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Abstract

Small interfering RNAs (siRNAs) are important tools for knocking down targeted genes, and have been widely applied to
biological and biomedical research. To design siRNAs, two important aspects must be considered: the potency in knocking
down target genes and the off-target effect on any nontarget genes. Although many studies have produced useful tools to
design potent siRNAs, off-target prevention has mostly been delegated to sequence-level alignment tools such as BLAST.
We hypothesize that whole-genome thermodynamic analysis can identify potential off-targets with higher precision and
help us avoid siRNAs that may have strong off-target effects. To validate this hypothesis, two siRNA sets were designed to
target three human genes IDH1, ITPR2 and TRIM28. They were selected from the output of two popular siRNA design tools,
siDirect and siDesign. Both siRNA design tools have incorporated sequence-level screening to avoid off-targets, thus their
output is believed to be optimal. However, one of the sets we tested has off-target genes predicted by PICKY, a whole-
genome thermodynamic analysis tool. PICKY can identify off-target genes that may hybridize to a siRNA within a user-
specified melting temperature range. Our experiments validated that some off-target genes predicted by PICKY can indeed
be inhibited by siRNAs. Similar experiments were performed using commercially available siRNAs and a few off-target genes
were also found to be inhibited as predicted by PICKY. In summary, we demonstrate that whole-genome thermodynamic
analysis can identify off-target genes that are missed in sequence-level screening. Because PICKY prediction is deterministic
according to thermodynamics, if a siRNA candidate has no PICKY predicted off-targets, it is unlikely to cause off-target effects.
Therefore, we recommend including PICKY as an additional screening step in siRNA design.

Citation: Chen X, Liu P, Chou H-H (2013) Whole-Genome Thermodynamic Analysis Reduces siRNA Off-Target Effects. PLoS ONE 8(3): e58326. doi:10.1371/
journal.pone.0058326

Editor: Andy T.Y. Lau, Shantou University Medical College, China

Received October 22, 2012; Accepted February 1, 2013; Published March 6, 2013

Copyright: � 2013 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is supported by National Science Foundation grant DBI-0850195. http://www.nsf.gov/awardsearch/showAward.do?AwardNumber = 0850195
NSF had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: hhchou@iastate.edu

Introduction

RNA interference (RNAi) is a post-transcriptional gene silencing

phenomenon caused by double-stranded RNAs. In mammalian

organisms, RNAi is mainly triggered by small interfering RNA

(siRNA) or microRNA (miRNA) [1–3]. In siRNA duplexes, sense

and anti-sense strands are perfectly matched. The anti-sense

strand, also named the guide strand, is incorporated into a RNA-

Induced Silencing Complex (RISC) and activates it, whereas the

sense strand, also named the passenger strand, is cleaved and

destroyed [4]. The anti-sense strand guides the activated RISC to

mRNA targets and induces gene silencing [5]. There are many

rubrics for high efficient siRNA design. Most importantly, the 59

anti-sense end should have lower internal thermodynamic

stabilities than the 39 anti-sense end. This assists correct strand

incorporation with RISC [6]. In addition, the GC content, the

accessibility of target sites and the absence of palindromes or

internal repeats should also be considered [7–10]. Finally, specific

base preferences for RISC incorporation are also important factors

for good siRNA design [4,11].

Although many existing siRNA design software tools have

considered all the design issues mentioned above, there is

a remaining challenge in siRNA design – the prevention of off-

target effects [12–14]. A siRNA candidate can be designed to

satisfy all rules above, but we still cannot exclude its off-target

effects on other unintended genes. There are two categories of off-

target effects according to their origins [15]. Off-target effects can

be caused by high complementary between siRNA and a nontarget

gene – this is named type I off-target effect. The other category of off-

target effects is caused by the seed region of siRNA – this is named

type II off-target effect. Seed region is recognized on miRNAs and

contains the 2nd to 8th or 9th nucleotides (nt) of a miRNA guide

strand [16]. Although the biogenesis of miRNA and siRNA is

different, their downstream RNA interference pathways are

merged [17]. Therefore, siRNAs can act like miRNAs and

down-regulate gene expression through perfect hybridizations in

their seed region [17,18]. So far, no computational method is able

to prevent type II off-target effects due to the extremely high false-

positive rate. In this paper, we discuss a novel method to prevent

type I off-target effect.

There are several existing methods to identify potential off-

target genes that may be subjected to type I off-target effects. Most

siRNA design software such as siDesign (http://www.dharmacon.

com/designcenter/designcenterpage.aspx), siRNA Target Finder

[19] and Gene Specific siRNA Selector [20] use BLAST to screen

for off-target genes. However, BLAST may overlook some

potential off-targets or rank them inconsistently from their off-

targeting potential determined by thermodynamics, thus it cannot
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prevent all off-target silencing effects (see Table S4 and [21,22]).

Alternatively, siDirect calculates the minimum number of

mismatches between a siRNA sequence and any nontarget

sequence using an improved search algorithm which was said to

be more sensitive than BLAST [22,23]. Nevertheless, the

mismatch based off-target screening can still overlook potential

off-targets when they have higher mismatches or rank them

inconsistently from their off-targeting potential determined by

thermodynamics (Table S4). Disregard the differences in time and

precision, these off-target search methods all lack thermodynamic

consideration. This is a critical shortcoming because molecules

bind to each other not because of how many base-pairs matched

but because they can form stable duplexes under the thermody-

namic conditions including temperature, partner concentrations,

and salt effects [24–26]. siRNAs are very short oligonucleotides,

thus their thermodynamic properties tend to fluctuate [26,27].

Even at the same sequence similarity level to other genes, some

siRNAs can exert strong off-target effects but the others will not

have any effect. A 19 base-pair siRNA has been shown to silence

an off-target gene with 8 base-pair mismatches [12]. However, we

cannot throw out all siRNA candidates that have 8 or less base-

pair mismatches to any off-target gene in a large gene set, because

that will render most genes without suitable siRNAs to target.

Therefore, sequence comparison is not a good indicator of

potential off-target effects.

To address this issue, we adopt a whole-genome thermody-

namic analysis software PICKY for siRNA design and show that it

can precisely predict off-targets. PICKY efficiently finds unique

regions on some interested genes against a complex genome

background [27,28]. The uniqueness is determined by thermody-

namics, not by sequence similarity. Therefore, any probe designed

to hybridize to these unique regions will only hybridize to the

interested genes. PICKY employs hundreds of parameters bioche-

mists have empirically determined to conduct its thermodynamic

calculations according to the Nearest-Neighbor Model [29–32]. In

addition to perfect Watson-Crick base-parings, PICKY also

considers mismatches (e.g., GNA, GNG or GNT) [31,33–36],

dangling ends [37], and gap mismatches (i.e., bulge or loop)

[38]. This capability makes PICKY the microarray design software

of choice by many researchers [39–42]. PICKY also provides an

Examine function which can screen a set of predetermined short

probe sequences against a large gene set, which is usually a whole

genome or transcriptome [43]. Examination using PICKY is very

efficient. Even for large gene sets like the human’s, it only takes just

a few minutes on a modern computer. Output from PICKY is

a ranked list of target genes with perfect matches to the probes and

nontarget genes with imperfect but thermodynamically significant

matches to the same probes. The list is sorted in descending order

according to the calculated melting temperatures where each

target or nontarget gene can hybridize to a probe. Therefore, the

Examine function of PICKY can be utilized to predict the off-target

genes of siRNAs. For example, siRNAs designed by any software

can be given as the probe set to PICKY and compared against the

human transcriptome set. The output for each siRNA will be a list

of its target genes and any nontarget genes that are potential off-

targets. The difference between the target and nontarget melting

temperatures calculated for each nontarget gene is designated its

thermodynamic score. The lowest thermodynamic score among all

nontargets of a siRNA candidate becomes its siRNA score. We

hypothesize that if a siRNA score is low, it has greater potential to

hybridize to its lower scoring off-target genes. Conversely, if

a siRNA score is high, it is less likely to hybridize to any off-target.

Based on our previous studies, a 10uC difference between target

and off-target melting temperatures provides a reasonable safe

margin to distinguish good microarray probes [28,43]. Therefore

we used the same threshold in this study. Nevertheless, this

threshold can be set to any value preferred by the users.

To validate this hypothesis and the use of PICKY for siRNA off-

target prediction, we have followed the three steps depicted in

Fig. 1 to design several siRNAs in our study. In STEP 1, we

generated siRNA candidates to target three human genes IDH1,

ITPR2 and TRIM28 using two popular online siRNA design tools

siDesign (http://www.dharmacon.com/designcenter/

designcenterpage.aspx) and siDirect [22]. Note that both siRNA

design tools have already incorporated sequence-level screening

with BLAST or mismatch calculation to prevent off-target effects.

In STEP 2, we used PICKY to screen the resulted siRNA candidates

and predict any potential off-targets that were missed. Each

predicted off-target gene of a siRNA has an associated thermo-

dynamic score and the siRNA itself is assigned a siRNA score.

Two distinct siRNA sets were selected according to PICKY

screening: a good siRNA set containing only siRNAs whose scores

are higher than 10, and a bad siRNA set containing siRNAs whose

scores are below 10. In STEP 3, 60 bad siRNAs with the lowest

scores and 60 good siRNAs with the highest scores were sent

through the Mfold sever to examine their siRNA secondary

structures [44]. STEP 3 aims at removing structurally ineffective

siRNAs and improving our results. At the end, 6 good and 7 bad

siRNAs were selected for subsequent experiments. In addition, we

have ordered 18 commercial siRNAs from Integrated DNA

Technology (IDT) and Sigma-Aldrich (Sigma) for the same target

genes IDH1, ITPR2 and TRIM28. These commercial siRNAs

were designed by the vendors and have also been screened for

potential off-target effects [45,46]. They were also put through

PICKY screening in STEP 2 to identify any potential off-targets that

were missed. Their siRNA secondary structures were also

examined in STEP3 but all of them were used in subsequent

experiments disregard their secondary structures.

The designation of good or bad siRNAs in our selection refers to

their predicted off-target effects, not their targeting efficiency.

PICKY predicted that there are a total of 19 potential off-target

genes for the 7 bad siRNAs (Table 1). Among these off-targets, 3

were not tested because their thermodynamic scores are very close

to 10, thus they are less likely to be subjected to off-target effects.

Another off-target gene has changed annotation since our design,

thus it is no longer a viable off-target. In total, we tested 15 off-

targets and found 12 to be expressed at detectable levels. Among

the 12, our qPCR results indicated that 7 were significantly

reduced by the siRNAs.

Results

Selection of Testing siRNAs
We have selected three well-annotated genes IDH1, ITPR2 and

TRIM28 as the siRNA targets. They all have sufficient RNA

expression levels in the HEK293 human cell line. Moreover, each

of them has only one transcript isoform, which simplifies siRNA

design. Using two popular online software tools siDirect and

siDesign, we have obtained siRNA candidates for the three genes.

After PICKY screening, these siRNA candidates are separated into

good and bad sets. Good siRNAs have scores higher than 10,

whereas bad siRNAs have scores lower than 10. Previous studies

suggested that the secondary structure of siRNA anti-sense strand

is also important for the successful hybridization between siRNAs

and target sequences [47]. Therefore, the top 20 siRNA

candidates from both the good and bad sets for each target gene

are screened by Mfold to determine the ones with favorable

binding structures [44]. Only siRNA candidates with sufficient

Whole-Genome Thermodynamic siRNA Design
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length of overhangs at both the 59 and 39 ends of the anti-sense

strand are considered (c.f., Fig. 2A and 2B). Finally, we select two

good siRNAs for each target gene: one from siDirect designed

siRNAs and the other from siDesign designed siRNAs (Table S1

and Table S2). Following a three part naming convention (target

gene)-(good or bad choice)-(design software), the 6 good siRNAs

are named IDH1-G-direct, IDH1-G-design, ITPR2-G-direct,

ITPR2-G-design, TRIM28-G-direct and TRIM28-G-design re-

spectively. Here the -direct and -design suffixes refer to the siDirect

and siDesign software. These good siRNAs satisfy two notable

conditions: their siRNA scores are higher than 10, and their

secondary structures favor siRNA efficiency. We also select several

bad siRNAs for each target gene, which are named IDH1-B-

direct, IDH1-B-design-2, IDH1-B-design-3, ITPR2-B-direct,

ITPR2-B-design, TRIM28-B-design-1 and TRIM28-B-design-2

respectively (Table S1). An additional numeral suffix is added if

two bad siRNAs would otherwise share the same name. These bad

siRNAs also satisfy two conditions: their siRNA scores are below

Figure 1. Workflow for designing, checking and selection of testing siRNAs. In STEP 1, siRNA candidates are designed using siDesign and
siDirect with their sequence-level screening turned on. Commercial siRNAs are designed by the vendors using their proprietary design pipelines
which presumably also include sequence-level screening. In STEP 2, all siRNA candidates are examined by PICKY to discover any potential off-target
genes. Testing siRNAs are separated into the good and bad sets according to their siRNA score, i.e., the identified minimum difference between target
and nontarget hybridization temperatures. Off-target genes for commercial siRNAs are similarly predicted by PICKY. In STEP 3, the anti-sense strand
secondary structures of the top 60 good and bad siRNA candidates are checked by the Mfold server, and 6 good and 7 bad siRNAs are selected for
the validation experiments. All 18 commercial siRNAs are used in the experiments.
doi:10.1371/journal.pone.0058326.g001
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10, but their secondary structures still favor siRNA efficiency. To

summarize, the only difference between good and bad siRNAs is

their PICKY computed siRNA scores. Otherwise, they are the same

quality siRNAs designed by popular tools that satisfy all siRNA

design rules. In total, we have synthesized 13 siRNAs correspond-

ing to the three target genes IDH1, ITPR2 and TRIM28 for the

following experiments.

Check the Potential Off-target Genes of siRNAs
Our qPCR results indicate that most siRNAs, whether good or

bad ones, work efficiently in silencing their target genes. All good

siRNAs decrease target gene expressions to around 50% (Fig. 3A,

4A, and 5A). Similarly, all bad siRNAs reduce target gene

expressions efficiently to around 50% (Fig. 3A, 4A, and 5A). These

results confirm that all selected siRNAs are functional and there is

no bias in their selections.

PICKY predicts that IDH1-B-design-3 may have an off-target

gene MAPK10 (Table 1). qPCR shows that MAPK10 expression

is indeed decreased significantly in IDH1-B-design-3 treated cells.

This reduction is not likely caused by IDH1 pathway effects

because cells treated by the other three siRNAs targeting IDH1 do

not exhibit reduced MAPK10 levels (Fig. 3E). The other predicted

off-target genes SYBU, CEP97 and OTOG remain stable under

the treatments of IDH1-B-direct and IDH1-B-design-2 (Table 1

and Fig. 3B–D). Some off-target gene expressions are increased in

IDH1 experiments. It was suggested that IDH1 is a member of

oncogenic signalling pathways involved in gliomagenesis [48].

Therefore, the down-regulation of IDH1 may cause distortion of

normal metabolism processes, leading to abnormal expressions of

some genes.

ITPR2-B-direct has three predicted off-target genes ITPR1,

UHRF1BP1L, PLCXD3 and DST (Table 1). qPCR shows the

amplification crossing point (Cp) values of UHRF1BP1L are

beyond 30. We cannot obtain reliable results at high Cp values

(i.e., low gene expressions). Therefore, if the average Cp value of

a gene is over 30, we do not consider it further. PLCXD3 and

DST are not considered either because their thermodynamic

scores are close to the good siRNA cutoff score 10, making them

a borderline off-target. ITPR1 expression in ITPR2-B-direct

treated cells is decreased by 30% when compared to the other two

Table 1. PICKY predicted siRNA off-target genes.

siRNA name
Potential off-target
genes

Thermo-dynamic
score

Relative levels of
off-targets Remark

Mismatches reported
by siDirect

Ranking in BLAST
output

IDH1-B-direct SYBU 6.22 1.17 Cp= 29 Not reported

CEP97 8.49 1.37 Cp= 24 Not reported

IDH1-B-design-2 OTOG 6.63 1.21 Cp= 29 Not reported

IDH1-B-design-3 MAPK10 6.94 0.58 Cp= 29 1

ITPR2-B-Direct ITPR1 5.54 0.87 Cp= 24 2

UHRF1BP1L 8.65 N/A Cp.30 1

PLCXD3 9.76 N/A N/A 3

DST 9.92 N/A N/A 3

ITPR2-B-Design ARHGEF10L 3.41 N/A Cp.30 14

TTYH2 6.61 1.04 Cp= 25 20

UBE2R2 6.85 0.42 Cp= 21 1

TPR 6.95 0.88 Cp= 20 2

SFSWAP 7.89 N/A Cp.30 170

NCAPH 8.44 0.89 Cp= 21 25

CAPN2 8.96 N/A N/A 31

BNC2 9.74 N/A N/A 157

TRIM28-B-design-1 MMP2 5.48 0.84 Cp= 24 3

TRIM28-B- MICAL3 5.90 0.95 Cp= 23 172

design-2 DNAJC6 7.40 0.82 Cp = 24 7

C17orf85 9.58 N/A N/A Not reported

TRIM28-1 (IDT) PDZRN3 7.96 N/A Cp.30

ITPR2-1 (Sigma) ZNF622 9.32 N/A N/A

TRIM28-1 EXT2 7.79 1.03 Cp= 20

(Sigma) GGA1 8.93 1 Cp= 23

TRIM28-2 SOGA1 2.51 0.89 Cp= 27

(Sigma) TSPAN7 7.35 0.9 Cp = 23

PDE4DIP 8.27 1 Cp= 26

MED12 9.11 N/A N/A

List of off-target genes predicted by PICKY for the bad siRNAs and four commercial siRNAs. Only detectable off-target genes (Cp values smaller than 30) are labelled with
their qPCR measured Cp values. Off-target genes whose Cp value is larger than 30 are so indicated and excluded from further consideration. Off-targets with confirmed
reductions are shown in bold font face.
doi:10.1371/journal.pone.0058326.t001
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siRNAs ITPR2-G-direct and ITPR2-G-design (Fig. 4B), which

actually increase ITPR1 expression to 116% and 112%. ITPR1

and ITPR2 both participate in inositol 1, 4, 5-triphosphate

signalling pathway. When ITPR2 expression is decreased in

siRNA treated cells, ITPR1 is up-regulated to compensate [49].

ITPR1 expression is expected to increase in ITPR2-G-direct and

ITPR2-G-design treated cells, but it is still decreased in ITPR2-B-

direct treated cells due to off-target effect as predicted. In-

terestingly, ITPR1 expression is also decreased in ITPR2-B-design

treated cells, but it is not the predicted off-target for ITPR2-B-

design. Further analysis suggests that this may be caused by the off-

target effect from the seed region of ITPR2-B-design (Fig. S1).

ITPR2-B-design has several predicted off-target genes ARH-

GEF10L, TTYH2, UBE2R2, TPR, SFSWAP, NCAPH, CAPN2

and BNC2 (Table 1). ARHGEF10L and SFSWAP are not further

considered due to their high Cp values. CAPN2 was predicted to

be an off-target when GRCh37.64 human transcript data set was

used. In the updated GRCh37.66 data set the annotation of

CAPN2 has changed, thus CAPN2 is no longer a predicted off-

target gene. BNC2 is not considered either because its thermo-

dynamic score 9.74 is very close to the good siRNA cutoff score

10. We only report the qPCR results with the remaining 4 off-

target genes TTYH2, UBE2R2, TPR and NCAPH. The latter

three expression levels are all decreased to various levels in ITPR2-

B-design treated cells (Fig. 4D–F) – UBE2R2 has an extremely

Figure 2. The secondary structures of a few representative siRNAs. Examples of siRNAs with active secondary structures and accessible 59-
and 39-ends: (A) ITPR2-G-design DG=1.40 kcal/mol and (B) ITPR2-B-design DG=1.60 kcal/mol. Commercial siRNAs with unfavourable secondary
structures and thus reduced potency: (C) TRIM28-1 (IDT) DG=20.50 kcal/mol and (D) TRIM28-3 (Sigma) DG=26.60 kcal/mol. An interesting
exception of a siRNA with active secondary structure but reduced potency: (E) ITPR2-1 (IDT) DG=0.40 kcal/mol. All secondary structures and the
Gibbs free energy (DG) values are obtained from the Mfold server.
doi:10.1371/journal.pone.0058326.g002
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strong 60% reduction close to the reduction of the intended target

gene ITPR2. Only TTYH2 expression does not significantly

change in ITPR2-B-design treated cells (Fig. 4C).

The last target gene TRIM28 has two bad siRNAs. TRIM28-B-

design-1 has one predicted off-target gene MMP2, and TRIM28-

B-design-2 has three predicted off-target genes MICAL3,

DNAJC6 and C17orf85 (Table 1). The thermodynamic score of

C17or85 is 9.58 thus it is excluded. qPCR results indicate that

MMP2 expression is reduced significantly in TRIM28-B-design

treated cells when compared to the other three siRNAs (Fig. 5B).

DNAJC6 is decreased in TRIM28-B-design-2 treated cells

(Fig. 5D), but MICAL3 expression level did not differ noticeably

(Fig. 5C).

Check the Potential Off-target Genes of Commercial
siRNAs
To test if our method also works on preventing off-targets for

commercial siRNAs, some siRNAs for the same target genes

IDH1, ITPR2 and TRIM28 were purchased from Sigma

(MISSION siRNA) and IDT (TriFECTa Kit). For each target

gene, the top three recommended siRNAs from Sigma and IDT

were ordered. Sigma siRNAs are traditional siRNA duplexes 19 nt

in length with two dTdT overhangs at the 39 end of both strands.

Only the 19 nt RNA part is screened by PICKY. IDT siRNAs have

a special design for Dicer cutting which may enhance their

potency [45]. IDT siRNA sense strand is 25 nt and anti-sense

strand is 27 nt with 2 nt overhang at the 39 end. We chose the

Figure 3. siRNAs targeting IDH1. (A) The relative expression levels of the target gene: IDH1. Two good siRNAs (-G-) and three bad siRNAs (-B-) are
designed to target the IDH1 gene; all of them decrease the target gene expression by about 50%. (B–E) The relative expression levels of off-target
genes predicted by PICKY. Different subfigures correspond to different off-target genes that are associated with different siRNAs respectively. All
expression levels are calibrated to the negative transfection controls (Neg: dark grey bars). The light grey bars correspond to treatments with siRNAs
except the one with off-target effect predicted by PICKY. A test was performed for significant reduction of gene expression by the siRNA with
predicted off-target effect compared with other siRNAs. If p-value ,0.05, the treatment using siRNA with the predicted off-target effect is red and
labelled by *. Otherwise, it is pink. Remarkably, MAPK10, the predicted off-target gene of IDH1-B-design-3, has about 40% reduction in expression
level by IDH1-B-deisgn-3.
doi:10.1371/journal.pone.0058326.g003
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21 nt sequence after Dicer cutting as the sequence to be screened

by PICKY.

Most commercial siRNAs for IDH1 and ITPR2 can reduce

their target gene level to 50% or less (Fig. 6A–B). TRIM28 siRNAs

are relatively weak (Fig. 6C). In total, three commercial siRNAs

ITPR2-1 (IDT), TRIM28-1 (IDT) and TRIM28-3 (Sigma) cannot

efficiently reduce target gene expressions. TRIM28-1 (IDT) and

TRIM28-3 (Sigma) are forming stem-loops without enough

overhangs at the 59 and 39 ends according to Mfold (Fig. 2C

and 2D). In particular, the Gibbs free energy of the secondary

structure of TRIM28-3 (Sigma) is 26.6 kcal/mol, which is too

strong to unwind. The secondary structure of ITPR2-1 (IDT)

satisfies the RISC-favorable secondary structure rules (Fig. 2E) but

it is still low efficient. A possible explanation is that the targeting

site on ITPR2 is not accessible by ITPR2-1 (IDT) [50].

We used PICKY to predict the potential off-target genes of

commercial siRNAs. Only one IDT siRNA TRIM28-1 (IDT) has

a predicted off-target gene PDZRN3. Because PDZRN3 has a high

Cp value, we do not consider it further. Only three Sigma siRNAs

ITPR2-1 (Sigma), TRIM28-1 (Sigma) and TRIM28-2 (Sigma)

have predicted off-targets. ITPR2-1 (Sigma) has one off-target

gene ZNF622 but its thermodynamic score is near 10, thus it is not

considered. TRIM28-1 (Sigma) has off-targets EXT2 and GGA1.

qPCR indicates both EXT2 and GGA1 expression levels are not

reduced in TRIM28-1 (Sigma) treated cells (Fig. 6D and 6E).

TRIM28-2 (Sigma) has off-target genes SOGA1, TSPAN7,

PDE4DIP and MED12. The thermodynamic score of MED12 is

Figure 4. siRNAs targeting ITPR2. (A) The relative expression levels of the target gene: ITPR2. Two good siRNAs (-G-) and two bad siRNAs (-B-) are
designed to target the ITPR2 gene. Most of them can reduce the target gene expression level to below 50%. (B–F) The relative expression levels of
off-target genes predicted by PICKY. Different subfigures correspond to different off-target genes that are associated with different siRNAs
respectively. All expression levels are calibrated to the negative transfection controls (Neg: dark grey bars). The light grey bars correspond to
treatments with siRNAs except the one with off-target effect predicted by PICKY. A test was performed for significant reduction of gene expression by
the siRNA with predicted off-target effect compared with other siRNAs. If p-value ,0.05, the treatment using siRNA with the predicted off-target
effect is red and labelled by *. Otherwise, it is pink. Remarkably, the expression level of UBE2R2 was reduced by 60% by ITPR2-B-design.
doi:10.1371/journal.pone.0058326.g004
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near 10, thus it is not considered. SOGA1 is significantly reduced

in TRIM28-2 (Sigma) treated cells (Fig. 6F). TSPAN7 and

PDE4DIP expression levels do not change in TRIM28-2 treated

cells (Fig. 6G and 6H).

Surprisingly, EXT2 expression is reduced by TRIM28-2

(Sigma) and TSPAN7 expression is reduced by TRIM28-1

(Sigma) (Fig. 6D and 6G). Neither gene is the predicted off-target

of the corresponding siRNA. A possible explanation is that the

unexpected reduction may be caused by the siRNA seed regions as

seen in the hybridizations of these two off-target genes with

TRIM28-2 (Sigma) and TRIM28-1 (Sigma) respectively (Fig. S1,

Section B).

Discussion

How to reduce siRNA off-target effect is an important question.

BLAST is the most widely used tool to address this issue. However,

BLAST and other sequence-level search tools may overlook some

off-targets because sequence alignments cannot reflect true off-

target silencing potential [21,22]. The hybridization likelihood

between siRNA candidates and all target and nontarget genes

should also be evaluated using thermodynamics. Although several

siRNA design tools have employed thermodynamics [51,52], the

computational overhead required in thermodynamic calculation

prevents most tools from comparing a siRNA candidate with all

potential hybridization sites on all genes.

PICKY is a microarray design and analysis tool previously

developed for large and complex genomes. PICKY employs

thermodynamics in all its computation and can efficiently identify

all unique regions on interested genes against a large genome

background. The uniqueness is determined by the hybridization

melting temperature difference: the greater the difference between

the probe-to-target melting temperature and the highest probe-to-

nontarget melting temperature, the more unique a probe targeted

region will be. All potential hybridization sites on all genes are

compared to obtain the highest nontarget melting temperature of

any probe candidate. PICKY calculation is deterministic according

to thermodynamic equations and there is no statistical modelling

in PICKY that may introduce stochastic outcomes. Despite the

exhaustive search and comparison, PICKY is very efficient. PICKY

screening requires only a couple minutes even for the whole

human gene set. The technical details of how PICKY conducts its

efficient thermodynamic calculation and the experimental valida-

tion of PICKY predictions have been reported previously

[27,28,43].

Carrying on this capability, PICKY should be able to screen

potential off-target genes for siRNA candidates as well. The

question is how precise this screening can be in the context of

in vivo RNA interference. PICKY calculation requires several

parameters such as the salt and RNA concentrations, which

cannot be precisely estimated for living cells. Therefore, PICKY

estimated melting temperatures likely deviate from true values.

One might even ask the fundamental question why melting

Figure 5. siRNAs targeting TRIM28. (A) The relative expression levels of the target gene: TRIM28. Two good siRNAs (-G-) and two bad siRNAs (-B-)
are designed to target the TRIM28 gene. All of them reduce the target gene expression level. (B–D) The relative expression levels of off-target genes
predicted by PICKY. Different subfigures correspond to different off-target genes that are associated with different siRNAs respectively. All expression
levels are calibrated to the negative transfection controls (Neg: dark grey bars). The light grey bars correspond to treatments with siRNAs except the
one with off-target effect predicted by PICKY. A test was performed for significant reduction of gene expression by the siRNA with predicted off-target
effect compared with other siRNAs. If p-value ,0.05, the treatment using siRNA with the predicted off-target effect is red and labelled by *.
Otherwise, it is pink.
doi:10.1371/journal.pone.0058326.g005

Whole-Genome Thermodynamic siRNA Design

PLOS ONE | www.plosone.org 8 March 2013 | Volume 8 | Issue 3 | e58326



temperatures can be useful for RNAi experiments that are

executed at room temperature far below any estimated target

melting temperature. The key answer to the question is that we are

using melting temperature estimate as a measurement of

molecular hybridization tendency – the higher an estimated

melting temperature between two molecules, the more easily they

can hybridize to each other. Estimated melting temperatures are

never used alone but are always compared to the other estimated

melting temperatures to produce meaningful off-target predictions.

In another word, although estimated melting temperatures can

Figure 6. Commercial siRNAs. (A–C) 18 commercial siRNAs are purchased from Sigma (MISSION siRNA) and IDT (TriFECTa Kit) to target the same
genes IDH1, ITPR2 and TRIM28. The commercial siRNA potency on target genes is mostly comparable to that of our siRNAs. (D–H) The relative
expression levels of predicted off-target genes in different Sigma siRNA treated cells (IDT siRNAs are not included in off-target analyses). All
expression levels are calibrated to the negative transfection controls (Neg: dark grey bars). The light grey bars correspond to treatments with siRNAs
except the one with off-target effect predicted by PICKY. A test was performed for significant reduction of gene expression by the siRNA with
predicted off-target effect compared with other siRNAs. If p-value ,0.05, the treatment using siRNA with the predicted off-target effect is red and
labelled by *. Otherwise, it is pink. The SOGA1 off-target gene is significantly reduced by TRIM28-2 (Sigma).
doi:10.1371/journal.pone.0058326.g006
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deviate from true values, their relative differences are preserved in

PICKY calculation.

Previously we have calibrated PICKY designed microarrays and

found that even at a 10,000:1 molar concentration ratio between

predicted nontargets and targets, PICKY designed probes still will

not hybridize to the abundant nontarget transcripts if there are

sufficient melting temperature difference between them [28,43].

Therefore, according to our experience, if the target and nontarget

melting temperature difference of a siRNA candidate (i.e., its

siRNA score) is higher than 10uC, we believe its off-target effect

will be minimal. If a siRNA candidate has a melting temperature

difference with a nontarget that is significantly lower than 10uC, it
may cause off-target effect on the nontarget gene, and it is

probably a bad siRNA candidate.

To validate this hypothesis, we have designed experiments to

specifically look for predicted off-target gene inhibition by the bad

siRNAs. Indeed, more than half of the PICKY predicted off-target

genes exhibit reduced expression levels (Fig. 3, 4, 5). It is suggested

that miRNA seed regions matching perfectly to target genes can

help modulate the structure of RISC for inhibition [53,54]. In our

experiments, all predicted off-target genes with a perfect match in

the seed region are reduced significantly by the bad siRNAs,

except SYBU (Fig. S1). We observe that base position 10 of IDH1-

B-direct, the siRNA predicted to cause off-target effect on SYBU,

is not complementary with the corresponding base on SYBU.

Because canonical siRNA-mediated Ago 2 cleavage is at position

10 or 11, the imperfect complementary on this base may block

SYBU knockdown by IDH1-B-direct [55,56]. We have conducted

similar predictions on commercially available siRNAs from IDT

and Sigma. Because commercial siRNAs must be purchased

before we can learn about their sequences, we cannot preselect

good or bad commercial siRNAs. As such, most of the 18

commercial siRNAs we have obtained are good siRNAs.

Nevertheless, PICKY is still able to predict a few off-target genes

for them and at least one of the predicted off-target genes exhibits

noticeable off-target effect (Fig. 6).

In our experiments, most siRNAs reduce target gene expres-

sions to the 50% level. Although not considered the most potent

siRNAs, they serve our validation purpose well – if we can validate

predicted off-targets for weaker siRNAs, we can predict and

prevent off-targets for stronger siRNAs. Some predicted off-target

genes are reduced only 10–30%, but this relatively low reduction

still may affect gene network and cell behaviour, and render some

RNAi experiments unreliable. For the clinical use of siRNAs, all

such unintended reductions must be avoided.

This work demonstrates that some off-target genes predicted by

PICKY are reduced by bad siRNAs. This suggests that bad siRNAs

should not be used in practice. An added benefit of the off-target

prediction is that scientists can now have a small subset of genes to

monitor and see if off-target effect has happened. This knowledge

can help scientists set the proper dosage of siRNAs in biomedical

applications to reduce side-effects. siRNAs that have no PICKY

predicted off-targets should be safer to use, but proving they

indeed have no off-targets is difficult. Most whole transcriptome

analysis techniques are not sensitive enough to detect the 10–30%

off-target expression variations we have observed.

We have shown that using PICKY off-target screening in

association with existing siRNA design software can reduce

potential off-target effects without sacrificing the potency of the

siRNAs. Our method is independent of the specific siRNA design

software users prefer to use. All PICKY versions are free to

academic users, and 32-bit PICKY versions are also free to

commercial users. A modern multi-core desktop computer with

sufficient memory will work for most gene sets. We recommend

the PICKY screening step added to any siRNA design.

Materials and Methods

siRNA Procurement
siRNAs designed using siDesign are set to have a GC content

range between 30–64% with BLAST screening for off-targets.

Customarily, a dTdT protective overhang is added to both siRNA

strands to prevent degradation. Because we need to precisely

control the hybridization between siRNAs and transcripts, we

have added the genuine overhang from the targeted transcript

instead. The anti-sense strand of siRNAs is used for PICKY

screening.

siRNAs designed using siDirect are set to use the Ui-Tei siRNA

selection rule, the seed-duplex stability of Max Tm 21.5uC, the
human database screening for off-targets, the GC content range

between 30–64% (the same as siDesign), and the avoidance of

contiguous A’s, T’s, C’s and G’s. Only siRNA candidates meeting

all criteria above are output by siDirect. Because siDirect siRNAs

come with the two-base overhang, they are screened by PICKY

without any modification.

All testing siRNAs are synthesized by Sigma. All commercial

siRNAs are purchased from Sigma (MISSION siRNA) and IDT

(TriFECTa Kit).

PICKY Screening
All siRNAs are screened using the 64-bit version of PICKY 2.20

(http://www.complex.iastate.edu/download/Picky/index.html).

The human cDNA sequence file (Homo_sapiens.GRch37.64.cd-

na.all.fa) is downloaded from NCBI and given as the input gene set

to PICKY. Input gene sequences are properly reverse-complemen-

ted within PICKY to match the siRNA anti-sense strand direction.

The Examine function of PICKY is used to identify potential off-

target genes for each siRNA candidate. Table 2 lists the

parameters set for the Examine function; detail information about

each parameter is provided in the PICKY dialog that accepts these

parameters.

Cell Culture and siRNA Transfection
The human embryonic kidney cell line HEK293 is purchased

from the American Type Culture Collection (CRL-1573TM) and

cultured in Eagle’s Minimum Essential Medium (Sigma, M0643)

with supplementary 2 mM L-glutamine penicillin-streptomycin

(Invitrogen 10378-016) and 10% FBS (Sigma, F6178). HEK293

cells are transfected in twelve-well plates using Lipofectamine 2000

Table 2. PICKY off-target gene screening parameters.

Maximum oligo size 22

Minimum oligo size 19

Maximum match length 15

Minimum match length 7 Important for nontarget match

Minimum trigger similarity 66 Important for nontarget match

Minimum temp difference 0

DNA concentration (nanoM) 0.001

Salt concentration (milliM) 130 Calculated from cell medium

Screen only forward strands Yes

se better salt effect equation Yes

doi:10.1371/journal.pone.0058326.t002
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(Invitrogen). The concentration of all siRNAs used in transfections

is 30 nM. Three biological replicates are performed for each

siRNA. Transfection efficiency for siRNAs is about 90% as

calculated using the positive florescent control GAPDH siRNA

(Ambion, AM4650). Two negative control siRNAs (Sigma,

SIC001 and IDT, NC1) were used.

Isolation of RNA and Reverse Transcription
Total RNA is isolated from cells 48 h following transfection

(Qiagen RNeasy kit) and quantified using NanoDrop 1000. First-

strand cDNA is synthesized from 1 mg of total RNA for 60 min at

50uC using the Superscript III Reverse transcription system

(Invitrogen) with Oligo dT primer (Invitrogen).

Real-time Quantitative PCR
Real-time quantitative PCR (qPCR) is performed with SYBR

Green I Master Mix (Roche) using LightCycler 480 II (Roche). All

qPCR primer sequences are summarized in Table S3. Human

genes usually have multiple alternative splicing forms, and siRNAs

may either hybridize to common areas shared by all splicing forms

or only to a few unique areas belonging to just one or a few

splicing forms. For example, the SOGA1 gene has two alternative

splicing forms SOGA1-1 and SOGA1-2, and PICKY predicted only

SOGA1-1 (NM_080627.2) is off-targeted by TRIM28-2 (Sigma).

Therefore, when designing qPCR primers for SOGA1 expression

analysis, we only choose the primers from the unique region of

SOGA1-1 when compared to SOGA1-2. All siRNAs are aligned

with their potential off-target genes before primers are selected for

the off-target genes (Fig. S1). The reference genes POLR2A, TBP

and RPLP0 are used to normalize the cDNA concentrations of

each sample [57]. Two to three technical replicates on qPCR

plates are performed for each biological replicate.

The E-method relative quantification is used for the data

analysis. E-method provides more precisely normalized relative

quantification of interested gene expressions between control and

treated samples. E-method takes into consideration the PCR

efficiency differences among interested genes and reference genes

in its formula [58]:

normalized relative ratio

~
E

(CPG (Neg:control){CPG (Treated:sample))

Gene

E
(CPR(Neg:control){CPR(Treated:sample))

Reference

EGene and EReference are the efficiency values calculated from

qPCR standard curves for the interested and reference genes. CPG

(Neg.control) and CPG (Treated.sample) are the averaged raw Cp values

from the technical replicates for the interested gene. CPR

(Neg.control) and CPR (Treated.sample) are the averaged raw Cp

values from the technical replicates for the reference gene.

Statistical Analysis
Three biological replicates for each siRNA treatment are

performed and quantified by qPCR. A one-sided t-test was

performed to test for the difference in the expression level of the

off-target gene between treatment using the siRNA associated with

the predicted off-target and the treatments using other siRNAs for

the same target gene.

Supporting Information

Figure S1 Sequence alignments and hybridizations
between siRNAs and off-target genes. FASTA is used for

sequence alignments between siRNA sense strand and mRNA for

primer design. RNAhybrid is used to identify potential hybridiza-

tions between siRNA anti-sense strand seed region and mRNA

[59].

(DOCX)

Table S1 List of all siRNA sequences used in this paper.
Included in the list are the siRNA sources, target genes, ID (if

available), names, and sense and anti-sense strand sequences.

(XLSX)

Table S2 Formatted PICKY output for all siRNAs used in
this paper. PICKY output is separated into three worksheets: self-

designed siRNAs, commercial siRNAs (IDT) and commercial

siRNAs (Sigma). Among the listed siRNAs, 11 have predicted off-

target genes with thermodynamic scores below 10, and all such off-

targets are listed. The other 20 siRNAs have no predicted off-

target genes with thermodynamic scores below 10, thus only the

off-target gene with the lowest thermodynamic score is listed. The

specific meaning of each value in the file is explained at the

beginning of the ‘self-design siRNAs’ spreadsheet.

(XLSX)

Table S3 qPCR primer list. The specific transcripts that can
be amplified by the primers are listed.

(XLSX)

Table S4 PICKY, Mismatch and BLAST off-target screen-
ing comparison. The thermodynamically ranked PICKY off-

targets for each siRNA candidate are compared to their ranking

based on mismatch count (the method adopted by siDirect; see

spreadsheet ‘‘Mismatch comparison’’) and to their ranking based

on BLAST (the method adopted by siDesign; see spreadsheet

‘‘BLAST comparison’’). For mismatch count based off-target

prediction, it can be observed that a higher mismatch count does

not always reflect the off-targeting tendency predicted by

thermodynamics – either a stronger potential off-target can be

overlooked because of a higher mismatch count (orange rows), or

a weaker potential off-target can be overestimated, thus causing

a good siRNA to be rejected, due to a lower mismatch count (the

blue row). Generally, mismatch counts do not directly reflect off-

targeting potentials (yellow rows). For BLAST based off-target

prediction, the small variations in E-values do not reflect the large

variations of off-target potential predicted by thermodynamics

(orange rows). Some potential off-targets were missed by BLAST

even at relaxed search parameters (pink rows). Generally, BLAST

ranking does not reflect the thermodynamically predicted off-

target potential (yellow or cyan rows).

(XLS)
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