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Abstract

Single-molecule real time trajectories are embedded in high noise. To extract kinetic or dynamic information of the
molecules from these trajectories often requires idealization of the data in steps and dwells. One major premise behind the
existing single-molecule data analysis algorithms is the Gaussian ‘white’ noise, which displays no correlation in time and
whose amplitude is independent on data sampling frequency. This so-called ‘white’ noise is widely assumed but its validity
has not been critically evaluated. We show that correlated noise exists in single-molecule real time trajectories collected
from optical tweezers. The assumption of white noise during analysis of these data can lead to serious over- or
underestimation of the number of steps depending on the algorithms employed. We present a statistical method that
quantitatively evaluates the structure of the underlying noise, takes the noise structure into account, and identifies steps
and dwells in a single-molecule trajectory. Unlike existing data analysis algorithms, this method uses Generalized Least
Squares (GLS) to detect steps and dwells. Under the GLS framework, the optimal number of steps is chosen using model
selection criteria such as Bayesian Information Criterion (BIC). Comparison with existing step detection algorithms showed
that this GLS method can detect step locations with highest accuracy in the presence of correlated noise. Because this
method is automated, and directly works with high bandwidth data without pre-filtering or assumption of Gaussian noise, it
may be broadly useful for analysis of single-molecule real time trajectories.
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Introduction

The advent of single-molecule techniques [1,2,3,4,5,6,7] in

recent years brought many interesting discoveries in chemistry,

physics, and life sciences. One unique advantage of single-

molecule technique is the ability to measure molecular processes

in a heterogeneous environment without the need of synchronizing

these molecules, and to unveil the static and dynamic disorders

among individual molecules [1]. One broad class of single-

molecule measurement is movement of molecular motors in real

time. These molecular motors move in steps [8,9,10,11,12].

Statistics on their movement trajectories can reveal rich mecha-

nistic information that is often inaccessible from conventional bulk

experiments.

Different types of statistical tools have been developed for

analysis of these data to extract characteristics of motor

movement. For stepping of molecular motors that can be observed

directly from time trajectories, pairwise distance distribution

analysis was among the first to be used for this task [13]. A

Fourier analysis of the pairwise distance distribution histogram can

reveal the periodicity in single-molecule trajectories, which is an

objective measure of motor step size. Application of this method to

different molecular motors has revealed their apparent step sizes of

movement [11,14,15,16,17], although this analysis does not yield

information on the dwell time in between motor steps, which is

essential in deducing the coupling of fuel molecule to motor

movement. To this end, algorithms for detection of both steps and

dwells have been developed by investigators

[18,19,20,21,22,23,24,25], and the performance of several meth-

ods has been quantitatively compared [26]. In particular, the

algorithm developed by Kerssemakers et al. [19] (referred as

KERS herein) has found increasing use in different motor systems

[27,28,29]. In this method, the original data was assumed to be a

step function buried in Gaussian noise. The motor steps are found

in successive iterations: the plateaus of the steps identified in a

previous cycle are further divided to find additional steps. The

quality of the fit was assessed using a statistic S, which is the ratio

between the Chi-squared of a counter fit and the Chi-squared of

the best fit. For molecular motors that can be measured at single-

molecule level but whose individual steps are obscured by

measurement noise, techniques have also been developed to

extract step size information from variance in long trajectories of

motor movement [30]. Under these circumstances, even though

the individual steps of the motor cannot be identified directly from

time traces [31,32,33], estimation of motor step size using this

technique has yielded values that are comparable to results from

other complementary approaches [34].
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Despite the diversity of these different step-detection algorithms,

a common practice is the assumption of Gaussian white noise in

the experimental data, which is independently distributed and

shows no correlation with regard to time. This assumption may be

true in certain cases, but has not been thoroughly validated in

general. Any noise that has frequency-dependent amplitude will

deviate from Gaussian white noise. This so-called ‘colored’ noise

displays autocorrelations and widely exists in nature [35]. For

example, colored noise is typically present in lasers that are used to

form optical tweezers. Both intensity and pointing stability of the

laser display noise whose amplitudes depend on bandwidth

[36,37]. As we show, colored noise is present in single-molecule

real time trajectories collected from optical tweezers. The

assumption of Gaussian white noise for single-molecule data that

contains colored noise can result in significant fitting errors. It is

thus critical to assess the structure of the noise when analyzing

these single-molecule trajectories. We have developed a statistical

step detection algorithm based on Generalized Least Squares

(referred as GLS herein) that explicitly takes the structure of the

noise into account. This algorithm allows one to identify motor

steps and dwells directly from time trajectories in the presence of

highly autocorrelated noise and provides standard errors and

confidence intervals associated with these steps. There is no

assumption on a single unique step size in this algorithm. Indeed,

variation in size of steps can be fully taken into account [38].

There is no requirement on the motor to be highly processive [30].

The time trajectory can still be analyzed even though the motor

can detach from its track prematurely. We present this method in

detail and compare it with the KERS method. As we demonstrate,

this GLS method can detect steps with highest accuracy in the

presence of correlated noise, which can significantly minimize

errors in data analysis and interpretation. Because this GLS

method can work with high bandwidth data directly without any

pre-filtering, it may be broadly applicable to single-molecule data

analysis in general.

Results and Discussion

Correlated Noise in Single-molecule Trajectories
The structure of noise in a real time trajectory can be revealed

by calculating the autocorrelation function (ACF) of the data.

Gaussian white noise will display a delta function while

autocorrelated noise will show an exponential decay for its ACF.

We have extensively computed the ACF for real time single-

molecule trajectories collected with high resolution optical

tweezers [38]. A typical result is shown in Fig. 1A, which shows

a clear exponential decay. In contrast, a simulated Gaussian white

noise shows the expected delta function (Fig. 1B). This result

demonstrates that the experimental single-molecule trajectory

indeed contains correlated noise, i.e., the noise amplitude at the

current moment is a function of past noise and some random

error, which induces a correlation structure in the noise. The order

of this correlation structure can be further assessed using the plot

of partial autocorrelation function (PACF) [39]. Gaussian white

noise will display zero everywhere throughout the PACF while for

autocorrelated noise of order p, the PACF is zero for lags greater

than p and non-zero otherwise [39]. As shown in Fig. 1C, the

corresponding PACF of Fig. 1A shows non-zero amplitude before

lag 7 and zero thereafter, highlighted by the horizontal dashed

lines that indicate the 95% confidence intervals under the null

hypothesis of no correlation, thereby suggesting an order 7 for this

noise, i.e., the noise is a function of past seven values of noise and

some random error. In contrast, the simulated Gaussian noise has

zero amplitudes everywhere throughout the PACF (Fig. 1D).

Step Detection in the Presence of Correlated Noise
The above results show that experimental single-molecule

trajectories contain noise that is correlated in time. Would it still

be fine to assume Gaussian white noise when we analyze these

traces? To address this question, we have developed a step

detection method using GLS (Materials and Methods). In this

method, we have the option of assuming Gaussian white noise for

the data to be analyzed, or explicitly take the structure of the noise

into account based on PACF analysis. To examine the impact of

Gaussian noise assumption on data analysis, we generated

simulated single-molecule trajectories embedded in autocorrelated

noise, and compared step detection with and without Gaussian

assumption for the added noise. In addition, we also analyzed the

same set of traces using KERS method in order to compare with

the GLS method. Fig. S1A shows a simulated step function that

resembles real time RNA unwinding traces based on our recent

publication [38]. It consists of a series of upward steps that are

occasionally interrupted by downward steps. We represent the

time axis by indexing integers for easy identification. We then

added noise to the step function to generate mock unwinding

traces. One such realization is shown in Fig. S1B. The noise is

simulated from an autoregressive process of order 7 (Fig. 1C), with

coefficients 0.222, 0.072, 0.035, 0.015, 0.016, 0.003 and 0.013 that

are typically found from the published single-molecule trajectories

[38]. We independently simulated the noise 100 times to generate

100 mock traces. We then use three different procedures to

identify steps and dwells in these traces and compare them: (1) the

GLS method; (2) exactly the same procedure as GLS method but

ignoring autocorrelation in the noise, i.e., assuming Gaussian

white noise even though the added noise is correlated; and (3) the

KERS method.

Fig. 2 shows the histograms of the number of steps detected

from the above procedures. As listed in Table 1 and shown in

Fig. 2A, the GLS method on average detected 34 steps from these

traces, ranging between 23 and 40, which compares very well with

the total number of 33 steps in the simulated step function. Fig. 3A

shows a representative best fit (red line) from this procedure, which

shows close resemblance to the original step function (blue dashed

line). Repeating the same procedure but ignoring autocorrelation

in the noise vastly overestimates the number of steps, with a mean

of 66 steps, ranging between 45 and 91 (Fig. 2B). Fig. 3B shows a

representative best fit from this second procedure. Comparison

between Fig. 3B and Fig. S1 suggests that majorities of the steps in

the simulated trace were identified, but a significant fraction of

these steps are false positives, because they do not exist in the

original trace. These false positives were identified as a result of the

autocorrelated noise, which was not accounted for in this step detection

procedure. To confirm the impact of this correlated noise on step

detection, we used the same step function as shown in Fig. S1, but

added Gaussian white noise, and repeated the same step detection

procedure. Fig. S2A shows a representative best fit from this

procedure. Interestingly, it now detects correct number of steps on

average (Table 1). These results demonstrate that the structure of

the underlying noise in a single-molecule trajectory has a profound

impact on the outcome of step detection. The assumption of

Gaussian white noise on otherwise correlated noise can lead to a

significant overestimation for the number of steps in a trace.

In contrast to the second procedure, the KERS method vastly

underestimates the number of steps, with a mean of 5 steps and a

range between 4 and 8 (Fig. 2C). Fig. 3C shows a representative

best fit from KERS method. Fig. 3D shows the S-statistic obtained

throughout the 100 mock traces. For each realization, the S-

statistic from the original step function (true S value) was shown as

crosses and that from the best attempted fit was shown as red dots.

Step Detection in Single-Molecule Trajectories
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Although the true S values are generally higher than those from

the best attempted fits (indicating a better fit), the S-statistic from

the attempted fits are within random variable limits of the true S

value as indicated by the horizontal 95% confidence interval lines.

This result suggests that the KERS method can give results that

deviate significantly from reality. One possible reason behind this

is the high bandwidth of the data (2.5 kHz). To test this, we used a

boxcar filter with a window size of 10 to filter and decimate the

trace, and attempted again with KERS method. A representative

result is shown in Fig. S2B. It now detects 11 steps instead of 4,

closer to reality but still much lower than the true value of 33. This

result suggests that the KERS method is highly dependent on the

bandwidth of the data, and was not able to correctly identify the

steps in the original trace even after filtering. As a result, the clear

advantage of GLS method is that it can work with high bandwidth

data directly without any filtering. In summary, noise structure

should be accounted for in single-molecule data analysis.

Assumption of Gaussian white noise can lead to either over- or

underestimation of the number of steps depending on the

algorithms used. Moreover, the GLS method outperforms the

KERS method (which assumes Gaussian white noise) and on

average detects the correct number of steps.

Despite being the best among the three procedures, results

shown in Fig. 2A and Table 1 indicate that the GLS method can

still over- or underestimate the number of steps in a trace. To

examine these deviations in more detail, Table 2 shows the

statistics of false positives (non-existing steps but detected as a step)

and true negatives (true steps that were not detected) from the

Figure 1. Correlated noise in single-molecule real time trajectories. The autocorrelation function (ACF) and the partial autocorrelation
function (PACF) for AR noise of order 7 as observed in a typical RNA unwinding trace (A and C). The plots from simulated Gaussian noise were also
shown for comparison (B and D). The horizontal lines indicate the 95% confidence intervals under the null hypothesis of no correlation. For the AR(7)
noise, the ACF shows exponentially decay while the PACF gradually cuts off, i.e. goes to zero after lag 7. For Gaussian noise, the ACF is 1 at lag 0 and
zero for other lags while the PACF is zero for all lags.
doi:10.1371/journal.pone.0059279.g001

Table 1. Summary of number of steps detected from 100
realizations of the simulated traces.

Min. 1st Qu. Median Mean 3rd Qu. Max.

(a) GLS 23.00 33.00 35.00 33.79 36.00 40.00

(b) Ignoring
correlation

45.00 56.00 63.50 65.64 75.00 91.00

(c) True Gaussian 26.00 28.00 30.00 29.75 31.00 36.00

(d) KERS 4.00 4.00 4.00 4.74 5.00 8.00

Four different procedures were used to detect steps, where Procedure (a), (b)
and (d) are for traces with correlated noise analyzed with GLS method (a),
ignoring noise correlation and assuming Gaussian noise (b) and the KERS
method (d); Procedure (c) was done for traces with Gaussian white noise that
were analyzed using the GLS method.
doi:10.1371/journal.pone.0059279.t001

Step Detection in Single-Molecule Trajectories
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mock traces analyzed with the GLS method. On average, the

median of false positives was 1. The median of true negatives was

zero with 75% of the traces having at most 2 true negatives. This

result suggests that GLS does a very good job in identifying almost

all the steps that are present, although it can occasionally detect

false positives. Fig. 4 further shows the fraction of traces in which a

given step was detected. Over the total 33 simulated steps, 70% of

them were detected every time by GLS. The steps whose detection

efficiency drops below 90% (indicated by the red dashed line) are

usually the transient steps, i.e., those steps that have very short

dwell times in between, as seen from Fig. S1B. Specifically, these

are steps # 1 (31 ms), # 6 (18 ms), # 7(18 ms), # 29(80 ms), #
30(80 ms) and # 31(84 ms), where the dwell times in milliseconds

are noted in parentheses. These dwell times are relatively short in

comparison to other dwells, which ranged between 0.1 and 2.25 s.

Still, the detection efficiency for all these transient events is greater

than 65%, which is in contrast to KERS method where detection

of transient steps depends on filtering and is below 50% even for

filtered data (Fig. S2B). This is a very important feature of GLS

method, because one of the distinct advantages of single-molecule

real time measurement is to reveal transient events. If step detection

requires data filtering, then these transient events are likely to be masked as a

result of filtering.

The duration of dwells in between steps are of significant

interest in single-molecule real time trajectories. These dwells are

computed as the time elapsed between two steps. Typically, these

dwells represent the waiting time the motor has to take before next

motion, which is usually coupled to fuel binding under limiting fuel

concentrations. It is therefore important to quantitate the accuracy

with which a step location can be identified. To this end, we first

detected steps using GLS method from the set of test traces. We

then quantified the deviation of the identified step location from its

true step location. This deviation is computed as the difference in

time (data index) between the two, which is further normalized by

the lengths of the true dwell time before and after that step (Fig. 5).

For example, imagine the dwell to the left of a true step location be

of length 50 and to the right be length 100. If the step is identified

10 points to the left of the true location we indicate its deviation as

220%; if the step is identified at the exact location then it is 0%;

and if it is identified 30 points to the right of the true step location,

we indicate it as +30%. Fig. 5 shows the percentage of deviation

for each step as computed above from GLS method. It can be seen

that for most of the steps, the step deviation is close to zero on

average. The majorities of the deviations are within 620% of the

true step locations, as indicated by the red solid lines.

In summary, the GLS method can efficiently identify almost all

the steps in a single-molecule trajectory, and the step locations

were identified with very good precision. Recently, the exact same

method has been applied to the single-molecule unzipping

trajectories of the hepatitis C virus NS3 RNA helicase [38]. The

advantages of this method to work with high bandwidth raw data

without any pre-filtering or assumption of Gaussian noise, and its

ability to detect transient steps are likely to be useful for single-

molecule real time data analysis in general.

Materials and Methods

Partial Autocorrelation Function (PACF)
Compared to ACF, the PACF for a time series is the correlation

between time lags after removing the effects of the intermediary

points. Please see Supporting Information for further details.

Step Detection Framework using GLS
For a single-molecule real time trajectory measured from time

t = 0 to t = T, we denote the times at which the k steps of the

trajectory occur with tj, j = 1,…,k. The steps in a trace can be set

up as a regression function given by

yt~b0zb1I(t§t1)z:::zbkI(t§tk)zet ð1Þ

where yt, t = 0,…, T is the observed trace; I(t $ tj; j = 1,…,k) are

indicator functions such that I(t $tj) = 1 and 0 otherwise (similar to

the Heaviside step function). et is the underlying noise. Here b0 is

the baseline at which the trace begins at t = 0 and bj, j = 1,…, k are

the step sizes of the k steps, with a negative value indicating a

downward step.

In general, et is assumed to be independent and identically

distributed (i.i.d) as zero-mean Gaussian noise N(0, s2) with

variance s2 [18,19,20,21,22,23,26], in which case one can obtain

least squares estimates (LSE) for the parameters bj, j = 0,…, k. Let

H= {b0,…, bk; s2} denote the vector of parameters to be

estimated. Let fH(N) denote the density function of the error term et

dependent on the parameter vector H. The parameter H, may be

estimated by maximizing the likelihood function given by

Figure 2. Histogram of the number of steps detected from 100 realizations of the simulated traces. (A), (B) and (C) show the results from
GLS method, GLS method but ignoring the correlation in the noise and KERS method, respectively.
doi:10.1371/journal.pone.0059279.g002
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L(HDy0,:::,yT )~ P
T

t~0
fH(et) ð2Þ

or equivalently the log-likelihood function given by

l(HDy0,:::,yT )~ P
T

t~0
log(fH(et)) ð3Þ

Estimates obtained using Eq. 2 or 3 is referred to as maximum

likelihood estimates (MLE). In the case of i.i.d Gaussian noise, LSE

and MLE are identical. As the number of parameters in H
increases, i.e. the number of steps increases, the likelihood L or l

will increase (or equivalently in the Gaussian case, the residual sum

of squares will decrease). This can create a tendency to overfit, i.e.,

more steps can always produce a better fit than less. To avoid

over-fitting the trace we present two criteria to choose the optimal

number of steps. The Akaike Information Criterion (AIC) given by

AIC(p)~{2l(H)z2p ð4Þ

and Bayesian Information Criterion (BIC) given by

BIC(p)~{2l(H)zp log (n) ð5Þ

where p is the total number of parameters to be estimated in the

model, n is the number of observations and l(H) is the log-

likelihood function given in Eq. 3. As the negative log-likelihood

decreases with increasing number of parameters, both AIC and

BIC penalize by the number of parameters in the model. For n

.7, the BIC offers a higher penalty to the model. The model with

the least AIC or BIC value is chosen as the optimal model.

So far we have assumed that the underlying noise et is i.i.d

Gaussian. This assumption may be violated, as shown in Fig. 1

from single-molecule traces collected with high-resolution optical

tweezers. In such cases, the noise is autocorrelated. A general

procedure to model autocorrelated noise is to use an autoregres-

sive (AR) noise of order p [39], given by

et~w1et{1z:::zwpet{pzet et*N(0,s2) ð6Þ

i.e. the noise is a function of p past values of the noise and a

random error, which induces correlation in the noise. We assume

that AR noise is second order stationary, i.e., the mean is constant

(zero) and the correlation between any two time points is

dependent only on the lag h between them and not on the

absolute time.

In the presence of autocorrelated noise, least squares can be

expected to give unbiased estimates of the parameters but will not

be efficient, i.e., parameters will have higher variances amongst all

unbiased estimators unless et is uncorrelated with constant

variance [40,41]. Thus the estimates are not suitable for purposes

of inference. To find the optimal solution in the presence of

autocorrelated noise, one resorts to GLS [42]. To realize GLS

efficiently, we rewrite Eq. 6 as

W(B)et~et ð7Þ

where

W(B)~1{w1B{:::{wpBp ð8Þ

and B is the backward shift operator such that Bpet = et-p. Applying

the filter given by Eq. 8 to Eq. 1, we get

W(B)yt~b0
0zb1W(B)I(t§t1)z:::zbkW(B)I(t§tk)zW(B)et ð9Þ

yt
�~b0

0zb1x�1z:::zbkx�kzet ð10Þ

One can see from Eq. 10 that the error term is now i.i.d

Gaussian and we can estimate the parameters of the model as

before using this transformed equation. This transformation

procedure, referred to as the Cochrane-Orcutt scheme [43], is

computationally feasible for long time series as in high bandwidth

single-molecule data.

Based on the above framework, one needs to know the order of

the AR noise p in order to estimate the step size. The order p is

determined and the corresponding coefficients are estimated as

part of the GLS procedure. First, the steps are fitted assuming i.i.d

Gaussian noise. The resulting residuals are examined for any

autocorrelation. If the noise is indeed i.i.d Gaussian, then no

further steps are required. If the noise is autocorrelated, then the

order and coefficients are determined for the noise using standard

time series estimation techniques [39]. Having estimated p and the

coefficients, the step sizes are re-estimated using the Cochrane-

Orcutt scheme described above and the BIC value associated with

the fit is computed. After each round of fitting, we used student t-

test to compute the p-value for each step and removed the step

with the largest p-values from each fitting process. This process is

then repeated until no further steps are left, and thus generated a

series of fits with different BIC values for the original trajectory.

The fit with the lowest BIC among all was chosen as the final

model.

Figure 3. Over- and underestimates of step numbers in the test simulated traces. (A) A representative best fit by the GLS method for data
that contains correlated noise; the 2.5 kHz test trace is shown in grey and the fit is shown in red. The original step function is shown in blue dashed
line for comparison. (B) One of the best fits obtained from GLS method by ignoring correlation for data that contains correlated noise; the 2.5 kHz test
trace is shown in grey and the fit is shown in red. (C) and (D) Fit and S-Statistic distribution from KERS method. (C) One of the best fits from KERS
method; the 2.5 kHz test trace shown in grey and the fit is shown in red. (D) Distribution of S-statistic as a result of fitting using KERS method. The
crosses are the S-statistic from the known step function and the red dots from the best fit for each trace.
doi:10.1371/journal.pone.0059279.g003

Table 2. Summary of false positive and true negative steps
from 100 realizations of the simulated traces.

Min. 1st Qu. Median Mean 3rd Qu. Max.

False positives 0.00 1.00 1.00 1.52 2.00 6.00

True negatives 0.00 0.00 0.00 1.63 2.00 8.00

The traces contained correlated noise and the steps were identified using GLS
method to take the noise structure explicitly into account.
doi:10.1371/journal.pone.0059279.t002
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Obtaining a Superset of Plausible Step Locations
To implement the above GLS procedure, one requires a set of

plausible step locations to start with, from which an optimal

number of steps can be chosen to fit the experimental trajectory.

To this end, we developed a statistic g to generate the superset of

plausible step locations as follows.

We represent each of the data point in the trace as yi (i = 1,…,n).

Consider a window of size 2w+1 centered at the data point, i.e.,

there are w data points on either side of the given point. We

represent this window using the vector yi,w = {yi-w,…, yi,…, yi+w}.

At the ends of the series with indices less than w or greater than n-

w, w is set to i-1 and n-i-1 respectively. Let yi,w
(min) and yi,w

(max)

denote the minimum and maximum of the data points in yi,w, then

Ri,w = yi,w
(max)–yi,w

(min) denotes the range of the points within this

window. Now consider the two halves of the window, the left half

yi,l = {yi-w,…, yi} and the right half yi,r = {yi,…, yi+w}. Let qi,l and

qi,r denote the vectors comprising the 0.25, 0.5 and 0.75th quantile

of the data in yi,l and yi,r respectively. We form the statistic

gi,w~
(qi,l{qi,r):(qi,l{qi,r)

t

3:R2
i,w

ð11Þ

where t denotes the transpose of the row vector. gi,w is thus the

mean squared difference of the quartiles on either side of the point

i normalized by the square of the range Ri,w. Normalization

provides an upper bound of 1 for gi,w. If the distribution of the

points on either side of i is identical then one would expect gi,w to

be close to zero. Conversely, if the distribution on either side of i is

different, gi,w is expected to be greater than zero. At step locations

where the difference in the distributions on either side of the step

point might be the greatest, one would expect the statistic g to

increase to a local maximum right at the step location and

decrease thereafter, forming local peaks around the step. The

advantage of this statistic as compared to others is its sensitivity to

changes in the overall shape and distribution of the data, i.e., the

use of quartile that includes both the center and tail regions of the

data points instead of a single mean value used in the popular t-test. Fig.

S3A shows the value of the statistic g for all the points in the

simulated trace shown in Fig. S1B using w = 500. The peaks can

thus be considered as possible locations of motor steps. The choice

of a window size is important. In reality, if the window size is too

big, the variation in g will be smoothed out and one may miss the

peaks corresponding to motor steps. To avoid this problem, we

have used a set of windows of varying size, which range from 10 to

100 in steps of 10 and from 100 to 1000 in steps of 25, thus

essentially make this procedure insensitive to data bandwidth and

no need to filter data before analysis. Furthermore, a cutoff

threshold, either 0.90th or 0.95th quantile of g was adopted. Only

data points with g above the cutoff are considered in the superset

of plausible steps. This procedure is adopted mainly to reduce

computational burden. In practice, this threshold can be changed

by the user. The lower the threshold, the greater the number of

points chosen and thus greater computational burden. Fig. S3B

shows the value of g from various windows (only a subset of the

windows plotted for clarity of display) stacked on top of each other.

The peaks chosen in each w using a cutoff threshold of 0.9 are

highlighted by the red dots, which constitute the superset of

Figure 4. Efficiency of step detection using GLS method. The proportion of the traces in which a given step was detected was plotted as a
function of the step index. The red dashed line indicates 90%.
doi:10.1371/journal.pone.0059279.g004
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plausible change points CL. Because majority of the red dots in

Fig. S3B identify the same point, the number of points included in

the final CL is much less than the total number of red dots in the

figure.

The entire GLS algorithm was coded using ‘R’ [44], the

statistical package that is freely available for download (http://

www.r-project.org/). The R code together with instructions on

how to run the algorithm to detect steps in real time single-

molecule trajectory is freely available upon request.

Supporting Information

Figure S1 Simulated single-molecule RNA unwinding
trajectory. Panel (A) shows the simulated step function, which

indicates the true underlying steps; (B) shows one realization of

simulated unwinding trace after addition of AR noise of order 7 on

top of the step function shown in (A). The step function is shown in

red, and the trajectory with noise is shown in grey.

(TIF)

Figure S2 Representative best fits of simulated RNA
unwinding traces from two different procedures. Panel

(A) shows one of the best fits obtained from GLS method. The

trajectory was simulated from the step function shown in Fig. S1A

plus Gaussian white noise. The fit is in red, and the trajectory at

2.5 kHz is in grey. Panel (B) shows one of the best fits for simulated

trajectories obtained from KERS method. The trajectory was

simulated from the step function shown in Fig. S1A plus correlated

noise of AR(7), and further filtered and decimated to 250 Hz using

a boxcar filter. The fit is in red, and the trajectory at 250 Hz is in

grey.

(TIF)

Figure S3 The statistic g computed for the simulated
single-molecule trace in Fig. S1B. (A) from a window size of

500 and (B) shows a stack of g calculated using a set of window

size, which includes 10, 30, 40, 50, 60, 70, 80, 90, 100, 125, 200,

275, 350, 425, 500, 575, 650, 725, 800, 875, and 950.

(TIF)

Text S1 Procedures to calculate the partial autocorre-
lation function for a time series.

(DOCX)
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Figure 5. Precision of identified step location using GLS method. Deviation of a step from its true location as a percentage of the plateau
length was plotted as a function of the step index in a box plot. The cyan boxes indicate the middle 75% of the data or the interquartile range (IQR).
The extended lines or whiskers mark the 1.56IQR distance. Any point greater or less than this value is an outlier and are shown by the dots.
doi:10.1371/journal.pone.0059279.g005
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