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The IL-1 family of cytokines are well-known for their primary role in initiating inflammatory

responses both in response to and acting as danger signals. It has long been established

that IL-1 is capable of simultaneously regulating inflammation and angiogenesis, indeed

one of IL-1’s earliest names was haemopoeitn-1 due to its pro-angiogenic effects. Other

IL-1 family cytokines are also known to have roles in mediating angiogenesis, either

directly or indirectly via induction of proangiogenic factors such as VEGF. Of note, some

of these family members appear to have directly opposing effects in different tissues

and pathologies. Here we will review what is known about how the various IL-1 family

members regulate vascular permeability and angiogenic function in a range of different

tissues, and describe some of the mechanisms employed to achieve these effects.
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THE IL-1 FAMILY OF CYTOKINES

The interleukin-1 family (IL-1F) are pivotal regulators of the innate immune response
composed of 7 agonist signaling ligands [interleukin-1 alpha (IL-1α), interleukin-1 beta (IL-1β),
interleukin-18 (IL-18), interleukin-33 (IL-33), interleukin-36 alpha (IL-36α), interleukin-36
beta (IL-36β), and interleukin-36 gamma (IL-36γ)]; three receptor antagonists [interleukin-1
receptor antagonist (IL-1Ra), interleukin-36 receptor antagonist (IL-36Ra), and interleukin-38
(IL-38)] as well as one other cytokine [interleukin-37 (IL-37)] (1, 2) whose biological role
remains somewhat controversial. These cytokines signal through the IL-1 receptor (IL-1R)
family of transmembrane proteins, whose 11 members form six receptor chains, resulting in
four functional signaling complexes (Figure 1). Members of the IL-1R family are grouped due
to the characteristic motifs shared in their extra- and intracellular domains. The extracellular
domain is typically composed of three immunoglobulin (Ig)-like domains. Interleukin-18
binding protein (IL-18BP) and Toll/IL-1R8 (TIR8) are exceptions having only a single Ig-like
domain. Intracellularly, the signaling complexes are identifiable by their (Toll/IL-1 Receptor)
TIR-domains, which are required to recruit the adapter protein myeloid differentiation primary
response protein 88 (MyD88) through homotypic interactions and initiate the downstream
signaling cascades that are the consequence of IL-1F receptor activation (3). The signaling
complexes and their respective ligands can be seen in Figure 1. Most of the IL-1 family
cytokines, including IL-1, IL-18, and IL-36 are produced in inactive precursor forms, that
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require N-terminal cleavage in order to become activated (4,
5). In the case of IL-1 and IL-18, this cleavage is classically
performed by caspase-1, that itself is activated by the formation
of an inflammasome; however alternative cleavage of pro-IL-1β
via various serine proteases and matrix metalloproteinases, and
cleavage of IL-18 by caspase-8 has also been reported (5, 6). The
mechanisms through which other IL-1 family cytokines, such as
IL-33 and IL-36, are cleaved, are still emerging, with studies thus
far suggesting that neutrophil elastase and various cathepsins
are the relevant proteases (7, 8). Broadly generalizing, upon IL-
1 family cytokine binding to its receptor complex, the adaptor
protein MyD88 is recruited to the intracellular TIR domain
which forms a complex with interleukin-receptor associated
kinase 4 (IRAK4), facilitating the activation of the downstream
signaling cascade, canonically comprising of mitogen associated
protein kinase (MAPK) and Inhibitor of κB Kinase (IKK)
complexes, and resulting in the respective activation of Activator
protein-1 (AP-1) and nuclear factor kappa-light-chain-enhancer
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PTX3, Pentraxin 3; PI3K, Phosphoinositide-3 kinase; PDK1, Phosphoinositide-
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of B cells (NFκB) transcription factors, driving gene transcription
of IL-1F responsive genes.

ANGIOGENESIS AND VASCULAR
PERMEABILITY

Angiogenesis is the growth of new capillaries from existing
blood vessels; a process controlled by complex interactions of
inhibitors and activators, an appropriate balance of which is
required to initiate and maintain physiological homeostasis.
This process is important in development, as well as for
tissue growth and repair. However, aberrant angiogenesis or
neovascularisation has been linked to several malignancies,
including cancer, rheumatoid arthritis (RA), blindness, and
psoriasis (9). In many of these conditions, unwanted, disease-
associated neovascularisation results in malformed, immature,
and unstable vessels that leak plasma factors and can create an
oedemic environment. A thorough understanding of the factors
that influence the formation of the vasculature in addition to
the maturation and integrity of the neovesssels is essential for
delineating therapeutic targets for these conditions (10, 11). The
process of angiogenesis is multistep, and involves the degradation
of the extracellular matrix (ECM), migration, differentiation, and
proliferation of endothelial cells (ECs), microtubule formation,
and the sprouting of new capillary branches (12). Factors
controlling angiogenesis may be categorized as indirect, in that
they act via intermediary mechanisms, or direct, in that they are
able to induce proliferation, migration and/or differentiation of
endothelial cells directly (13).

Current therapeutic options for neovascular and oedemic
disease attempt to target the pathways that coordinate
angiogenesis and permeability. The best characterized of
these is the vascular endothelial growth factor (VEGF) pathway.
VEGF is considered the master regulator of angiogenesis and
permeability, and is implicated as a driver of neovascularization
and oedema in a number of diseases, hence anti-VEGF
therapeutics are currently utilized in diseases ranging from
age-related macular degeneration (AMD) to a number of forms
of cancer (14, 15).

It has long been established that IL-1 is capable of
simultaneously regulating inflammation and angiogenesis,
indeed one of IL-1’s earliest names was haemopoeitn-1 due to
its pro-angiogenic effects (16). In fact, proteome profiling has
revealed that there are considerable overlaps in pathways and
biological functions regulated by IL-1β and VEGF in activated
EC, in particular the mitogen activated protein kinase (MAPK)
cascade is induced by both IL-1β and VEGF, and may potentially
play a role in the overlapping effects caused by inflammatory and
angiogenic signaling (17). Other IL-1 family cytokines are also
known to have roles in mediating angiogenesis, either directly or
indirectly. Of note, two of these family members appear to have
directly opposing effects in different tissues and pathologies.
Here we will review what is known about how the various IL-1
family members regulate vascular permeability and angiogenic
function in a range of different tissues, and describe some of the
mechanisms employed to achieve these effects.

Frontiers in Immunology | www.frontiersin.org 2 June 2019 | Volume 10 | Article 1426

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Fahey and Doyle IL-1F Regulation of Vascular Biology

FIGURE 1 | IL-1F family signaling complexes. The IL-1R family has four signaling complexes; IL-1R1/IL-1RAcP, IL-18R/IL-18RAcP, ST-2/IL-1RAcP, and

IL-36R/IL-1RAcP. IL-1α/IL-1β signal through IL-1R1/IL-1RAcP; this pathway can be antagonized by IL-1Ra. IL-18 signaling uses the IL-18R/IL-18RAcP complex.

IL-18 ligand can be sequestered and thereby inhibited by IL-18BP. IL-37 also utilizes this complex. ST-2/IL-1RAcP is the receptor complex for the IL-33 cytokine.

IL-36α/IL-36β/IL-36γ signal through the IL-36R/IL-1RAcP complex, which can be antagonized by IL-36Ra and IL-38.

IL-1—AN EXTENSIVE MEDIATOR OF
ANGIOGENESIS

IL-1α and IL-1β ligands have been recognized for some time
as cytokines that can drive an angiogenic phenotype in vivo.
IL-1α is rarely secreted by living cells, and has been less
widely studied than its homolog, IL-1β. However, there is still
a wealth of literature that suggests IL-1α can play a role in
mediating angiogenesis, most predominantly in cancer and in the
brain (18).

One area in which IL-1α and IL-1β are thought to act
synergistically is in the process of wound healing. IL-1α and IL-
1β are markedly induced 12–24 h post-wound, and the levels of
these cytokines return to basal levels once the proliferative stage
of wound healing has been completed (19). The wound healing
response involves a finely tuned, self-limiting series of cellular
and molecular events orchestrated by the transient activation of
specific signaling pathways. Controlled regulation of these events
is essential. Failure to initiate key steps at the right time delays
healing, leading to chronic wounds, while aberrant initiation
of wound healing processes may produce cell behaviors that
promote cancer progression. Angiogenesis is a crucial step in
wound healing, as there is a substantial oxygen-demand in this
highly energy-consuming process (20).

In response to a wound in the brain, a rapid induction
of inflammatory cells and astrocytes occurs, IL-1 is among
the inflammatory cytokines produced in this process, and it is
known to stimulate astrocytosis and neovascularization (21). IL-
1α is widely acknowledged to have a role as a direct regulator
of angiogenesis following ischemic injury (22). Post-stroke,
controlled angiogenesis is important for repairing the damaged
area of the brain and is known to improve functional outcome.
In post-stroke mice, IL-1α is upregulated, and IL-1α can potently
induce the expression of other pro-angiogenic cytokines such as

chemokine (C-X-C motif) ligand 1 (CXCL1) in brain EC’s, as
well as being capable of directly driving proliferation, migration
and tube formation, all hallmarks of angiogenesis, in these same
cells (23, 24). Such is the potency of IL-1α in this context,
downstream targets of IL-1α are also being studied as potential
neurotherapeutic molecules in stroke. Perlecan is one such
downstream target (25, 26). When Perlecan domain V was
systemically administered for 24 h post stroke in rat and mouse
models, it increased VEGF levels via α5β1 integrin, and displayed
neuroprotective and angiogenic effects (27).

Like IL-1α, IL-1β can mediate angiogenesis in the
cerebrovascular system. At least one mechanism likely involves
IL-1β upregulation of pentraxin 3 (PTX3), a marker of stroke
(28). PTX3 KO mice display reduced post-stroke angiogenesis,
and recombinant PTX3 can induce hallmarks of angiogenesis
including cell proliferation and tube formation in the murine
brain derived endothelial cells; indicating that this IL-1β
regulated molecule can mediate angiogenesis and contribute
to recovery after stroke (29). However, IL-1 activation in the
brain is not without its downsides, and has been shown to be a
major driver of neuroinflammation; responsible for activating
endogenous microglia and vascular EC, allowing them to recruit
peripheral leukocytes that can sustain neuroinflammation (30).
In particular, IL-1β can influence neutrophil-mediated toxicity,
and neutrophil recruitment to the brain appears to be IL-1β
dependent. Transendothelial migration of neutrophils across
IL-1β stimulated brain endothelium pushes neutrophils to
acquire a neurotoxic phenotype (31).

Perhaps not surprisingly, one of the ways in which IL-1R
signaling mediates angiogenesis is indirectly, via its ability to
induce VEGF expression and secretion in a number of cell
types (32). Under normoxia, IL-1β has been shown to induce
hypoxia-inducible factor-1α (HIF-1α) at protein level, despite
no change being detected in HIF-1α mRNA levels (33). Given
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the recent literature on inflammation induced regulation of
metabolic processes, this is likely due to IL-1 induced stabilization
of the labile HIF-1α protein in response to a metabolic shift
in the cell. HIF-1α mediates angiogenesis via its target gene,
VEGF, which has established hypoxia regulatory elements in
its promoter (34, 35). In fact, early reports demonstrated
that IL-1β can drive transcription of both VEGF and its
receptor VEGF-receptor 2 (VEGFR2) in cardiac myocytes and
cardiac microvascular endothelial cells (CMVEC) (36) indicating
that an important role for IL-1 signaling is likely that of
potentiating VEGF biology. Later reports demonstrated that
IL-1β KO mice have impaired VEGF-controlled mobilization
of endothelial progenitor cells into the peripheral blood
resulting in markedly reduced neovascularisation compared to
wild type mice following ischemic injury (37). There have
since been several studies that investigate which pathways are
important for IL-1β mediated VEGF induction. In myocardial
neovascularisation, the VEGF-dependent physiological response
tomyocardial ischemia, it has been demonstrated that in addition
toHIF1- α stabilization, VEGFmRNA transcription, and stability
are improved following incubation with IL-1β; and that this
activity is dependent on specificity protein 1 (SP1) sites in the
VEGF gene’s promoter targeted by IL-1β-activated p38 MAPK
and c-JUN N-terminal kinase (JNK) signaling (38). Similarly,
treatment with IL-1β of vascular smooth muscle cells (VSMC)
from small tumor vessels, also resulted in improved VEGF
transcription and stability in a p38 MAPK dependent manner
(39). Taken together, these findings indicate that both IL-1β
induction of the p38 MAPK signaling cascade and induction of
HIF1- α are important for upregulating VEGF, and that IL-1β
upregulation of VEGF consequently drives neovascularisation.

It is often reported that cancers are “wounds that never heal”
or even “over-healing wounds” (40, 41) and inflammation, the
arm of the immune system that regulates wound healing, can be
a cause of cancer. In addition to the modulating effect that IL-1
has on VEGF expression and wound healing, IL-1 has also been
reported to directly regulate tumor-mediated angiogenesis (18),
potentially providing an alternative or adjunct therapeutic target
in these cancers. Observationally, studies have demonstrated
that IL-1α is secreted by colonic, gastric, and pancreatic cancer
cells and that this enhances angiogenesis in vitro (42–44).
Others have delved further into the mechanism investigating
how IL-1α is activated in cancer cells and how this effects
neovascularisation and subsequent tumor growth. In gastric
cancer cells, N-myc downstream regulated gene 1 (NDRG1)
increased IL-1α expression, which was then capable of driving
tumor angiogenesis via a c-JUN N-terminal kinase (JNK)/AP-1
dependent pathway (45). In prostate cancer, Bone morphogenic
protein-6 (BMP-6) is overexpressed, and was shown to induce
IL-1α in macrophages via NFκB/Smad1 signaling (46) that was
capable of driving tube formation in endothelial progenitor
cells. Tumor growth and neovascularisation is significantly
decreased when BMP-6 is expressed in IL-1α knockout (KO)
mice compared to wild type controls; indicating that IL-1α
is mediating angiogenesis in this context. While it remains
possible, and probable, in these latter studies that IL-1 is not
working alone, but is also driving VEGF production and effecting

neovascularisation in an indirect manner, it is clear that IL-1 is an
inducer of angiogenesis in the tumor environment. Inmelanoma,
IL-1α and IL-1β are both required for NFκB activation that
results in the upregulation of proinflammatory cytokines IL-
6 and IL-8, as well as the adhesion molecules intercellular
adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-
1 (VCAM-1), and tissue factor (TF) in EC’s, driving these
cells toward a proinflammatory phenotype that supports tumor
angiogenesis (47). While in Lewis lung carcinoma, IL-1β drives
tumor growth through its upregulation of VEGF and the
proangiogenic chemokine (C-X-C motif) ligand 2 (CXCL2) (48).
Further evidence to support the role IL-1 signaling plays in
driving tumor angiogenesis can be seen when the IL-1 signaling
pathway is blocked; for example through continuous delivery of
IL-1Ra, which neutralizes IL-1 signaling, and has been shown
to reduce angiogenesis and tumor development (49). It is also
worth noting that initial findings from a major randomized trial
[Canakinumab Anti-Inflammatory Thrombosis Outcomes Study
(CANTOS)] studying Canakinumab, an IL-1 inhibitory antibody,
reported a reduction in the number of incident cases of lung
cancer in the treatment groups compared to control groups.
Although themechanisms at play in this setting remain unknown
and maybe independent of IL-1 induced neovascularisation. For
a deeper review of how IL-1 cytokines regulate cancer we would
direct the reader to the review on IL-1 family and Cancer also in
this special topic.

A common theme when examining the regulation of
angiogenesis by IL-1 family members is the interplay between
IL-1 family regulation of and by macrophages, and how this
interplay can control angiogenic processes. For example, in
Lewis lung carcinoma in addition to IL-1 receptor induction
of proangiogenic chemokine CXCL2 driving tumor promoting
angiogenesis, IL-1β driven neovascularization was found
to be dependent on infiltrating cyclooxgenase 2 (COX-2)
positive macrophages (50). Macrophages play a pivotal role in
restoring tissue homeostasis after inflammation or damage, and
angiogenesis is an integral process in tissue repair, so it is perhaps
unsurprising to see that IL-1 family members derived from
macrophages have an intrinsic ability to regulate angiogenesis.
Matrigel plugs, containing the supernatants from activated
macrophages, have been used to demonstrate that macrophage
derived IL-1, predominantly IL-1β, attracts myeloid cells from
the bone marrow, and these cells locally produced additional
IL-1, which further activatedmacrophages and stimulated EC’s to
produce VEGF (51). In macrophages at least, it appears that the
activation of NFκB, a target of IL-1 signaling, is crucial for VEGF
production (52). In a dysregulated or diseased setting, Foucher
et al. proposed a mechanism, in which IL-1α, constitutively
expressed by interleukin-34 (IL-34) induced macrophages,
allows these macrophages to maintain local inflammation, which
contributes to aberrant angiogenesis (53).

Angiogenesis is a pathological feature of RA (54). RA synovial
tissue, which is rich in blood vessels, invades the periarticular
cartilage and bone, resulting in the destruction of the joint.
In contrast to IL-1’s direct role in mediating angiogenesis
in the brain following stroke. IL-1β has no direct effect on
mediating angiogenesis in RA, instead it indirectly mediates the
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pathophysiological angiogenesis via several of its downstream
effectors upregulating the proangiogenicmediators angiopoietin-
1 (ang-1), Tie-2, and VEGF in a JNK and p38 MAPK dependent
pathway (55). IL-1β also upregulates expression of VEGF and
chemokine (C-C motif) ligand 21 (CCL21) in RA synovial
fibroblasts, this chemokine binds to its receptor C-C chemokine
receptor type 7 (CCR7) on EC’s, facilitating cell migration,
capillary tube formation and in vivo blood vessel formation (56,
57). Consequently in the clinic, anakinra, the IL-1Ra homolog
treatment that blocks IL-1 signaling, has been shown to reduce
neovascularisation of the pannus in RA (58, 59).

The majority of studies described have focused on the effects
of IL-1 on VEGF, as the master regulator of angiogenesis
and permeability, however, there is also some evidence that
suggests IL-1β can regulate other pro-angiogenic growth
factors in addition to VEGF. For example, stimulation of
corneal endothelial cells (CEC) with IL-1β resulted in the
NFκB-dependent induction of fibroblast growth factor-2 (FGF-
2), which stimulates endothelial mesenchymal transformation
(EndoMT) (60). EndoMT involves EC’s losing their endothelial
phenotype and attaining a myofibroblast or mesenchymal
phenotype (61). While this is not directly related to angiogenesis,
it is a cause of many fibrotic conditions and demonstrates the
powerful effects IL-1β can exert on endothelial cell regulation.
Table 1 details clinical trials targeting IL-1 family cytokines in
various diseases that have vascular dysfunction as an aspect of
the disorder. It is noteworthy that all but one of these trials are
targeting IL-1 with the intention of inhibiting its activity.

IL-18 AS AN ANGIOGENIC
MEDIATOR—THE CONTEXT IS KEY

IL-18 signals through its own receptor (IL-18R) and is unique
among the other family cytokines in that it has its own specific
accessory protein (IL-18RAcP). IL-18 is considered a pro-
inflammatory cytokine due to its potency in activating Natural
Killer cells and instructing T helper cell differentiation. Like IL-
1β, IL-18 requires cleavage from its inactive precursor in order
to become activated; this cleavage is classically performed by the
inflammasome activated caspase-1 (5, 62). IL-18 has not been
studied to the extent that IL-1 has in the context of angiogenic
regulation, however, the reports in the literature appear opposing,
indicating that IL-18 appears capable of mediating either a pro-
angiogenic signal or an anti-angiogenic signal dependent on
the tissue site. In fact the first report of IL-18 involvement
in vascular regulation came in 1999 and described how IL-18
negatively regulated neovascularisation in vivo (63), this was
quickly followed by a report in 2001 demonstrating that IL-18
was pro-angiogenic as it could induce endothelial tube formation
both in vivo and in vitro (64).

IL-18 as a Pro-angiogenic Cytokine
In RA, IL-18 is elevated in sera, synovial tissues and synovial
fluid of patients compared to healthy controls, and IL-18 can
upregulate expression of RA stimulators including the adhesion
molecules ICAM-1 and VCAM-1, chemokines and VEGF in

vitro (65, 66). These factors encourage the recruitment and
activation of leukocytes as well as the formation of new blood
vessels. In fact, IL-18 has been shown to stimulate human dermal
microvascular endothelial cells (HMVEC-d) migration and tube
formation in Matrigel plugs in a Src- and JNK- dependent
manner (67). Other mechanisms that drive IL-18 mediated
angiogenesis have also been elucidated in RA. Chitinase-3-
like protein 1 (YKL-40) is a proinflammatory molecule that
is strongly expressed in RA patients (68). YKL-40 has the
ability to induce IL-18 production in osteoblasts, which in
turn stimulates angiogenesis in endothelial progenitor cells in a
process that requires the suppression of miR-590-3p via the focal
adhesion kinase (FAK)/PI3K/Akt pathway (69). IL-18 has also
been associated with IL-1β in RA patient biopsies, raising the
possibility that these molecules are working in tandem to drive
the aberrant angiogenesis as well as other features of the disease
(70). In the rare autoimmune disorder, inflammatory myopathy,
hypoxia induced mitogenic factor (HIMF) was found to increase
IL-18 production in myoblasts via a phosphoinositide-dependent
kinase-1 (PDK1)/PI3K/Akt signaling cascade (71). This IL-18
was secreted and drove tube formation in endothelial progenitor
cells as well as driving angiogenesis in in vivomodels.

One of the better understood ways in which IL-18 exerts
angiogenic function is via its effect on macrophages. IL-18 has
been shown to act synergistically with IL-10 to amplify the
production of osteopontin (OPN) and thrombin, angiogenic
mediators in their own right, frommacrophages, a process which
alters the polarization of M2 macrophages, as characterized
by the increased expression of CD163 (72). CD163 could
potentially be responsible for mediating cell-cell interactions
between these macrophages and EC, thereby resulting in
excessive angiogenesis. On a side note, in addition to mediating
angiogenesis, macrophage derived IL-18 has also been reported
to drive vascular remodeling in inflammageing, a process
prevalent in many age-related disorders (73).

IL-18 as a Negative Regulator of
Angiogenesis
Despite the variety of tissues in which IL-18 demonstrates a
pro-angiogenic profile, there is clear evidence that indicates
this is not the end of the story. In the eye especially, there is
a significant body of work that attests to IL-18 acting as an
anti-angiogenic factor in different models of disease. IL-18 was
initially described as a suppressor of angiogenesis by Cao et al.
who reported that IL-18 inhibited the proliferation of bovine
CEC’s, and suppressed mouse corneal neovascularisation (63).
More recently it has been demonstrated in a clinical cohort that
individuals with macular oedema due to retinal vein occlusion
who have high aqueous levels of IL-18 at baseline have better
visual outcomes following anti-VEGF administration than those
with low levels of IL-18 at baseline (74). This may be due to
IL-18’s reciprocal negative regulation of VEGF that is reported
in the eye (74, 75). Our own group has demonstrated that IL-
18 inhibits choroidal neovascularisation (CNV) in both murine
and non-human primate laser induced models of neovascular
AMD. Administration of IL-18 to experimentally induced CNV
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TABLE 1 | Table of clinical trials targeting IL-1F cytokines in diseases related to vascular dysfunction.

Condition Treatment Clinical trial.gov identifier Status

Rheumatoid arthritis Anakinra NCT00037700 Phase II, completed—no results available

NCT00117091 Phase III, completed—no results available

ACZ855/Canakinumab NCT00619905 Phase I/II, completed—no results available

NCT00505089 Phase I/II, terminated—results available

NCT00504595 Phase II, completed—results available

NCT00487825 Phase II, completed—results available

NCT00424346 Phase II, completed—results available

GSK1827771 NCT00539760 Phase I, completed—no results available

Juvenile rheumatoid arthritis ACZ855/Canakinumab NCT00426218 Phase I/II, completed—no results available

Systemic juvenile idiopathic arthritis (Still’s disease) Anakinra NCT00339157 Phase II/III, completed—no results available

NCT00037648 Phase II, completed—no results available

NCT03932344 Enrolling by invitation

ACZ855/Canakinumab NCT01676948 Phase III, withdrawn

NCT00889863 Phase III, completed—results available

NCT00886769 Phase III, terminated—results available

NCT02296424 Phase III, completed—results submitted

NCT00891046 Phase III, completed—results available

NCT02396212 Phase III, completed—results submitted

Rilonacept NCT01803321 Phase I, completed—no results available

NCT00534495 Phase II, completed—results available

Osteoarthritis sc-rAAV2.5IL-1Ra NCT02790723 Phase I, recruiting

Anakinra NCT00110916 Phase II, completed—no results available

Diacerein NCT00685542 Phase IV, completed—no results available

Corneal neovascularization Topical IL-1Ra NCT00915590 Phase I/II, terminated (lack of participants)—results available

Wet age-related macular degeneration ACZ855/Canakinumab NCT00503022 Phase I, completed—no results posted

Kawasaki disease Anakinra NCT02179853 Phase I/II, recruiting

NCT02390596 Phase II, recruiting

Atherosclerosis/coronary artery disease Anakinra NCT01566201 Completed

ACZ855/Canakinumab NCT01327846 Phase III, active—not recruiting

Rilonacept NCT00417417 Phase II, completed—results available

Giant cell arteritis Anakinra NCT02902731 Phase III, not yet recruiting

Chronic renal insufficiency Rilonacept NCT01663103 Phase IV, completed—results available

Intracerebral hemorrhage Anakinra NCT03737344 Phase II, not yet recruiting

Subarachnoid hemorrhage Anakinra NCT03249207 Phase III, recruiting

Abdominal aortic aneurysm ACZ855/Canakinumab NCT02007252 Phase II, terminated (lack of efficacy)—results available

Behcet’s disease Anakinra NCT01441076 Phase I/II, completed—results available

GSK1070806 NCT03522662 Phase II, not yet recruiting

reduced the volume of the CNV lesion significantly compared
to vehicle control in both murine and non-human primate
models, again adding to the growing data that, in the eye at
least, IL-18 has anti-angiogenic properties (75, 76). This finding
is further strengthened by experiments that demonstrated in
the JR5558 mouse model, which spontaneous develops bilateral
CNV and retinal angiomatus proliferation, IL-18 administered
via interperitoneal injection suppressed both progression and
enhanced regression of the spontaneous CNV (75). Similarly,
in VEGFhyper mice, that spontaneously develop CNV lesions
physiologically similar to those observed in AMD, the ablation of
IL-18 expression resulted in a significant increase in the volume
and number of lesions formed, when compared to the VEGFhyper

phenotype alone or in combination with inhibition of IL-1β or
NLRP3 (77).

In line with data emerging from studies on the eye, IL-18
has also been shown to inhibit neovascularisation in murine
fibrosarcoma and suppress growth, an anti-angiogenic function
that suggests it may have a role in some contexts as a tumor
suppressor (63). IL-18 also suppressed tumor growth and
metastasis in implanted Lewis lung cancer, an effect it achieved
by downregulating VEGF, thereby suppressing angiogenesis (78).
This data implies that IL-18 down regulation of VEGF is not
unique to the eye but is observed in non-ocular tissue as well.

Even in the case of macrophage derived IL-18, the pro-
angiogenic effects of which have been referred to above;
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there are instances where IL-18 has been shown to negatively
regulate angiogenesis. IL-18 produced by the tumor induced
M1 macrophages in spontaneous fibrosarcoma (NFSA) tumors,
cause the destruction of EC’s in vitro, and are suspected
to result in the necrosis of NFSA tumors in part by
enhancing macrophage phagocytosis (79). This conclusion is
supported by research that shows the macrophage derived IL-
18 strongly inhibited blood vessel formation in the tumors
in vivo (80). However, there is abundant evidence to suggest
that in many cancers, IL-18 is more harmful than helpful
in regard to tumor angiogenesis and metastasis (81). In
human gastric cancer cell lines, IL-18 increased cell migration
directly, as well as enhancing VEGF induced migration (82).
This study also demonstrated positive feedback between IL-
18 and VEGF, with VEGF enhancing IL-18 production in a
manner dependent on endoplasmic-reticulum kinase-1/2 (ERK
1/2) phosphorylation.

The diametrically opposing reports of IL-18 effector function
in the context of angiogenesis are intriguing and it is not clear
why or how this can be the case. The overwhelming evidence
that IL-1 is pro-angiogenic and the fact that due to their shared
processing via caspase-1 cleavage, IL-18 and IL-1 tend to be found
together may provide some context to speculate for instance that
the balance of molar concentrations of IL-18 and IL-1 in vivomay
influence the environment such that the ability of IL-18 comes
down in favor of an anti-angiogenic signal vs. a pro-angiogenic
signal. Alternatively, the timing of IL-18 signaling may be critical,
or there may be a threshold of relative abundance of pro-
angiogenic signals that IL-18 cannot overcome. These remain
conjecture; however, one thing that is clear is that further research
into the mechanisms of action of IL-18 in mediating angiogenesis
and the relative contributions of macrophage vs. endothelial cell
signals are needed in order to help understand how this cytokine
can promote both pro-and anti-angiogenic signals.

IL-33 IN THE CONTEXT OF NEOVASCULAR
REGULATION

IL-33 is an IL-1 family member, widely expressed in a number
of different tissues, that signals via the ST-2/IL-33 receptor and
IL-1RAcP complex and induces T-helper type-2 (Th2) associated
cytokines (83, 84). IL-33 is expressed in a wide variety of tissues,
including stomach, lung, central nervous system (CNS) and skin,
however in these tissues it appears to be confined to endothelial,
smoothmuscle and epithelial cells (83). Themethod by which IL-
33 is activated is a matter of some debate; originally, like IL-1 and
IL-18, it was thought to be cleaved by caspase-1 for activation,
however others have suggested that secreted full length IL-33
is itself active and that the caspase-1 cleavage results in the
inactivation of the cytokine (85). IL-33 can however, be processed
by various serine proteases, into amore biologically activemature
form (86, 87). It has also been reported that IL-33 can behave as
a nuclear factor; it is the same molecule that was originally called
nuclear factor high endothelial venules (NF-HEV), and in vivo it
associates with heterochromatin and has potent transcriptional
repressor properties (88). In EC’s, nuclear IL-33 is a marker of

quiescence, which is lost in a Notch dependent manner during
angiogenesis (89).

On a mechanistic level, similar to the other IL-1 family
members, it has not been clearly delineated how soluble IL-33
exerts its effects on angiogenesis. The majority of reports indicate
that IL-33 promotes a pro-angiogenic phenotype, however others
report that IL-33 signaling has an anti-angiogenic function.
Urokinase-type plasminogen activator (u-PA) plays a pivotal role
in extracellular proteolysis, and is thought to be involved in the
modulation of angiogenesis. IL-33 can upregulate u-PA at both
mRNA and protein level in human coronary artery cells and
human umbilical vain endothelial cells (HUVEC) in a time- and
concentration-dependant manner (90). However, it has yet to be
explored whether blocking this function of IL-33 alters its ability
to drive angiogenesis in EC.

As a Th2 promoting cytokine, IL-33 has been implicated
in asthma pathogenesis. Angiogenesis is a feature of airway
remodeling in asthma, and it has been demonstrated that IL-33
can increase the expression of blood vessel vonWillebrand factor
(vWF), as well as angiogenic factors such as angiogenin when
administered nasally to a murine asthma surrogate model (91).
IL-33 has also been shown to induce microvessel formation by
human EC in vitro in a concentration dependent manner (91). In
diabetic mice, IL-33 was found to improve wound healing and re-
epithelization of skin wounds by promoting new ECMdeposition
and neovascularisation, and was capable of inducing expression
of VEGF and vWF (92). In a similar manner, hypoxic human
pulmonary artery endothelial cells (HPAEC), increase s IL-33/ST-
2 expression and in this cell type IL-33 enhances proliferation,
adhesiveness and spontaneous angiogenesis. This process is
dependent on HIF-1α, the aforementioned VEGF transcription
factor, as when HIF-1α is knocked down, IL-33 does not mediate
its pro-angiogenic effects on HPAEC (93). This report implies
IL-33 may be mediating angiogenesis by upregulating VEGF
expression through HIF-1α. Nitric oxide (NO) production in EC
is transiently regulated by VEGF and Ang-1, in turn NO can
modulate the angiogenic function of these factors. It has been
shown that IL-33 can activate the PI3K/Akt/endothelial nitric
oxide synthase (eNOS) signaling cascade in a TRAF-6 dependent
manner; however, the same study demonstrated that despite IL-
33’s pro-angiogenic properties, it did not stimulate the levels of
VEGF in the manner of IL-1β (94).

Like IL-1 and IL-18 there are some reports that demonstrate
IL-33 acting as a pro-angiogenic mediator in tumors. Tumor
derived IL-33 is capable of inducing tumor angiogenesis by
activating EC (95). Currently, the pervading opinion is that IL-33,
like IL-18, can have both pro- and anti-tumorigenic functions, as
reviewed by Fournie et al. (96) and Brint et al. in this special topic.

One context where IL-33 appears to have anti-angiogenic
properties, like IL-18, is in the eye. IL-33 and ST-2 are expressed
constitutively in human and murine retina and choroid tissues.
Like IL-18, IL-33 has been shown to protect against angiogenesis
in the eye. IL-33 appears to regulate tissue remodeling inhibiting
CNV formation in an ST-2 dependent manner when injected
intravitreally into mouse eyes (97). To date, in contrast to IL-1,
IL-33 is not a target in the clinic for diseases with dysregulated
angiogenesis (clinicaltrials.gov).
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IL-36, IL-37, AND IL-38—THE STORY
EMERGING SO FAR

There are three IL-36 isoforms—IL-36α, IL-36β, and IL-36γ,
which signal through the IL-36R and IL-1RAcP complex. As
with other IL-1 family members, IL-36 cytokines require cleavage
for activation, however this is not performed by caspase-
1. Instead the IL-36 cytokines are cleaved by the neutrophil
proteases cathepsin G and elastase (7), other reports also
indicate that cathepsin-S can cleave the IL-36γ isoform (8).
To date, IL-36 has been widely studied in psoriasis, where
its proinflammatory effects are strongly associated with disease
pathology. Psoriasis lesions show a developed vascular network,
with wide, leaky capillaries, and it has been demonstrated
that IL-36γ, which is commonly found at high levels in these
lesions, can activate both HUVEC and HMVEC-d (98, 99).
IL-36γ enhanced angiogenesis in these HUVECs in a VEGF-
dependent manner, and conditioned media from macrophages
incubated with IL-36γ could activate EC and induce ICAM-
1 expression (100). These early studies suggest that at least
in psoriasis IL-36γ is acting as a pro-angiogenic mediator.
IL-36γ is a recognized T-bet target in myeloid cells, and T-
bet can instigate decreases in tumor growth by promoting
dendritic cell (DC)-mediated ectopic lymphoid organogenesis
in a manner that is dependent on IL-36γ (101, 102). There
is the mounting evidence that suggests IL-36 cytokines can
act as tumor suppressors, although it is yet to be deciphered
whether this function has any connection to angiogenic
regulation (103, 104).

IL-37 is considered to be an anti-inflammatory cytokine, as it
has the capability to suppress MyD88-dependent inflammatory
cytokine expression (105–107). Currently, IL-37 is thought to
signal through the IL-18R and a yet unidentified accessory
protein (108). IL-37 can act as an intracellular cytokine; it
can translocate to the nucleus and interact with SMAD family
member-3 (SMAD3) to exert anti-inflammatory function (109).
IL-37 has the ability to bind TGF-β, which is a pivotal regulator
of both developmental and patho-physiological angiogenesis
(110). When IL-37 binds to TGF-β, it enhances binding of
IL-37 to the activin receptor-like kinase 1 (ALK1) receptor
complex and allows IL-37 to signal through ALK1 to activate
pro-angiogenic responses (111). IL-37 is expressed and secreted
in EC and upregulated under hypoxic conditions, where it
enhances cell proliferation, capillary formation, migration, and
vessel sprouting from aortic rings with potency comparable to
that of VEGF (112). Interestingly, it appears that IL-37’s ability
to induce the tube formation characteristic of angiogenesis is
strongly dose-dependent. Lower doses of 1 and 10 ng/ml could
potently drive tube formation in HUVEC, along with other
angiogenic characteristics including proliferation and endothelial
migration, but little change occurs upon the higher 100 ng/ml
dose, which interestingly was reported by another group to
suppress tube formation in the same cell type (112, 113).

IL-37, like many of the other IL-1 family members, has been
found in higher levels in serum of RA patients vs. healthy control,
and the levels are also higher in patients with more advanced
disease (114). It has not been decisively established what function

this IL-37 plays yet, but it is worth noting that the other IL-1
family cytokines are known to be pro-angiogenic mediators in
RA. Due to IL-37’s role as an anti-inflammatory cytokine there
is speculation that this elevation may be trying to counter the
proinflammatory cytokine profile seen in RA.

IL-38 is a relatively novel IL-1 family member, that signals
through the IL-36R and has been shown to have anti-
inflammatory properties. In a murine model of oxygen induced
retinopathy, treatment with IL-38 reduced the size of neovascular
regions, indicating the attenuation of angiogenic processes in vivo
(115). IL-38 was also shown to attenuate proliferation, migration,
and tube formation of EC in a dose dependent manner. IL-38 is
strongly expressed in synovial tissues fromRApatients, and as IL-
38 KO mice show greater RA severity in auto-antibody induced
RA, it is tempting to suggest that IL-38 acts as an inhibitor of RA
pathogenesis (116).

REGULATION OF VASCULAR
PERMEABILITY BY IL-1 FAMILY
CYTOKINES

The vascular endothelium forms a barrier that regulates the flow
of molecules, as well as leukocyte, entry into tissues. To regulate
vascular permeability is to regulate the cell-cell junctions between
EC. This cell-cell junction has several complexes that regulate
and contribute to its integrity, including tight junctions and
adherens junctions. Molecules like VEGF can regulate vascular
permeability by promoting signaling cascades that alter the
composition of the junction. However, it is note-worthy that
not all mediators of angiogenesis are also able to alter vascular
permeability, and indeed there are well-recognized examples
of pro-angiogenic mediators acting as anti-permeability factors,
thereby helping to improve the vascular integrity, as is the
case for Ang-1 (117). It is well-established that IL-1 family
cytokines can alter the permeability of vasculature, and, as is
the case with angiogenesis, the different IL-1 family cytokines
vary in their functionality, with some members displaying tissue
dependent effects.

IL-1 IS A POTENT INDUCER OF VASCULAR
PERMEABILITY

With respect to IL-1, it appears that despite IL-1α inducing
increases in permeability (118, 119), this isoform has slighter
effects than IL-1β, at least in vitro (120). One of the mechanisms
by which IL-1β has been shown to alter the permeability
of the vasculature is by regulating the expression of cell-cell
junction components. Of note, treatment with IL-1β can result
in the loss of β-catenin and VE-cadherin specifically at the
endothelial cell border, which results in small holes and gaps
forming between cells (121). IL-1β can also induce vascular
permeability indirectly through induction of pro-permeability
factor R-spondin 3 (RSPO3) (121). Combined treatment of
IL-1β and RSPO3 can synergistically increase permeability in
human coronary artery endothelial cells (HCAEC), HPAEC,
human cerebral microvascular endothelial cells (HCMVEC),
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FIGURE 2 | Graphical representation of IL-1F cytokine regulation of angiogenesis. IL-1 F cytokines regulate angiogenesis either by promotion of proliferation,

migration, and tube formation or by inhibiting these steps. Direct mechanisms are depicted by solid arrows, indirect mechanisms are depicted by broken arrows.

Brackets on the right hand side of the figure indicate mechanisms associated with specific angiogenic diseases. Transcription factors are shown in boxes; P, indicates

phosphorylation event; Mφ, macrophage.
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human brain microvascular endothelial cells (HBMVEC), and
HMVECd (122).

The largest body of evidence characterizing IL-1’s role
in regulating vascular permeability comes from literature
on the blood-brain barrier (BBB). The endothelium and
the associated astrocytes control the balance between barrier
stability and permeability via production of factors that regulate
vessel plasticity (123) and recombinant IL-1β increases the
permeability of the BBB in rats when injected intracranially
(124). Interestingly, evidence that suggests IL-1β injection into
the striatum of juvenile brains results in a neutrophil dependent
increase in BBB permeability, but this effect is not recapitulated
in mature animals (125). This study demonstrated that in the
juvenile animals the blood vessels that recruited neutrophils
displayed loss of the tight junction proteins occludin and
zonula occludens-1 (ZO-1) and redistribution of vinculin, an
adherens junction component involved in the linkage of integrin
adhesion molecules to the actin cytoskeleton (125). Electron
microscopy further demonstrated that cell-cell adhesions in these
cells are morphologically different to control brain endothelial
junctions, implying that IL-1β mediated leukocyte recruitment
can result in junction disorganization and BBB breakdown.
Additionally, IL-1β intracerebral administration in adult rats
induces meningitis, however in juvenile rats that are between 2
and 6 weeks old IL-1β has the secondary effect of increasing BBB
permeability (126). Chemokines, including cytokine-induced
neutrophil chemoattractant (CINC-1), are induced following
the intracerebral administration of IL-1β, and this induction
produces a far more intense neutrophil response in juvenile rats
compared to their adult counterparts (127). The IL-1β mediated
breakdown in BBB integrity in juvenile rats could be attenuated
by using a CINC-1 neutralizing antibody, indicating that the
difference in response between adult and juvenile mammals may

be due to differences in sensitivity to IL-1β upregulated CXC
chemokines. The finding that these processes are applicable only
to juvenile animals is reflective perhaps of the fact that children
are more inclined to encounter permanent damage and mortality
than adults after trauma or inflammation in the brain.

In encephalitis, parenchymal brain inflammation, the ratio
of IL-1Ra to IL-1β in the cerebrospinal fluid can be indicative
of patient outcomes, with a higher ratio of IL-1β to IL-
1Ra indicative of poor patient outcome, and associated with
reduced integrity of the BBB (128). Loss of BBB integrity
is also an early significant event in Multiple Sclerosis (MS)
and has been proposed through microarray analysis to induce
expression of HIF-1α and VEGF-A in astrocytes, as well as
potently downregulating an important maturation and stability
factor for BBB integrity gravin/src-suppressed C-kinase substrate
(SSeCKs) (129). In co-cultures of astrocytes and HBMVEC,
endothelin-1 (ET-1) could induce IL-1β in astrocytes, and this
IL-1β was demonstrated to be the effector of ET-1 induced BBB
permeability (130).

In a manner akin to its effect on the BBB, IL-1β can
alter the permeability of the blood-retina-barrier (BRB), by
negatively regulating the tight junctions of the retinal vascular
endothelium (131). Mice exposed to retinal cryopexy, followed
by intraperitoneal administration of [3H]mannitol allowed
radioactive leakage to be compared between the retina and
the lung/kidney (132). This technique demonstrated that IL-1β
caused relatively rapid breakdown of the BRB, and that this
breakdown in barrier integrity was more prolonged in nature
than that induced by VEGF alone. In a transgenic mouse model,
where IL-1β was overexpressed in the lens, there was an early
peak of VEGF at P5-P7, which was determined to be IL-1β
dependent and coincided with the onset of BRB breakdown,
which suggests that similar to angiogenesis, IL-1β can exert some

FIGURE 3 | Graphical representation of IL-1F cytokine regulation of vascular permeability. IL-1 F cytokines regulate vascular permeability, direct mechanisms are

depicted by solid arrows, indirect mechanisms are depicted by broken arrows. EC, endothelial cell; P, indicates phosphorylation event. ↑ indicates upregulation of

protein; ↓ indicates down regulation of protein.
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of its regulatory effects on vascular permeability by inducing
VEGF expression (133).

In addition to its effects in brain and retinal endothelium,
IL-1β induces lung vascular permeability in an integrin αvβ6
dependent manner in a lung injury model (134) and contributes
to significant increases in the vascular permeability in dengue,
the most virulent haemorrhagic disease worldwide (135).
Interestingly though, the potent effect of IL-1β on barrier
integrity is not ubiquitous to all endothelial cell types. The
glomerular capillaries differ from most endothelium types due
to their formation of large fenestrated areas that comprise 20–
50% of the entire endothelial surface; the result of this is that
human renal glomerular endothelial cells (HRGEC) are naturally
more permeable than other endothelial cell types. Treatment of
HRGEC with IL-1β therefore results in a modest increase in
permeability compared to that seen in HUVEC following the
same treatment (136). In addition to the wealth of data on IL-1
effects on the BBB and BRB, this may indicate that the primary
effect of IL-1 is on regulating the tight junctions and adherens
junctions that are not found in fenestrated capillary beds.

REGULATION OF VASCULAR
PERMEABILITY BY OTHER IL-1 FAMILY
CYTOKINES

As with angiogenesis, the other IL-1 family members have
also been shown to have a level of influence over vascular
permeability, although for the more novel members of the
family—IL-36, IL-37, and IL-38—their effects, if any, remain to
be examined. However, there are studies, all be they limited,
that demonstrate that IL-18 and IL-33 can regulate vascular
permeability effectively.

Like IL-1, IL-33 has also been shown to regulate the
permeability of EC, by altering VE-cadherin. IL-33 increased
the permeability of HUVEC, as demonstrated in a [14C] sucrose
permeability assay in vitro and the Miles vascular permeability
assay in vivo. This increase in permeability coincided with a
reduction in the localization of VE-cadherin to the cell-cell
junction (94). The authors of this study also demonstrated that
IL-33 treatment resulted in the phosphorylation of VE-cadherin
in a VEGF-independent manner; VE-cadherin phosphorylation
is known to correlate with the loosening of adherens junctions,
which is associated with transendothelial permeability. Further
studies have demonstrated that IL-33 can also decrease
expression of tight junction proteins, such as occludin, in order
to decrease the barrier integrity of HUVEC (137).

Similar to its effects on neovascularisation, IL-18 can either
promote or restrict permeability in a context dependent manner.
IL-18 is upregulated in inflamed lungs, and the mature IL-
18 cytokine can be found in bronchoalveolar (BAL) fluid. In
a rat model of lung inflammation, caused by deposition of
IgG immune complexes, intratracheal administration of IL-18
was shown to significantly increase lung vascular permeability,
as well as increasing neutrophil and inflammatory cytokine
presence in BAL fluids (138). However, in the retina, IL-

18 administration reduces vascular leakage in a spontaneous
mouse model of bilateral neovascularisation as measured by
fluorescein angiography (75) and likewise in the brain it has been
demonstrated that IL-18 can protect against BBB disruption.
Status epilepticus (SE) is an epileptic condition in which multiple
consecutive epileptic fits occur with no recovery of consciousness
between them; resulting in an increase in BBB permeability in
limited cerebral regions, this increase in permeability is followed
by vasogenic oedema. IL-18 is upregulated following SE in local
astrocytes, microglia and macrophages, and it has been shown by
infusing recombinant IL-18 into the rat piriform cortex that this
IL-18 reduces vasogenic oedema formation, potentially through
its upregulation of dystrophin and its possible mediation of BBB
permeability (139).

CONCLUDING REMARKS & QUESTIONS
FOR FUTURE RESEARCH

This review has demonstrated that IL-1 cytokine family signaling
clearly has an influential role in mediation of angiogenesis and
vascular permeability during disease processes, see Figures 2,
3 for graphical representations. For the original members of
the family—IL-1α and IL-1β–their proangiogenic effects have
been characterized widely and many attempts have been made
to understand the drivers and resulting signaling cascades at a
molecular level. In the case of IL-18 and IL-33, although their
ability to influence angiogenesis is undeniable, questions remain
about how they promote angiogenesis in some tissues and yet
inhibit it in others. For the more recently discovered members
of the family—IL-36, IL-37, and IL-38—studies are beginning
to surface that demonstrate that they too, most likely possess
the ability to regulate angiogenesis in a number of tissues, yet it
remains to be seen as to whether they have the singular effects
of IL-1 or the more nuanced effects observed for IL-18 and IL-
33. There is equally clear evidence that demonstrates IL-1 can
expansively regulate increased permeability of the vasculature
throughout the body. IL-18 and IL-33 have also demonstrated
that they can alter the cell-cell junction of EC, thereby altering
permeability.Whether IL-36, IL-37, and IL-38 can also exert sway
over vascular permeability akin to the other IL-1 family members
is unknown and remains to be explored. In conclusion, the IL-
1 family have potent and far reaching effects on the regulation
of angiogenesis and vascular permeability, that are accomplished
through both direct and indirect mechanisms.
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