels and transferred to nitrocellulose membranes (Per-
kinElmer Life Science, Boston, MA). After blocking with 5% non-fat 
milk, the membranes were incubated with primary antibodies fol-
lowed by horseradish peroxidase-conjugated secondary antibodies. 

Images of the western blots were visualized with an ECL Western blot-
ting detection kit (Pierce, Rockford, IL, Cat # 32209) and quantified by 
scanning densitometry. 

Statistical analysis. Data are presented as the mean ± standard 
error of the mean (SEM) from at least three independent experiments 
and were analyzed using GraphPad Prism-5 software. Statistical signif-
icance was evaluated using one-way analysis of variance (ANOVA) fol-
lowed by post hoc comparisons with Tukey’s HSD test. Differences 
between two groups were analyzed using Student’s t-test, and the level 
of significance was set at a value of P < 0.05. 
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