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Abstract

Glyphosate is a non-selective broad-spectrum herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS,
also designated as AroA), a key enzyme in the aromatic amino acid biosynthesis pathway in microorganisms and plants.
Previously, we reported that a novel AroA (PpAroA1) from Pseudomonas putida had high tolerance to glyphosate, with little
homology to class I or class II glyphosate-tolerant AroA. In this study, the coding sequence of PpAroA1 was optimized for
tobacco. For maturation of the enzyme in chloroplast, a chloroplast transit peptide coding sequence was fused in frame
with the optimized aroA gene (PparoA1optimized) at the 59 end. The PparoA1optimized gene was introduced into the tobacco
(Nicotiana tabacum L. cv. W38) genome via Agrobacterium-mediated transformation. The transformed explants were first
screened in shoot induction medium containing kanamycin. Then glyphosate tolerance was assayed in putative transgenic
plants and its T1 progeny. Our results show that the PpAroA1 from Pseudomonas putida can efficiently confer tobacco plants
with high glyphosate tolerance. Transgenic tobacco overexpressing the PparoA1optimized gene exhibit high tolerance to
glyphosate, which suggest that the novel PpAroA1 is a new and good candidate applied in transgenic crops with
glyphosate tolerance in future.
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Introduction

Currently, genetically modified (GM) crops are cultivated on

the fields of 148 million hectares around the world [1]. Up to date,

twenty-nine countries have approved planting of biotech crops and

another thirty countries have approved import of biotech products

for food and feed use. Globally, about 61% of GM crops are en-

gineered for herbicide resistance (HR), including soybean, maize,

canola, cotton, sugarbeet and alfalfa [1]. Glyphosate-resistant

(GR) trait has been dominant in HR technology planted [2]. Since

1996, this trait has been rapidly adapted in soybean, cotton, maize

and canola. GR crops marketed as Roundup Ready occupy the

greatest acreage [2].

Glyphosate is a non-selective broad-spectrum herbicide that

blocks plant growth by inhibiting 5-enolpyruvylshikimate-3-phos-

phate synthase (EPSPS, also designated as AroA) [3]. AroA is a key

enzyme in the aromatic amino acid biosynthesis pathway in bac-

teria, fungi and higher plants [4]. Glyphosate also inhibits import

of AroA into the chloroplast [5], which may contribute to the

herbicide mode of action.

Transgenic plants engineered with glyphosate resistance have

been developed by over-expression of wild-type AroA [6] or AroA

enzymes with glyphosate resistance [7,8,9,10]. Commercially,

glyphsoate-resistant crops with acceptable levels of tolerance to the

herbicide have been obtained only using the latter approach [10].

There are two classes of glyphosate-resistant AroA that have

been reported. Class I AroA, originally a glyphosate-sensitive

enzyme, can be converted into its glyphosate-tolerant form by

introducing a point mutation. Glyphosate tolerance in transgenic

tobacco was first reported by expressing the P101S substitution

mutant of Salmonella typhimurium AroA [7,11]. Another case was a

G96A substitution mutant of AroA in transgenic petunia [12,13].

There were other genetic manipulations of bacterial AroA to

reduce its affinity to glyphosate and conferred transgenic plants for

glyphosate-tolerance [10,14]. Class II AroA, which shares less than

30% amino acid identity with Class I AroA, has natural tolerance

to glyphosate with high affinity for PEP [8,15]. Currently, most

commercial crop plants with glyphosate tolerance contain a Class

II AroA from Agrobacterium spp. CP4. Several agronomic crops

including maize and canola are transformed with both CP4 and

glyphosate oxidase (GOX) genes together [16,17].

From an extremely glyphosate-polluted environment in China,

we have previously isolated a Pseudomonas putida strain (4G-1). A

genomic library was generated, and subsequently screened in a

glyphosate-sensitive Escherichia coli strain. As a result, a novel aroA

gene (PparoA1) encoding a glyphosate-tolerant AroA was obtained
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[18,19]. Phylogenetic analysis revealed that this AroA (PpAroA1)

belongs to neither class I nor class II AroA enzymes. When com-

pared with AroA from Escherichia coli, PpAroA1 from Pseudomonas

putida showed a 300-fold-higher Ki[glyphosate] value and similar

Km[S3P] value and Km[PEP] value [18]. These favorable kinetic

properties of this enzyme underpin a good potential of application

in glyphosate-tolerant transgenic plant. In this study, attempts

have been made to investigate if the optimized aroA gene

(PparoA1optimized) and its coding enzyme (PpAroA1) from Pseudo-

monas putida can provide high tolerance to glyphosate in transgenic

plants. Our results show that this novel PpAroA1 can efficiently

confer tobacco plants with high tolerance to glyphosate.

Results

Generation of tobacco primary transformants
In previous report, we have identified a novel AroA from

Pseudomonas putida 4G-1 with high tolerance to glyphosate, which

showed little homology to class I as well as class II AroAs.

Surprisingly, when compared with AroAs identified from other

Pseudomonas putida strains, this novel AroA (designated as PpAroA1)

showed very little (28%) identity to them [18]. Phylogenetic

analysis indicated that PpAroA1 is evolutionary distant from other

known Pseudomonas AroAs (Fig. 1).

In order to predict the expression of PparoA1 as a heterogenous

gene in different host (for instance, tobacco in this study), codon

adaptation index (CAI) was used in calculation [20]. The result

showed that PparoA1 has a CAI value (,0.7) in tobacco (Nicotiana

tabacum), suggesting that it could be applied directly for generating

transgenic plants in it (for details, see discussion). Moreover, the

codon bias of the PparoA1 gene in tobacco was further adjusted by

synthesizing a PparoA1optimized gene. As a result, the PparoA1optimized

has got a more extreme codon bias, with a CAI value higher than

the PparoA1 in tobacco (.0.9, Fig. S1).

In plant, AroA is a chloroplast-localized enzyme and the

localization is directed by the amino terminal chloroplast transit

peptide [21]. Therefore, the chloroplast transit peptide encoding

sequence from Arabidopsis thaliana AroA was fused in frame with

PparoA1optimized gene. Subsequently, the above gene fusion was

cloned into the binary T-DNA vector pBI121 [22]. As a result, the

expression of the gene fusion was under the control of CaMV 35S

promoter (the construct designated as pBI121-PparoA1optimized,

Fig. 2). The construct was transferred into tobacco (Nicotiana tabacum

L. cv. W38) leaf callus tissue via Agrobacterium-mediated transfor-

mation. To avoid false positive transformants that may be

generated from direct screening for glyphosate tolerance, T-

DNA mediated transformants were first screened for kanamycin

resistance, a marker carried from the vector pBI121. In this case,

60 primary transformants containing PparoA1optimized were ob-

tained. Transgenic tobacco transformed with the empty vector

pBI121 was used as negative control (designated as ‘‘vector

control’’) in this study.

Obtaining transgenic tobacco plants with glyphosate
tolerance

To measure the glyphosate tolerance, the above 60 primary

transgenic tobacco lines containing PparoA1optimized were tested by

spraying RoundupTM with a commercial recommended dose. The

results showed that six out of 60 primary transgenic tobacco lines

survived with no leaf damage, one week after the treatment

(Fig. 3A). These six transgenic tobacco plants were chosen for

further studies (designated as Transgenic Line Nt304, Nt305,

Nt315, Nt316, Nt320 and Nt323 respectively).

The following experiments were carried out on these transgenic

lines. First, the presence of AtCTP-PparoA1optimized gene fusion in

these transgenic lines was confirmed by PCR (data not shown).

Secondly, the copy number of T-DNA integration in these

transgenic lines was determined by Southern blotting (Fig. 3B). In

this case, only one hybridization band has been detected in

glyphosate tolerant tobacco. In contrast, no hybridization could be

Figure 1. Phylogenetic analysis of Pseudomonas AroA proteins.
PpAroA1 (AJ812018) and PpAroA2 (HM992507) are from Pseudomonas
putida 4G-1. Other AroAs are from Pseudomonas putida F1 (NC_009512),
KT2440 (NC_002947), GB-1 (NC_010322) and W619 (NC_010501). The
phylogenetic tree was constructed using Maximum-Parsimony method
in MAGE.
doi:10.1371/journal.pone.0019732.g001

Figure 2. Structure of plasmid pBI121-PparoA1optimized. The gene
cassette was cloned into pBI121 binary vector between the T-DNA left
and right borders (LB and RB). Pnos, nopaline synthase promoter; P35S,
cauliflower mosaic virus 35S promoter; Tnos, nopaline synthase
terminator; NptII, neomycin phosphotransferase II gene; CTP, encoding
sequence of chloroplast transit peptide from Arabidopsis thaliana AroA;
AroA, PparoA1optimized gene (synthetic sequence with codon usage
adapted for dicots). Southern blot was hybridized with digoxigenin-
labeled probe. Regions of homology are shown by rectangle in the
schematic illustration.
doi:10.1371/journal.pone.0019732.g002

Transgenic Tobacco with Glyphosate Tolerance
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detected in the ‘‘vector control’’ (Fig. 3B). Thirdly, RT-PCR was

carried out, when AtCTP-PparoA1optimized fusion-specific primers

were used. The result showed a 1.5 kb fragment, corresponding to

the right size of AtCTP-PparoA1optimized fusion-transcript, which

confirmed the inserted transgene and its transcription in the six

glyphosate tolerant tobacco lines (Fig. 3C). As control, no

amplification product could be detected in the empty vector

transgenic plant. Finally, PpAroA1 rabbit polyclonal antibodies

were generated (see material and methods), and used for western

blotting of the PpAroA1 protein in total soluble cellular proteins

isolated from the transgenic tobacco plants. The results showed a

single band was observed in all six transgenic lines. The band in-

dicated/demonstrated a molecular weight (approximately 47 kD)

correspond to the mature PpAroA1 protein, without the chlo-

roplast transit peptide. In contrast, no protein band was detected

when leaf extracts from ‘‘vector control’’ tobacco (Fig. 3D). Taken

together, the above results indicated that, in the six glyphosate

tolerant transgenic lines, the AtCTP- PparoA1optimized gene fusion

was successfully transferred via Agrobacterium-mediated transforma-

tion. And its integration into the genome was as a single copy. This

integrated gene fusion was actively transcribed with an expected

RNA size (1.5 kb) to the AtCTP-PparoA1optimized fusion-transcript.

From this, RNA must have been translated and subsequently

processed into a mature protein with a correspond size (47 kD) to

the mature PpAroA1 protein.

The glyphosate tolerant phenotype is stably inherited in
T1 transgenic plants

In order to investigate the stability of the gene fusion and the

phenotype in transgenic tobacco’s progeny, T1 transgenic plants

were then generated by crossing of the parental transgenic line. As

the T1 seedlings of transgenic tobacco with the empty vector could

not survive in the presence of 0.5 mM glyphosate (data not

shown), the glyphosate tolerance of T1 transgenic seedlings were

tested on MS medium containing 1 mM glyphosate. Statistic

analysis indicated that about 75% transgenic tobacco seedlings of

each line were found to be resistant to glyphosate. I. e., the ratio of

segregation for seedlings tolerant to glyphosate versus sensitive to

glyphosate was found to be close to 3:1 (Table 1). This result

indicated that segregation for glyphosate tolerance of self-crossed

T1 transgenic tobacco seedlings was a typical Mendelian segre-

gation. In contrast, the seedlings of ‘‘vector control’’ was inhibited

and bleached by glyphosate treatment (Fig. 4A). Moreover, the T1

transgenic seedlings could still grow healthily when the concen-

tration of glyphosate was increased to 10 mM. Therefore, the T1

transgenic tobacco seedlings showed at least 20 fold increase in

glyphosate tolerance, when compared with ‘‘vector control’’ T1

seedlings.

In order to investigate the correlation between phenotypic

segregation and the segregation of AtCTP-PparoA1optimized gene

fusion among the T1 transgenic tobacco plants, Line Nt304 were

selected for further analysis. Ten T1 transgenic tobacco plants

Figure 3. Analysis of transgenic tobacco with glyphosate
tolerance. (A) Novel AroA confers glyphosate tolerance in tobacco.
Plants were grown in a greenhouse under a condition with 16 h of light
at 25uC and 8 h of darkness at 16uC. Glyphosate-tolerant plants (left)
displayed normal healthy development. In contrast, ‘‘vector control’’
plant (right) did not survive. Plants are shown four weeks after spraying
with RoundupTM glyphosate at a commercially recommended concen-
tration. (B) Southern blot analysis of the PparoA1optimized gene. A 50 mg
aliquot of genomic DNA was digested with EcoRI, fractionated on an
agarose gel, transferred to a nylon memebrane and probed with
digoxigenin-labeled probe of PparoA1optimized gene. (C) RT-PCR analysis
on PparoA1optimized gene expression in transgenic tobacco plants. (D)
Western blot analysis of transgenic tobacco plants carrying PparoA1op-

timized gene. Total protein extracted from leaves of transgenic lines was
subjected to SDS-PAGE analyses. Molecular markers indicated the target
protein to be the expected 47 kDa size. 1, control tobacco; 2–7,
Transgenic Line Nt304, Nt305, Nt315, Nt316, Nt320, Nt323.
doi:10.1371/journal.pone.0019732.g003

Table 1. Segregation data for glyphosate tolerance of self-
crossed T1 transgenic tobacco plants.

Line Total Tolerant Sensitive P x2

Nt304 296 216 80 0.727 0.122

Nt305 112 85 27 0.924 0.009

Nt315 246 183 63 0.924 0.009

Nt316 266 206 60 0.690 0.159

Nt320 100 75 25 1 0

Nt323 268 198 70 0.854 0.034

doi:10.1371/journal.pone.0019732.t001

Transgenic Tobacco with Glyphosate Tolerance
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of Line Nt304 were analyzed for the presence of AtCTP-

PparoA1optimized gene fusion in the genome DNA using PCR. A

DNA band of 1521 bp, the identical size of to the chimeric gene,

was amplified from genomic DNA of seven T1 transgenic plants,

while no specific DNA band was observed from the other three T1

transgenic plants as well as the ‘‘vector control’’ plant (Fig. 4B). In

parallel, these ten T1 transgenic plants were also treated with

RoundupTM at a commercially recommended dose in a green-

house. Results showed that the seven T1 transgenic plants with

positive PCR detection all survived the treatment, while the three

T1 transgenic plants with negative PCR detection were all sensitive

to glyphosate. Therefore, it can be concluded that there is a direct

correlation between glyphosate tolerance/sensitivity and the

presence/absence of the transformed AtCTP-PparoA1optimized gene

fusion among the T1 transgenic tobacco plants respectively.

Discussion

Previously, we have identified a novel AroA from Pseudomonas

putida (designated as PpAroA1 in this study), naturally tolerant to

high levels of glyphosate, has little homology with known AroAs

[18]. PpAroA1, belongs neither to Class I nor to Class II AroAs. It is

a novel AroA, and its sequence gets around patent protection [19].

In this study, we have shown that this PpAroA1 can confer

transgenic tobacco plants with high tolerance to glyphosate. The

evidence for this can be described in two ways. First, two steps

screening of the transformants were carried out. 60 putative

transformants were obtained on kanamycin containing plates, and

6 real transformants were obtained from these 60 putative trans-

formants by spraying with glyphosate. This is further confirmed by

molecular and biochemical characterization (Fig. 3). Secondly, a

direct correlation between glyphosate tolerance/sensitivity and the

presence/absence of the transformed AtCTP-PparoA1optimized gene

fusion among the T1 transgenic tobacco plants were obtained

respectively. The segregation of glyphosate tolerance phenotype

among the self-crossed T1 transgenic tobacco plants was a typical

Mendelian segregation (Table 1). Therefore, we conclude that this

PpAroA1 could be a good application candidate in transgenic

crops with glyphosate tolerance in future.

Besides the PparoA1 gene, the second gene encoding an

alternative AroA (designed as PpAroA2) was cloned from

Pseudomonas putida 4G-1 (for details, see material and methods).

Two aroA genes were identified in Pseudomonas putida 4G-1 [18, this

study]. The PpAroA1 showed very little (28%) identity to AroAs

identified from other Pseudomonas putida strains [18]. In contrast,

PpAroA2 contains 99% sequence identity to the AroA identified

from Pseudomonas putida GB-1 (data not shown, for sequence see

HM992507). Phylogenetic analysis indicated that PpAroA1 is

evolutionary distant from other known Pseudomonas AroAs (Fig. 1).

Therefore, the PparoA1 gene screened from Pseudomonas putida might

come from a different species and inserted to the Pseudomonas

bacteria through horizontal gene transfer. In addition, codon

adaptation index (CAI) was used in calculation in order to predict

the expression of PparoA1 as a heterogenous gene in different hosts

[20]. The result showed that PparoA1 had higher CAI value, which

indicated higher gene expression level in Nicotiana tabacum (,0.7)

Figure 4. Analysis of T1 transgenic tobacco. (A) Seedlings germination assay. Seeds from ‘‘vector control’’ plant and transgenic line Nt304 were
surface-sterilized and germinated on medium containing 0 (left) or 1 mM (right) glyphosate. The majority of Nt304 seedlings on the herbicide
medium are green and healthy. However, all WT seedlings are bleached on glyphosate, indicating sensitivity. Photos were taken 3 weeks after plating
seeds. (B) PCR analysis of T1 transgenic plants of Nt304. Progeny from T0 plants segregate into glyphoste-tolerant (T) and glyphosate-sensitive (S)
individuals. M, DL2000 DNA marker (Tiangen, China); C, control tobacco; P, pBI121-PparoA1optimized.
doi:10.1371/journal.pone.0019732.g004

Transgenic Tobacco with Glyphosate Tolerance
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than in Pseudomonas putida strain (,0.3), suggesting that it could be

applied directly for generating transgenic plants in tobacco (Fig.

S1). Indeed, when the original PparoA1 gene from Pseudomonas putida

was fused in frame with chloroplast transit peptide and introduced

directly into the tobacco, it exhibited high tolerance to glyphosate,

a level similar to that obtained from PparoA1optimized-transgenic

tobacco (Fig. 5).

The transgenic tobacco plants with PpAroA1 exhibited high

tolerance to glyphosate. Furthermore, the level of tolerance was

comparable to that of agricultural application recommended by

the manufacture [14], and similar to that achieved by Agrobacterium

spp. CP4 AroA transgenic tobacco lines [8,23]. In addition, the

PparoA1 gene (as well as PparoA1optimized gene) also has high CAI

value in some crops such as maize, wheat and rice than the gene in

Pseudomonas putida. This implies that the PparoA1 gene (as well as

PparoA1optimized gene) has got the potential to be highly expressed

in these crops, and used to generate transgenic crop with glyph-

osate tolerance. Therefore, it indicates that the novel PpAroA1 is

Figure 5. Glyphosate tolerance assay of transgenic tobacco with PpAroA1. PparoA1-transgenic tobacco exhibited high tolerance to
glyphosate, a level similar to that obtained from PparoA1optimized-transgenic tobacco. Photograph was taken after one month of culture on medium
containing 0–10 mM glyphosate. The left column shows leaf discs of ‘‘vector control’’ transgenic tobacco, the middle column shows leaf discs of
PparoA1optimized -transgenic tobacco, and the right column shows the leaf discs of PparoA1-transgenic tobacco.
doi:10.1371/journal.pone.0019732.g005

Transgenic Tobacco with Glyphosate Tolerance
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significant for generation of glyphosate-tolerant crop in the field of

GM crops.

Future studies regarding the potential application of PpAroA1

will be undertaken in two ways. First, its function analysis in

transgenic rice is underway. Secondly, since the function of

PpAroA1 and its glyphosate tolerance could be reconstituted from

its two protein fragments, divided in proper site [29, unpublished

data], these characteristics may also be invaluable for the

generation of transgenic crops resistant to glyphosate. Transgenic

plants with a portion of the aroA gene in the chloroplast and the

rest in targeted chromosomes would be a way to eliminate or

reduce the possibility of the transgene migration.

Materials and Methods

Cloning the second aroA gene from Pseudomonas
putida 4G-1

Genomic DNA from Pseudomonas putida 4G-1 was isolated and

used as template to amplify another putative aroA gene (designated

as PparoA2). Primers (PparoA2 F 59-CCGGTGATGTGGCACGA-

CAT-39 and PparoA2 R 59-TCACGACTT GGCCTCTTCTG-39)

were designed based on the conserved sequence of among all other

aroA genes identified from Pseudomonas putida strains, including

KT2440 (GI26986745), GB-1 (GI167031021), W619 (GI1707-

19187) and F1 (GI148545259). The PCR product was sequenced.

The resulting DNA sequence was submitted to Genbank (HM-

992507).

Vector construction
For transformation in tobacco, the Pseudomonas putida aroA gene

(PparoA1) was codon-optimized (designated as PparoA1optimized).

The PparoA1optimized gene was designed by us according to the

codon bias of tobacco, and the gene was constructed using

chemical synthetic methods (Shanghai Sangon, China), in which

the codon usage was adapted to the codon bias of Nicotiana tabacum.

In order to target the protein to chloroplast, the chloroplast

transit peptide from Arabidopsis thaliana AroA (AtCTP) was added

at the N-terminus of PpAroA1. Two PpAroA1 encoding genes

(PparoA1optimized and PparoA1) were fused in frame with AtCTP

respectively. Subsequently, the above gene fusions were cloned

into BamHI and SacI sites of the binary T-DNA vector pBI121

[22], resulting in transformation construct pBI121-PparoA1optimized

and pBI121-PparoA1 respectively. The gene fusions replaced the

uidA [encoding the b-glucuronidase (GUS)] gene of the original

pBI121 vector, driven by the CaMV 35S promoter [22].

Transgenic tobacco transformed with the empty vector pBI121

was used as negative control (designated as ‘‘vector control’’) in

this study.

Plant materials and plant transformation
Tobacco seeds (Nicotiana tabacum L. cv. W38) were kindly

provided by Professor Zhong-Ping Lin (College of Life Science,

Peking University, China). The seeds were sterilized with 15%

NaClO for 15 min followed by five washes with sterile distilled

water and germinated on solidified MS medium containing 3%

sucrose, pH 5.8. The seedlings were used for transformation

throughout this study.

Tobacco leaf sections were immersed in a bacterial culture of

OD600,0.3 for 15 min, dried on filter paper and transferred to

MS [24] medium containing 1 mg/L 6-benzylaminopurine,

0.1 mg/L a-naphthalene acetic acid, 3% sucrose and solidified

with 0.8% agar. After co-cultivation for 3 days at 25uC in

darkness, the infected leaf sections were rinsed with water and

transferred to regeneration medium (MS medium supplemented

with 300 mg/L cefotaxime and 200 mg/L kanamycin). After

regeneration, kanamycin-resistant shoots were selected and

transferred to shoot elongation and root induction media (MS

medium containing 0.1 mg/L a-naphthalene acetic acid, 300 mg/

L cefotaxime and 200 mg/L kanamycin) [14].

Glyphosate tolerance spray test
The tobacco transformants were propagated in sterile culture

and then planted in soil in the greenhouse. The tobacco plants

were sprayed with the herbicide RoundupTM (active ingredient

isopropylamine salt of glyphosate, 41.0%), at the 5–6 leaf stage

about 2 weeks after transplanting. The spray test was performed as

described [23].

PCR and Southern blot analysis
Tobacco genomic DNA was extracted from young leaves of

transgenic and ‘‘vector control’’ plants by using the cetyl-trimethyl

ammonium bromide (CTAB) method [25]. Integration of the

desired gene into the tobacco genome was confirmed by PCR of

the encoding sequence of the chloroplast transit peptide and

PpAroA1. PCR was performed using the primers (PparoA1optimized

F 59-ATGGCGCAAGTTAGCAGAATC-39 and PparoA1optimized

R1 59-TCATGAGAA GTTGAATTGATG-39), resulting in

1521 bp amplified DNA product (AtCTP- PparoA1optimized). The

PCR products were analyzed by agarose gel electrophoresis.

For Southern blot analysis, 50 mg of tobacco genomic DNA was

digested with EcoRI restriction enzyme (New England Biolabs

Inc.). The digested DNA was separated on 0.8% (w/v) agarose gels

and then transferred onto Hybond-N+ membrane (Amersham,

UK) and cross-linked to the membrane by UV. The DIG-labeled

probe was prepared by PCR using primers designed to amplify a

625 bp fragment from the AtCTP-PparoA1optimized gene fusion

(PparoA1optimized F 59- ATGGCGCAAGTTAGCA GAATC-39

and PparoA1optimized R2 59- CAAATGTGGAAGAATTTCATC-39)

(Fig. 1). Hybridization and immunological detection were per-

formed with the DIG DNA labeling and detection kit (Roche,

Germany).

RNA extraction and transcript analysis
Total RNA of each sample was extracted from leaves of trans-

genic tobacco plants and ‘‘vector control’’ plant by using RNAprep

pure Plant Kit (Tiangen, China). A 2 mg aliquot of RNA per

sample was used to synthesize the first-strand cDNA by using M-

MLV Reverse Transcriptase (Promega, USA) with random primer.

For detection of the transcripts of the PparoA1optimized in tobacco

plant, RT-PCR was performed using the same primers set as for the

AtCTP-PparoA1optimized gene fusion insert detection (PparoA1optimized

F and PparoA1optimized R1). A PCR reaction was performed with the

same primers without the reverse transcriptase step to demonstrate

the absence of the genomic DNA contamination in the samples.

Western blot analysis
Young leaf samples (100 mg) collected from transgenic and

control tobacco plants were ground to powder in liquid nitrogen.

The powders were suspended in 200 ml buffer B (0.25 M Tris

HCl, pH 6.8, 8% 2-mercaptoethanol, 20% glycerol and 8% SDS).

After lysis and centrifugation, the soluble fractions from leaf tissue

were separated in 16% SDS polyacrylamide gel, and analyzed

with immunoblots. The immunoblots were probed with 1:2000

dilution of PpAroA1 rabbit polyclonal antibody. The antibody-

antigen complex was visualized with alkaline phosphatase

conjugated to goat anti-rabbit IgG (Promega, USA). In this study,

the purified PpAroA1 was injected to the rabbit to produce the

Transgenic Tobacco with Glyphosate Tolerance
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PpAroA1 rabbit polyclonal antibody in Institute of Genetics and

Development Biology, Chinese Academy of Science.

Seed germination assays
Transformation lines were grown in the greenhouse until ma-

turity and seeds were harvested. Seed assays for resistance to

glyphosate was performed as described [26]. T1 transgenic seed-

lings that are resistant to the glyphosate are uniformly green on the

media, whereas sensitive seedlings are bleached.

Supporting Information

Figure S1 Codon adaptation index (CAI) values for aroA
genes using different codon usage tables. Pseudomonas,

Pseudomonas putida KT2440; wheat, Triticum aestivum; maize, Zea

mays; rice, Oryza sativa; tobacco, Nicotiana tabacum; tomato,

Lycopersicon esculentum; pea, Pisum sativum; arabidopsis, Arabidopsis

thaliana. Codon Adaptation Index (CAI) developed by Sharp and

Li [20], is a measure of the synonymous codon usage bias for a

DNA or RNA sequence and quantifies codon usage similarities

between a gene and a reference set. The index ranges from 0 to 1,

being 1 if a gene always uses the most frequently used synonymous

codons in the reference set. CAI can be used for estimation of gene

expressivity and giving an approximate indication of the likely

success of heterologous gene expression [27]. CAI were calculated

using EMBOSS and accordingly codon usage tables in the

software suite [28].

(TIF)
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