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Feasible attack on detector-
device-independent quantum key 
distribution
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Jinghua Xiao1 & Yuefeng Ji1

Recently, to bridge the gap between security of Measurement-device-independent quantum 
key distribution (MDI-QKD) and a high key rate, a novel protocol, the so-called detector-device-
independent QKD (DDI-QKD), has been independently proposed by several groups and has attracted 
great interest. A higher key rate is obtained, since a single photon bell state measurement (BSM) setup 
is applied to DDI-QKD. Subsequently, Qi has proposed two attacks for this protocol. However, the first 
attack, in which Bob’s BSM setup is assumed to be completely a “black box”, is easily prevented by 
using some additional monitoring devices or by specifically characterizing the BSM. The second attack, 
which combines the blinding attack and the detector wavelength-dependent efficiency, is not explicitly 
discussed, and its feasibility is not experimentally confirmed. Here, we show that the second attack is 
not technically viable because of an intrinsically wavelength-dependent property of a realistic beam 
splitter, which is an essential component in DDI-QKD. Moreover, we propose a feasible attack that 
combines a well-known attack—detector blinding attack with intrinsic imperfections of single-photon 
detectors. The experimental measurement and proof-of-principle test results confirm that our attack 
can allow Eve to get a copy of quantum keys without being detected and that it is feasible with current 
technology.

Quantum key distribution (QKD) enables two legitimate parties, usually called Alice and Bob, to share a private 
key through a quantum channel, which is possible in the presence of an eavesdropper, Eve1, 2. Ideal QKD pro-
tocols, guaranteed by the laws of quantum mechanics, have been proved to be unconditionally secure without 
imposing any restrictions on the computational power of Eve3, 4. However, real-life implementations of QKD 
inevitably contain certain imperfections leaving some vulnerable loopholes (the so-called side channels). Indeed, 
such loopholes have been exploited by Eve and have led to various subtle attacks for real-life QKD systems5–16. 
For example, in the security proof of QKD, a key assumption is that two legitimate parties encode their signals 
without errors, which is violated in a real QKD system. Xu et al. have experimentally shown that Eve can exploit 
such loopholes to launch a phase-remapping attack to steal secure keys without being detected10. See ref. 17 for 
a recent review.

To build loophole-free QKD systems, the one crucial solution is to develop device-independent 
QKD protocols18–20, which can remove all loopholes due to imperfect devices. Among them, the 
measurement-device-independent (MDI) QKD protocol, which is more practical in comparison to other 
device-independent protocols, has received great attention. MDI-QKD can automatically remove all side chan-
nels from measurement apparatus, which are undoubtedly the most critical part of QKD systems. Several groups 
have experimentally demonstrated the practicality of MDI-QKD with current technology21–27. Ref. 28 is a recent 
review on this topic. However, setups of MDI-QKD, which require a two-photon interference from two individual 
lasers, are rather complicated and lead to a lower key rate comparing to conventional QKD, such as decoy-state 
BB84 QKD29, 30.

Recently, to bridge the gap between security of MDI-QKD and a high key rate, a novel protocol, the so-called 
detector-device-independent QKD (DDI-QKD)31, has been independently proposed by several groups and has 
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attracted great interest32–34. Instead of exploiting two-photon interference in MDI-QKD, this protocol utilizes an 
untrusted single-photon Bell state measurement (BSM) setup35. Consequently, as declared in DDI-QKD, it can 
still be immune to all detector side-channel attacks, which is the major advantage of MDI-QKD, with a compa-
rable performance of conventional QKD. Subsequently, Qi reported two attacks for this protocol and showed 
that additional assumptions on the BSM setup are required to reach the claimed DDI-QKD security level36. To 
launch the first attack, the BSM located inside Bob’s laboratory is assumed to be completely a “black box” (as the 
security assumption claimed in refs 32–34), which led to leak of “unwanted” information to Eve. Nevertheless, 
this attack is easily removed by either introducing additional apparatus to monitor Bob’s input signals32 or specif-
ically characterizing the BSM34. The second attack (we call it the wavelength-dependent attack since it exploits the 
detector wavelength-dependent efficiency), combining a well-known detector blinding attack and the detector 
wavelength-dependent efficiency, allows Eve to learn the total key string without introducing any errors. In the 
attack, Eve employs bright light to blind Bob’s detectors and then controls which detector clicks by carefully tai-
loring the wavelength of a superimposed bright pulse into the bright light. If detectors in the BSM have different 
wavelength-dependent efficiencies, Eve exploits such an imperfection to cover unusual double-click rate s caused 
by her attack. However, ref. 36 does not explicitly discuss the second attack. For example, how can Eve blind four 
detectors? More importantly, it is unknown whether the attack employing the detector wavelength-dependent 
efficiency is experimentally feasible. We note that, more recently, a simple implementation of DDI-QKD has been 
experimentally reported37.

Here, we show that the wavelength-dependent attack in ref. 36 is not technically viable because of the harm 
caused by an intrinsically wavelength-dependent property of a realistic beam splitter, which is an essential com-
ponent in DDI-QKD. Moreover, we propose a feasible attack, the same as the wavelength-dependent attack that 
is based on the well-known detector-blinding attack. We explain how Eve blind four detectors in detail. To avoid 
an unusual double-click rate, different from the wavelength-dependent attack, we utilize another imperfection 
that two practically blinded detectors respond differently to the same blinding power. Our experimental meas-
urement and proof-of-principle test results confirm that our attack can allow Eve to get a copy of a quantum key 
without being detected and that it is feasible with current technology. We remark that our attack is not against 
the wavelength-dependent attack; strictly speaking, we propose an alternative solution to the problem of double 
clicks in the wavelength-dependent attack and experimentally confirm its feasibility.

Results
DDI-QKD.  In DDI-QKD (as shown in Fig. 1(a)), Alice generates a single photon in one of the four BB84 
polarization states |ψA〉p and then sends it to Bob over an insecure quantum channel. Once Bob receives the pho-
ton, he exploits a trusted linear optical network (LON), which includes some linear optical components for 
manipulating the state of an incoming photon, to encode his random bit |ψB〉s in a different degree (say spatial) of 
freedom of the photon. Afterwards, the photon is detected by an untrusted single-photon BSM setup, which is 
considered to be a “black box” (this means that the BSM, for the worst case, is controlled by Eve), and the 

Figure 1.  (a) Schematic diagram of DDI-QKD. LON is the linear optical network, and BSM is the Bell state 
measurement. (b) Schematic diagram of a specified example of DDI-QKD proposed in ref. 33. BS: 50:50 beam 
splitter, BSM: Bell state measurement, HWP: half-wave plate, PM: phase modulator, PBS: polarizing beam 
splitter, and Di, with ∈i {1, 2, 3, 4}: single-photon detectors in the BSM setup. In Bob’s laboratory, the areas 
before and after the red dashed line denote the LON and the BSM setup, respectively. For the ideal case, a click 
on each detector Di corresponds to the projection on one of the four Bell states. |ψA〉p is one of the four BB84 
polarization states prepared by Alice, and |ψB〉s are Bob’s encoding bit in spatial mode. Symbols u, l and a, b 
denote two paths of the first and second BS, respectively. In practice, Alice prepares |ψA〉p by generating phase-
randomized weak coherent pulses which can be modelled as Poissonian (with parameter u) mixture of photon 
number states in different BB84 polarization states1, 2, 29.
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measurement result is reported to Bob. Finally, through an authenticated classical channel, Bob broadcasts, which 
photons have a successful BSM click together with the corresponding Bell state gained and the basis information. 
Then, Alice and Bob estimate the quantum bit error rate (QBER) for the data where they choose the same basis. If 
the QBER is below the secure threshold, they perform error correction and privacy amplification to distill the 
secure key. To clearly describe our attack, we use the proposed protocol in ref. 33 as an example. The implemen-
tation of the protocol is shown in Fig. 1(b). To encode the information in the spatial mode, Bob sends the receiv-
ing photon to a 50/50 beam slitter (BS) and applies a phase ϕB on the lower arm (represented by l) by a phase 
modulator (PM). A single-photon BSM setup contains a half-wave plate (HWP) on the upper arm (represented 
by u), followed by a 50/50 BS to combine the two arms, and two polarizing beam splitters (PBSs) followed by four 
single-photon detectors (SPDs). With this structure shown in Fig. 1(b), a click on each SPD denotes the projec-
tion on one of the Bell states. In practice, Alice prepares |ψA〉p by generating phase-randomized weak coherent 
pulses which can be modelled as Poissonian (with parameter μ) mixture of photon number states in different 
BB84 polarization states1, 2, 29. The density matrix of the state can be written as ρ = ∑

µ µ
=

∞ −e i iA i i0 !

i
, where |i〉 〈i| 

is the density matrix of the i–photon state for i = 0, 1, …. When μ is small, the contribution of the n = 1 state to a 
mixture of the photon number states dominates that of the n > 2 multiphoton states. Although the possible imple-
mentations of the DDI protocol in refs 32–34 are somewhat different, our attack is feasible on all of them since 
they all employ four SPDs to perform the BSM.

Wavelength-dependent attack.  To highlight the feasibility of our proposed attack, first, we show that the 
wavelength attack is failed because of its applied strategy (the detector wavelength-dependent efficiency) to remove 
an unusual double-click rate. As discussed in the wavelength-dependent attack36 or a similar analysis in the follow-
ing subsection 2, Eve could use the imperfection-detector wavelength-dependent efficiency in the BSM to deal with 
an unusual double-click rate resulted by detector controlling, i. e., Eve could reduce the double-click rate by carefully 
tailoring the wavelength of the superimposed light. This solution will work well if all fiber-optic components in Bob’s 
laboratory are wavelength-independent. Unfortunately, in practice, a part of the fiber-optic components, such as BSs 
and PMs, are wavelength-dependent and affect which detector clicks with the varying wavelength of the superim-
posed light. For instance, a realistic BS is generally manufactured using fused biconical taper technology, and the 
coupling ratio is commonly wavelength-dependent. Figure 2 shows the relationship between the wavelength of a 
source and the coupling ratio of a fused biconical taper 50/50 BS. The coupling ratio can be easily checked to vary 
nonlinearly with the wavelength, and the optimal coupling ratio is reached at the central wavelength of 1550 nm. For 
simplicity, in the wavelength-dependent attack, to reduce the unusual double-click rate, the imperfection should 
satisfy that the detector D2(D3) clicks at the central wavelength and detector D1(D4) clicks at a different wavelengths 
λ with an unbalanced coupling ratio r. Here, we define r = Pi/(Pi + Pj), where ∈i u a{ , } and ∈j l b{ , } represent the 
paths of BS in Fig. 1b. Suppose that the superimposed light that Eve resends to Bob are in the form |2αe〉, according 
to DDI-QKD (a similar and detailed procedure is shown in following subsection 2), the intensities arriving at differ-
ent detectors in the wavelength-dependent attack can be expressed as

1250 1300 1350 1400 1450 1500 1550 1600 1650
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ou

pl
in

g 
ra

tio

Wavelength (nm)

Figure 2.  Relationship between the wavelength of the source and the coupling ratio. The coupling ratio of the 
BS is defined as =
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, where Iport1 (Iport2) is the output intensity of BS output 1(2). The theoretical 

relationships are based on the coupling model r = F2 sin2(Cω/F) given in ref. 11, where F2 is the maximal 
coupled power, C is the coupling coefficient, and ω is the heat source width. The red dot is the experimental 
measurement result, and the curve is the theoretical result. The coupling ratio changes from 0.003 to 0.968 with 
the wavelength changing from 1290 nm and 1470 nm. (The figure is reproduced with permission from ref. 11).
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where ϕe and ϕB represent the phase choices of Eve and Bob, respectively, and Di, with ∈i {1, 2, 3, 4}, denote 
Bob’s detectors. From Eq. (1), we know that the intensities arriving at each detector are extremely dependent on 
the coupling ratio r. With random phase modulations, the counts of the four detectors are distributed evenly only 
if the coupling ratio r equals 0.5. For a sharp comparison, we suppose that r = 1 corresponds to the wavelength 
λ = 1260 nm in Fig. 2. Eq. (1) converts into

α α− ⊗ − .ϕe (2)e D
i

e D
e

1 2

The light only arrives at the two detectors at the output a regardless of the basis choice of Bob and Alice. 
Consequently, Bob can easily detect the wavelength-dependent attack by checking whether the four detectors 
respond equally to the four Bell states.

Proposed attack.  Our proposed attack can be summarized with the following three steps:

Step 1 - Detector blinding.  In DDI-QKD, Alice prepares randomly quantum signals in the X or Y basis at a 
single-photon level. However, in our attack, Eve employs bright light |2βe〉α in the Z basis to force Bob’s detectors 
into the so-called linear mode8, where the subscript α denotes an eigenstate in the Z basis. In detail, Eve intercepts 
Alice’s signals and then sends bright light |2βe〉H (for simplicity, we assume the polarization of Eve’s light horizon-
tal) to Bob. By using the LON, Bob can yield the BB84 states ψ = + ϕi u e l( )/ 2B s

i B  in spatial modes, where 
ϕ π π π∈ {0, /2, , 3 /2}B . Therefore, after passing the LON, |2βe〉H becomes β ψ⊗2 e H B s. When the light enters 
the BSM setup, it first is made unitary transformations |Hu〉 → |Vu〉 and |Vu〉 → |Hu〉 on the upper arm by the 
HWP. Hence, the state transforms into β β⊗ ϕi u e l2 2e V

i
e H

B . After transmitting through the second BS, 
according to the unitary transformation → +u i a b( )/ 2 and → +l a i b( ) 2, the state can be written 
as

β β β β⊗ ⊗ ⊗ϕ ϕi i e e , (3)e D
i

e D
i

e D e DB B
1 2 3 4

In Eq. (3), it does not matter which modulated phase is chosen by Bob as the intensities entering the four 
SPDs are always the same. Thus, by elaborately tailoring the light, Eve can successfully blind Bob’s detectors, 
forcing the four detectors to work in the so-called linear operation mode. In this mode, the SPDs do not respond 
to a receiving single photon, but remain sensitive to bright light with a classical optical power threshold Pth. We 
remark that this is not the only way to blind the detectors; alternative schemes, such as thermal blinding, have 
been reported38–40.

Step 2 - Detector controlling.  After the blinding process in step 1, Eve performs an intercept-resend attack on the 
signals transmitted from Alice. That is, she intercepts the transmitted signals and measures each of them in one 
randomly chosen basis from the BB84 bases, and then she prepares a new signal according to her measurement 
result and sends it to Bob. Bob will get a detection event only if his active basis choice coincides with that of Eve. 
Here, without any loss of generality, we suppose that Eve resends a superimposed light pulse |2αe〉R to control 
Bob’s detectors, where the subscript R represents the BB84 states + ϕH e V( )/ 2i e  re-prepared by Eve. With a 
similar analysis in step 1, after passing the LON and the second BS, the state becomes
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According to the Eq. (4) above, we can obtain the observed intensity arriving at each of Bob’s four detectors. If 
Bob and Eve use the same basis, only two out of the four detectors have the same arriving intensity (one-half of the 
total intensity). When they have an incompatible basis choice, all the four detectors share the intensity evenly (a 
quarter of the total intensity). To highlight it, as an example, Table 1 lists the observed intensities arriving at each of 
Bob’s four detectors when Eve sends |+〉 and Bob measures it with different bases. Here, we suppose that the classical 
optical power threshold of Bob’s blinded detectors Pth meets α α< <P/2 th

2 2. From this table, we easily find that 
when Bob chooses |±i〉, which is a different basis from Eve, his blinded SPDs cannot have any detection events; 
when Bob chooses the same basis as Eve, two of his four SPDs may have clicks. However, it will cause an unusual 
double-click rate that ensures Bob is vigilantly aware of the presence of Eve and easily prevents our attack with ran-
dom bit assignments for double clicks41. Consequently, to successfully perform the attack, it is necessary to find a 
solution to ensure that only one detector has a click.
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Step 3 - Reducing the double-click rate.  To reduce the usual double-click rate, in our attack, we apply an intrinsic 
imperfection of SPDs that real single-photon detectors respond differently to the same blinding power. As shown in 
Fig. 3 (see Methods section for the detailed measurement setup), for a particular biased voltage of avalanche pho-
todiodes (APDs) Vbias in two different SPDs, the click thresholds are different. In the original blinding attack, the 
blinding is caused by the drop of the bias voltage such that the APD operates in the linear mode. Hence, in our meas-
urement, we directly change the bias voltage of the APDs in the two SPDs and record corresponding click thresholds. 
Especially, with the increase in Vbias, the click threshold curves for the two detectors cross (see the dashed line in 
Fig. 3). Before the dashed line, the threshold of detector C062 is less than that of detector C061; however, after the 
dashed line, the threshold of detector C062 is larger than that of detector C061. Hence, Eve can simply choose a 
combination of P and Vbias before (after) the dashed line, such that a click occurs only on detector C062 (C061) and 
no click occurs on detector C061 (C062). By doing this, Eve can easily reduce the usual double-click rate. To demon-
strate the feasibility of our attack, we control the two detectors with two different combinations of P and Vbias. The 
results are shown in Fig. 4. The values P1 = 1.96 mW and V bias1 = 63.38 V cause a detection event in detector C061, 
however, never cause it in detector C062. In contrast, the values P2 = 2.7 mW and V bias2 = 59.38 V cause a detection 
event in detector C062, however, never cause it in detector C061.

It seems that Eve can use another independent imperfection of detectors—detector efficiency mismatch—
to reduce an unusual double-click rate. However, there is no concrete proof that the detector still has the effi-
ciency mismatch when it works in the linear mode. It is worth noting that DDI-QKD is naturally secure against 
a time-shift attack7, which is based on the fact that two practical SPDs have detection-efficiency mismatch in 
time domain and each SPD denotes respectively one of bits 0 and 1. However, such criterion are not suitable in 
DDI-QKD, in which the bits each SPD denotes is varying with Alice’s and Bob’s chosen bases. A related scheme42, 
in which Alice and Bob will get conclusive bits only when they used the different basis for measurement, is 
strongly similar to DDIQKD and is also immune to the time-shift attack. However, our attack is still working for 
this scheme, that is, detector will keep silence when Bob’s active basis choice did not coincide with that of Eve.

Schematics of hacking scheme.  Figure 5 shows the proposed hacking scheme. Eve consists of copies of Alice 
(Alice’) and Bob (Bob’), which share bit and basis settings and a blinding laser. To perform our attack, Eve intercepts 
the state of Alice and randomly measures it in one of the two bases X and Y using the same devices as Bob. Eve then 
prepares new signals with detection results and the chosen basis from Bob’, overlaps them to a continuous-wave 
blinding laser which keeps Bob blind via an optical coupler C. Such detector blinding procedure and detector 

Eve Bob D1 (|ψ−〉) D2 (|φ−〉) D3 (|φ+〉) D4 (|ψ+〉)

+ + 1 1 0 0

− 0 0 1 1

+i 0.5 0.5 0.5 0.5

−i 0.5 0.5 0.5 0.5

Table 1.  Observed intensity arriving at each of Bob’s four detectors when Eve sends |+〉. Here, we suppose that 
the classical optical power threshold of Bob’s blinded detectors Pth meets |α|2/2 < Pth < |α|2. The intensities are 
normalized by |α|2.

Figure 3.  Click thresholds versus biased voltage of the APDs in two different SPDs C062 and C061. Here, for a 
particular biased voltage of APD Vbias, each point in the red (black) curves represents the minimum value of 
the peak power of SPD C061 (C062). The blue circle is the cross point of the two curves. The triangles are two 
different combinations in the feasibility test.
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controlling have been successfully tested in QKD systems under laboratory or realistic condition9, 43. The critically 
implemented part of our attack is whether Eve can prepare the new signals to make only one of detectors in Bob have 
clicks. As we analyse in step 3, the answer is “yes”. For simplicity, suppose that Eve wants to force a click only on 
detector D1 and no click on detector D2 illustrated in Fig. 1(b). If the behaviour of the detector D1 (D2) coincides with 
the red (black) curves illustrated in Fig. 3, the values P = 1.96 mW and V bias = 63.38 V are an combination that meet 
the requirements. Similarly, if P = 2.7 mW and V bias = 59.38 V, Eve can cause a detection event in detector D2, how-
ever, never cause it in detector D1. The corresponding experimental tests for these examples are shown in Fig. 4. In 
our experiment, a full demonstration of the proposed hacking scheme has not been performed. The detector 
blinding procedure, which had been successfully tested in previous works, has not been repeated. The detector con-
trolling, proofing that Eve can reduce usual double-click rates, has been performed. It worth mentioning that, 
although the results shown in Fig. 3 are gained by measuring a home-made detector circuit, we note that, in a recent 
work, Huang et al.44 show that SPDs in commercial QKD system Clavis2 have similar behaviours. Futhermore, our 
attack is valid for the scheme proposed in ref. 34. It is easy to check that the intensities arriving at Bob’s four detectors 
are the same if the initial polarization of the bright light of Eve is = +R H V( )/ 2 . By careful tailoring the 
intensities of the bright light and superimposed light pulse according to steps 2 and 3, Eve can successfully hack the 
scheme without being detected.

Figure 4.  Electrical signal oscillograms when the APDs in SPDs Co62 and C061 are controlled by the trigger 
pulse peak power with a corresponding biased voltage. (a) The values P = 1.96 mW and V bias = 63.38 V 
cause a detection event in detector C061, however, never cause it in detector C062. (b) In contrast, the values 
P = 2.7 mW and V bias = 59.38 V cause a detection event in detector C062, however, never cause it in detector 
C061.

Figure 5.  Schematics of hacking scheme. Eve consists of copies of Alice (Alice’) and Bob (Bob’), which share bit 
and basis settings and a blinding laser. C: optical coupler.



www.nature.com/scientificreports/

7Scientific Reports | 7: 449  | DOI:10.1038/s41598-017-00531-y

Discussion
In summary, we show that the wavelength-dependent attack in ref. 36 is not technically viable because of an 
intrinsically wavelength-dependent property of a realistic beam splitter, which is an essential component in 
DDI-QKD. Moreover, we propose a feasible attack, the same as the wavelength-dependent attack that is based 
on the well-known detector-blinding attack. We explain how Eve blinds four detectors in detail. To avoid an 
abnormal double-click rate, different from the wavelength-dependent attack, we utilize another imperfection in 
real single-photon detectors. An experimental measurement and a proof-of-principle test are performed, and 
their results confirm that our attack is feasible with current technology. To prevent our attack as well as the 
wavelength-dependent attack, one specific countermeasure is that Bob introduces additional filtering and mon-
itoring devices with the same idea of QKD with an untrusted source for plug & play system45. Another counter-
measure is the so-called random-detector efficiency, in which the efficiency of SPDs is randomly varied46. We 
remark that while DDI-QKD is not strictly secure as MDI-QKD, it is more secure than traditional QKD proto-
cols, such as BB84, and is the best for certain practical applications.

Methods
Measurement method.  Figure 6(a) shows the detector circuit diagram in our experiment. The APD is biased 
by a high voltage from analog tap T1 with a biased resistance of 1 MΩ. Tap T2 is an analog tap of avalanche signals 
with a load resistance of 50 Ω. We do not re-engineer exact detector circuit in commercial SPDs, which contain filter 
circuits and a fast comparator. Figure 5(b) shows the measurement setup used to measure intrinsic imperfections 
of APDs. To produce trigger pulses, a laser diode sends light pulses, and then they are attenuated by an intensity 
modulator controlled by directly applying the pulsed voltage from a function generator (Tektronix AFG3022C). 
The detector blinding is simulated by directly applying a high voltage for tap T1 from a home-made DC power. An 
amplifier discriminator (ORTEC 9302) and an oscilloscope (Tektronix TDS 2024B) are used to monitor the ava-
lanche signals. The two APDs are both from Princeton Lightwave. The breakdown voltage of the first APD (Serial 
number 1444C061), denoted as C061 in Fig. 3, is 72.41 V at 25 °C, and that of the second APD (Serial number 
1444C062), denoted as C062, is 71.25 V at 25 °C. In the imperfection measurement, we record the click threshold 
in the biased voltage range from 56 V to 66 V, at which the APD works in the linear mode. The measurement results 
are shown in Fig. 3. In the feasibility test, we choose two points beside the dashed line and record whether the APDs 
have a click event as shown in Fig. 4.

References
	 1.	 Bennett, C. H. & Brassard, G. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of IEEE International 

Conference on Computers, Systems and Signal Processing, vol. 175 (New York, 1984).
	 2.	 Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002).
	 3.	 Lo, H.-K. & Chau, H. F. Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999).
	 4.	 Shor, P. W. & Preskill, J. Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000).
	 5.	 Makarov, V. & Hjelme, D. R. Faked states attack on quantum cryptosystems. J. Mod. Optic. 52, 691–705 (2005).
	 6.	 Makarov, V., Anisimov, A. & Skaar, J. Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74, 

022313 (2006).
	 7.	 Zhao, Y., Fung, C.-H. F., Qi, B., Chen, C. & Lo, H.-K. Quantum hacking: Experimental demonstration of time-shift attack against 

practical quantum-key-distribution systems. Phys. Rev. A 78, 042333 (2008).
	 8.	 Lydersen, L. et al. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4, 686–689 (2010).
	 9.	 Xu, F., Qi, B. & Lo, H.-K. Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. 

New J. Phys. 12, 113026 (2010).
	10.	 Jain, N. et al. Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107, 110501 (2011).
	11.	 Li, H.-W. et al. Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and 

multiwavelength sources. Phys. Rev. A 84, 062308 (2011).
	12.	 Sun, S.-H., Jiang, M.-S. & Liang, L.-M. Passive faraday-mirror attack in a practical two-way quantum-key-distribution system. Phys. 

Rev. A 83, 062331 (2011).

.

Figure 6.  (a) Detector circuit diagram. Tap T1: analog tap of the APD bias voltage with a biased resistance 
of 1 MΩ. T2: analog tap of avalanche signals with a load resistance of 50 Ω. (b) LD: laser diode, IM: intensity 
modulator, FG: function generator, BiasV: home-made DC power, AD: amplifier discriminator, and OS: 
oscilloscope.



www.nature.com/scientificreports/

8Scientific Reports | 7: 449  | DOI:10.1038/s41598-017-00531-y

	13.	 Liu, W.-T., Sun, S.-H., Liang, L.-M. & Yuan, J.-M. Proof-of-principle experiment of a modified photon-number-splitting attack 
against quantum key distribution. Phys. Rev. A 83, 042326 (2011).

	14.	 Sun, S.-H., Gao, M., Jiang, M.-S., Li, C.-Y. & Liang, L.-M. Partially random phase attack to the practical two-way quantum-key-
distribution system. Phys. Rev. A 85, 032304 (2012).

	15.	 Tang, Y.-L. et al. Source attack of decoy-state quantum key distribution using phase information. Phys. Rev. A 88, 022308 (2013).
	16.	 Bugge, A. N. et al. Laser damage helps the eavesdropper in quantum cryptography. Phys. Rev. Lett. 112, 070503 (2014).
	17.	 Lo, H.-K., Curty, M. & Tamaki, K. Secure quantum key distribution. Nat. Photon. 8, 595–604 (2014).
	18.	 Acn, A. et al. Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007).
	19.	 Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).
	20.	 Braunstein, S. L. & Pirandola, S. Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012).
	21.	 Ferreira da Silva, T. et al. Proof-of-principle demonstration of measurement-device-independent quantum key distribution using 

polarization qubits. Phys. Rev. A 88, 052303 (2013).
	22.	 Liu, Y. et al. Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111, 130502 (2013).
	23.	 Rubenok, A., Slater, J. A., Chan, P., Lucio-Martinez, I. & Tittel, W. Real-world two-photon interference and proof-of-principle 

quantum key distribution immune to detector attacks. Phys. Rev. Lett. 111, 130501 (2013).
	24.	 Tang, Z. et al. Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. 

Phys. Rev. Lett. 112, 190503 (2014).
	25.	 Tang, Y.-L. et al. Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 113, 190501 (2014).
	26.	 Tang, Z., Wei, K., Bedroya, O., Qian, L. & Lo, H.-K. Experimental measurement-device-independent quantum key distribution with 

imperfect sources. Phys. Rev. A 93, 042308 (2016).
	27.	 Valivarthi, R. et al. Measurement-device-independent quantum key distribution: from idea towards application. Journal of Modern 

Optics 62, 1141–1150 (2015).
	28.	 Feihu, X., Curty, M., Bing, Q. & Hoi-Kwong, L. Measurement-device-independent quantum cryptography. IEEE. J. Sel. Top. Quant 

21, 148–158 (2015).
	29.	 Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).
	30.	 Wang, X.-B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005).
	31.	 Ma, X. & Lütkenhaus, N. Improved data post-processing in quantum key distribution and application to loss thresholds in device 

independent qkd. Quant. Inf. Comput. 12, 203–214, URL http://www.rintonpress.com/xxqic12/qic-12-34/0203-0214.pdf (2012).
	32.	 Cao, W.-F. et al. Highly efficient quantum key distribution immune to all detector attacks. arXiv:1410.2928 (2014).
	33.	 Lim, C. C. W. et al. Detector-device-independent quantum key distribution. Appl. Phys. Lett. 105, 221112 (2014).
	34.	 González, P. et al. Quantum key distribution with untrusted detectors. Phys. Rev. A 92, 022337 (2015).
	35.	 Walborn, S. P., Pádua, S. & Monken, C. H. Hyperentanglement-assisted bell-state analysis. Phys. Rev. A 68, 042313 (2003).
	36.	 Qi, B. Trustworthiness of detectors in quantum key distribution with untrusted detectors. Phys. Rev. A 91, 020303 (2015).
	37.	 Liang, W.-Y. et al. Simple implementation of quantum key distribution based on single-photon bell-state measurement. Phys. Rev. A 

92, 012319 (2015).
	38.	 Lydersen, L. et al. Thermal blinding of gated detectors in quantum cryptography. Opt. Express 18, 27938–27954 (2010).
	39.	 Wiechers, C. et al. After-gate attack on a quantum cryptosystem. New J. Phys. 13, 013043 (2011).
	40.	 Jiang, M.-S. et al. Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum 

cryptography systems. Phys. Rev. A 88, 062335 (2013).
	41.	 Beaudry, N. J., Moroder, T. & Lutkenhaus, N. Squashing models for optical measurements in quantum communication. Phys. Rev. 

Lett. 101, 093601 (2008).
	42.	 Ma, X. Quantum key distribution with key extracted from basis information. arXiv:1410.5260 (2014).
	43.	 Gerhardt, I. et al. Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commum. 2, 349, 

URL http://dx.doi.org/10.1038/ncomms1348 (2011).
	44.	 Huang, A. et al. Testing random-detector-efficiency countermeasure in a commercial system reveals a breakable unrealistic 

assumption. IEEE. J. Quantum. Elect 52, 1–11 (2016).
	45.	 Zhao, Y., Qi, B. & Lo, H.-K. Quantum key distribution with an unknown and untrusted source. Phys. Rev. A 77, 052327 (2008).
	46.	 Lim, C. C. W., Walenta, N., Legre, M., Gisin, N. & Zbinden, H. Random variation of detector efficiency: A countermeasure against 

detector blinding attacks for quantum key distribution. IEEE. J. Sel. Top. Quant 21, 192–196 (2015).

Acknowledgements
The authors would like to thank Shihai Sun for helpful discussions. This work was supported by the Fund of 
State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and 
Telecommunications) No. IPOC2016ZT09, the National Natural Science Foundation of China Grants No. 61178010 
and No. 11374042, and the Fundamental Research Funds for the Central Universities No. bupt2014TS01.

Author Contributions
K.W. and H.M. conceived the idea; K.W., H.L., and Y.S. conducted the experiment; K.W., H.L., X.Y., and Y.Z. 
performed the theoretical analysis. H.M., J.X., and Y.J. supervised the project. K.W. wrote the manuscript with 
input from all the authors. All the authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2017

http://www.rintonpress.com/xxqic12/qic-12-34/0203-0214.pdf
http://dx.doi.org/10.1038/ncomms1348
http://creativecommons.org/licenses/by/4.0/

	Feasible attack on detector-device-independent quantum key distribution

	Results

	DDI-QKD. 
	Wavelength-dependent attack. 
	Proposed attack. 
	Step 1 - Detector blinding. 
	Step 2 - Detector controlling. 
	Step 3 - Reducing the double-click rate. 

	Schematics of hacking scheme. 

	Discussion

	Methods

	Measurement method. 

	Acknowledgements

	Figure 1 (a) Schematic diagram of DDI-QKD.
	Figure 2 Relationship between the wavelength of the source and the coupling ratio.
	Figure 3 Click thresholds versus biased voltage of the APDs in two different SPDs C062 and C061.
	Figure 4 Electrical signal oscillograms when the APDs in SPDs Co62 and C061 are controlled by the trigger pulse peak power with a corresponding biased voltage.
	Figure 5 Schematics of hacking scheme.
	Figure 6 (a) Detector circuit diagram.
	Table 1 Observed intensity arriving at each of Bob’s four detectors when Eve sends |+〉.




