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ABSTRACT
Background. Oviposition site selection is an important factor in determining the
success of insect populations. Orius spp. are widely used in the biological control of a
wide range of soft-bodied insect pests such as thrips, aphids, andmites.Orius strigicollis
(Heteroptera: Anthocoridae) is the dominantOrius species in southernChina; however,
what factor drives its selection of an oviposition site after mating currently remains
unknown.
Methods. Here, kidney bean pods (KBPs) were chosen as the oviposition substrate, and
choice and nonchoice experiments were conducted to determine the preferences con-
cerning oviposition sites on the KBPs of O. strigicollis. The mechanism of oviposition
behavior was revealed through observation andmeasurement of oviposition action, the
egg hatching rate, and the oviposition time.
Results. We found that O. strigicollis preferred the seams of the pods for oviposition,
especially the seams at the tips of the KBPs. Choice and nonchoice experiments showed
that females did not lay eggs when the KBP tail parts were unavailable. The rates of egg
hatching on different KBP parts were not significantly different, but the time required
for females to lay eggs on the tip seam was significantly lower. Decreased oviposition
time is achieved on the tip seam because the insect can exploit support points found
there and gain leverage for insertion of the ovipositor.
Discussion. The preferences for oviposition sites of O. strigicollis are significantly
influenced by the topography of the KBP surface. Revealing such behavior and
mechanisms will provide an important scientific basis for the mass rearing of predatory
bugs.

Subjects Agricultural Science, Animal Behavior, Entomology, Zoology
Keywords Oviposition behavior, Site selection preference, Egg hatching, Plant topography, Orius
strigicollis

INTRODUCTION
Insects tend to have the ability to select particular egg-laying sites to increase the survival
rate of their offspring (Grostal & Dicke, 1999; Choh & Takabayashi, 2007; Barbosa-Andrade
et al., 2019). Several factors can influence this behavior, for example, the existence of
natural enemies or competitors (Rouault, Battisti & Roques, 2007; Choh, Sabelis & Janssen,
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2015; Saitoh & Choh, 2018) and site properties such as food resource availability (Bond
et al., 2005), illumination intensity (Yang, 2006) and temperature (Notter-Hausmann &
Dorn, 2010). Apart from those common factors, some rare external physical factors such as
the site size (Reich & Downes, 2003), shape, or color (Markheiser et al., 2017) can also play
a role in the selection of oviposition sites.

The underlying cues mentioned above are complex and are less well understood than
other aspects of insect behavior (Lundgen, Fergen & Riedell, 2008). However, due to the
feeding habits of phytophagous insects, plants bring importance to the life histories and
agricultural value of the predators that feed on these phytophagous insects (Lundgen,
Fergen & Riedell, 2008; Puysseleyr & Hofte, 2011). Previous studies have shown that both
plant species and variations in plant parts or tissues influence the oviposition behavior of
predatory insects, (Isenhour & Yeargan, 1982; Coll, 1996; Lundgren & Fergen, 2006; Pascua
et al., 2019). Of themany plantmorphological features, the plant physical structure is one of
the important factors that is known to significantly affect this reproductive behavior, either
positively (Benedict, Leigh & Hyer, 1983; Griffen & Yeargan, 2002) or negatively (Simmons
& Gurr, 2004). The mechanisms that drive female oviposition decisions have evolved
such that female insects will choose sites with the optimal plant-based resources for the
survival of their offspring (Malheiro et al., 2018; Mitchell et al., 2019). However, whether
other factors influence the choice of oviposition sites by predatory insects remains to be
explored.

Orius spp. are widely used in biological controlmethods to controlmany pests worldwide
because they exhibit a higher search efficiency for their host than other species and are
fast-moving and active (Minks, Harrewijg & Helle, 1989). For example, Orius strigicollis
Poppius (Heteroptera: Anthocoridae) is an important native natural predator of a wide
range of soft-bodied insect pests such as thrips, aphids, and mites in several agronomic
systems (Cocuzza et al., 1997; Sengonca, Ahmadi & Blaeser, 2008; Zhang et al., 2012; Bonte
& De Clercq, 2011) and feeds on lepidopteran pest eggs and young larvae (Bonte & De
Clercq, 2011; Ali et al., 2020). There are several studies about O. strigicollis behavior that
focus on its predatory advantages and its influence on agriculture (Zhou et al., 2006; Ali
et al., 2020), but the mechanisms that influence the oviposition behavior of O. strigicollis
based on plant characteristics remain poorly understood. However, studies on another
zoophytophagous heteropteran, Orius insidiosus (Say), have reported that plant species, as
well as the variations within each plant, significantly influence their oviposition behavior
(Coll, 1996; Lundgren & Fergen, 2006; Pascua et al., 2019) and that they prefer to lay eggs on
thinner epidermal plant surfaces, where the vesicular and cellular tissues are conducive to
the survival and development of nymphs (Lundgen, Fergen & Riedell, 2008). AsO. strigicollis
is a natural enemy of plant pests, studying its oviposition site selection behavior will be
very useful for the elaboration of mass rearing protocols.

Kidney bean pods (hereafter KBPs) are widely used in the indoor rearing of thrips and
omnivorous bugs because of their freshness and convenience (Bonte & De Clercq, 2010; Li
et al., 2018). We observed that O. strigicollis preferred KBPs for oviposition and seemed to
have a preference for laying eggs on different parts of the KBPs. Therefore, we used KBPs
as an oviposition substrate to study the mechanism of egg-laying selection preference in O.
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strigicollis. Thus, we hypothesized that there are differences in the number of eggs laid by
O. strigicollis females in the different parts of the KBPs and that the most likely mechanism
driving female oviposition decisions is the physical comfort of the laying position, which
is directly related to the egg-laying efficiency. Here, we attempted to answer the following
questions. (1) Do O. strigicollis females exhibit oviposition site selection behavior, and
where do females choose to lay eggs? (2) Does the presence of the bean tail influence
oviposition behaviors under choice and nonchoice conditions, or is the bean tip the best
place for O. strigicollis females to lay eggs? (3) Why do O. strigicollis females select a specific
location?

MATERIALS & METHODS
Insect rearing and experimental preparation
Orius strigicollis adults were collected from open areas and vegetable fields outside of
Hangzhou (30.43898◦N, 120.41134◦E), Zhejiang Province, P.R. China, and maintained
in a climate-controlled room. The rearing conditions were 26 ± 2 ◦C and 70 ± 10% RH,
with a photophase of 14 h. All growth stages of O. strigicollis were reared in 4.3 L glass jars
(see Supplemental Information 1 for more details) with a circular slant (i.e., the opening
of the jar was on the side) capped with plastic screw-on lids. KBPs (length: 20.6 ± 5.1 cm)
were used in the experiments as oviposition substrates for O. strigicollis. From the nymph
to adult stages, the predatory bugs were fed western flower thrips, Frankliniella occidentalis
(Pergande).

Oviposition site selection preferences
A pair of KBPs was laid flat on a filter paper inside the jars, and five mated O. strigicollis
females were placed into each jar and allowed to oviposit for 48 h. Approximately 100
F. occidentalis nymphs were placed in each jar as food every day. The climatic conditions
were the same as those described above. The KBPs were collected 48 h later for egg counting.
The number of eggs per pod and the number of eggs in different positions on the pod (face
or seam) were counted under a Nikon SMZ1500 zoom stereomicroscope (Nikon, Japan).
The number of eggs was determined by counting the exposed opercula. The KBPs were
divided into three parts for this count, i.e., the tail, middle, and head (Fig. 1A). A pair of
KBPs was regarded as one separate biological replicate, with 20 replicates in total.

Influence of restricting KBP access on the oviposition site selection
in Orius strigicollis
The tail of the KBP was wrapped with parafilm to render the preferred oviposition site
inaccessible, and then nonchoice and choice testing were conducted to determine the
oviposition site selection of O. strigicollis. Nonchoice testing was conducted with the tail
covered, and choice testing was also performed with the tail covered on one pod and that
of another pod presented uncovered. Egg counts were conducted as described above. In
each test, a pair of intact KBPs inside a jar was used as a control. The nonchoice testing was
replicated 19 times, and the choice testing was replicated 14 times.
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Figure 1 The preference of oviposition sites on kidney bean pods (KBPs) inOrius strigicollis. (A) The
percentage of eggs laid on the seam and face of the KBPs. Each bar represents the mean + SEM (N = 20).
Asterisks (**) indicate a significant difference (P < 0.0001, the nonparametric Wilcoxon’s matched pairs
test). (B) The percentage of eggs laid in the head, middle and tail parts from the seam of KBPs. Differ-
ent letters indicate significant differences (P < 0.05, the nonparametric Friedman’s test). (C) Comparing
of the mean number of eggs (+ SEM) laid on treatment (tail covered or restricting access) and the con-
trol (uncovered) by nonchoices assay (N control = 20, N treatment = 19). Asterisks (**) indicate significant
differences (P < 0.0001, Student’s t- test). (D) Comparing of the mean number of eggs (+ SEM) laid on
treatment (tail covered or restricting access) and the control (uncovered) by choices assay (N control = 20,
N treatment = 14). Asterisks (**) indicate significant differences (P < 0.0001, Student’s t- test). (E) Compar-
ison of the percentage of eggs laid on the right and left sides of KBP tail and middle sections. Each bar rep-
resents the mean + SEM (N = 20); different letters indicate significant differences (P < 0.05, the nonpara-
metric Friedman’s test). (F) Comparison of the percentage of eggs laid on the tip and neck sections. Each
bar represents the mean + SEM (N = 20); Asterisks (**) indicate significant differences (P < 0.0001, the
nonparametric Wilcoxon’s matched pairs test).

Full-size DOI: 10.7717/peerj.11818/fig-1
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Differences in the egg number and egg hatching rate on the middle
and tail of KBPs
To better identify the optimal oviposition site of O. strigicollis, we redefined the middle as
the left middle (Middle-L) and right middle (Middle-R), and the tail as the left tail (Tail-L)
and right tail (Tail-R). The side to which the kidney bean tip turns was defined as the left
side, and the other side was defined as the right side (Fig. 1E). The tail of the KBP was then
further categorized into four parts, i.e., the left neck (Neck-L), right neck (Neck-R), left tip
(Tip-L), and right tip (Tip-R). The narrowest part of the tip and the position where the tip
begins to widen (extending ca. 1.0 cm towards the head) were defined as the ‘‘tip’’, while
the rest was the ‘‘neck’’ (Fig. 1F). Each pair of KBPs in each jar was considered a group, and
the experiments were performed again as described above. The egg numbers on each of
the further-divided parts (left or right, neck or tip) were counted, and the number of eggs
hatched after 5 days was also recorded. If the operculum was opened and no dead nymph
was found around the operculum, egg hatching was considered successful. Each treatment
was replicated 20 times.

Observation of egg-laying behavior and analysis of oviposition
efficiency
During the control experiments (i.e., a pair of intactKBPs presented for the oviposition test),
the egg-laying movements of 15 females on the tail and middle sections were observed,
and the entire egg-laying process was recorded using a micro-video recording system
(HDR-SR11E, Sony, Japan). When the start of the egg-laying movement was observed, an
electronic timer (Deli, China) was used to determine how long females took to lay one egg
on the tail or middle section.

Statistical analysis
Microsoft Excel (version 16.39) was used to record the data. The analysis was conducted
using Prism 8 (version 8.4.0) and SPSS (version 26.0). The nonparametric Wilcoxon’s
matched pairs test was used to compare the differences in egg laid (%) between different
positions (i.e., face and seam) or different sites (i.e., tip and neck). The nonparametric
Friedman’s test was used to analyze the differences in egg laid (%) between different parts
(i.e., head, middle, and tail) or subsections (tail-R, tail-L, middle-R, and middle-L) of the
KBPs. A t -test was used to compare the total number of eggs and the egg-laying efficiency
between treatments.

RESULTS
Oviposition site selection preferences
A total of 97.9% of the eggs were laid on the seam of the KBPs, and only 2.1% of the
eggs were laid on the face (Fig. 1A; Z = 3.9, df = 19, P < 0.0001). Moreover, significant
differences in egg numbers were observed between different KBP parts. More eggs were
laid on the seam of the tail and middle than on the seam of the head, and the highest
percentage of eggs was laid on the tail (Fig. 1B; χ2

= 32.7, n= 20, df = 2, P < 0.0001), i.e.,
more than half of the total eggs (50.9%). Overall O. strigicollis females laid more eggs on
the seam of the KBPs, specifically on the tails.
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Influence of restricting KBP access on the oviposition site selection
in Orius strigicollis
A nonchoice experiment was conducted with tail coverage. In this treatment, the total
number of eggs on each pod was 57.7% lower than that in the control (Fig. 1C; 55.1 ± 3.0
vs. 130.2 ± 7.1 individuals, t = 11.2, df = 18, P < 0.0001). A choice assay was also
performed with the tail covered for one pod and another pod presented uncovered. In this
case, the mean number of eggs per replicate was 87.6 ± 6.73 individuals, which was also
32.7% lower than that found in the control (Fig. 1D; t = 5.7, df = 13, P < 0.0001). The
data indicated that O. strigicollis females did not lay more eggs on other parts of the KBP
when the tail parts were unavailable.

Differences in the egg number and egg hatching rate at different
oviposition sites except for the head of the KBPs
The right tail section (Tail-R) was the most preferred by O. strigicollis for oviposition,
followed by the left middle section (Middle-L) (Fig. 1E, χ2

= 47.0, n = 20, df = 3,
P < 0.0001). Furthermore, it was shown that the tip section was the most preferred by O.
strigicollis for laying eggs (Fig. 1F; Z = 3.9, df = 19, P < 0.0001). The egg hatching rates on
different sections were not significantly different, and all were higher than 80% (Fig. 2A, χ2

= 3.4, n = 20, df = 4, P = 0.489). Therefore, we indicate that factors such as the hatching
or survival of eggs may not influence the selection of oviposition sites.

Observation of egg-laying behavior and efficiency analysis
The average time that each female spent laying one egg on the tip was 28.7% shorter than
the time spent to lay an egg on the middle section (Fig. 2B, t = 6.0, df = 14, P < 0.0001).
We observed that laying eggs on the right tip seam was more efficient than laying eggs in
another section (Figs. 2C/2D), which indicates that the more uneven the plant surface is,
the more conducive it is to O. strigicollis oviposition.

DISCUSSION
Postmating behavior such as oviposition site selection is observed in many insect species
and is important for the reproduction of these species (Thompson, 1988). For example,
Gryllus texensisCade andOtte and somemyrmecophilous butterfly species choose a suitable
oviposition site for the survival of their offspring (Stahlschmidt & Adamo, 2013). In this
study, we found that O. strigicollis females selected the seam of the KBPs rather than the
face for egg laying. Such a preference difference for a different site on the same type of tissue
or unit is common in oviposition site selection. For example, the lepidopteran multivoltine
leafminers Phyllocnistis sp. prefer to lay eggs on only the lower-surface epidermal layer
of the primary shoots, switching to lamma shoots when they appear later in the season
(Ayabe, Minoura & Hijii, 2017). The longhorn beetle, Glenea cantor (F.), preferentially
selects the upper section of kapok trees first for oviposition according to the bark moisture
content from the top to the bottom of the trees (Lu et al., 2011). For insects with endophytic
oviposition, the effects of characteristics of the plant tissues on their oviposition preference
are more obvious (Lundgen, Fergen & Riedell, 2008). For example, Pascua et al. (2019)
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Figure 2 Behavioral mechanisms of oviposition site selection on kidney bean pods (KBPs) inOrius st-
rigicollis. (A) Percentage of eggs hatched of eggs laid on five parts, i. e., tip, neck, right middle, left mid-
dle, and left tail. Same letters indicate no significant differences (P > 0.05, the nonparametric Friedman’s
test). Each bar represents the mean + SEM (N = 20). (B) The time spent (seconds) for females to lay one
egg on the right tip and left middle sections. Each bar represents the mean + SEM (N = 15). Asterisks (**)
indicate significant differences (P < 0.0001, Student’s t- test). (C/D) Photograph of female adult ready to
lay eggs on the seam of the middle and tip sections.

Full-size DOI: 10.7717/peerj.11818/fig-2

found that the strawberry calyx and flower petiole received more eggs than the other
structures, and the thickness of the external tissues did not affect the oviposition of O.
insidiosus. Likewise, Isenhour & Yeargan (1982) recorded a greater number of O. insidiosus
eggs in the petiole of soybean flowers than in the other structures of the plant. Additionally,
in our study, we found more than half of O. strigicollis eggs in the tip part, which was the
primary oviposition site compared with other parts of the KBP. Further experiments were
conducted to elucidate the hierarchy of preference of egg-laying females and identify the
factors that influence it.

The results of the choice experiments suggest that first, when one of the preferred parts
was unavailable, the total number of eggs laid decreased. Second, when none of the preferred
parts were available the number of total eggs laid decreased rapidly, and although the left
middle seam remained available for oviposition this site did not replace the preferred site.
A previous study on mosquitoes suggested that the decreased oviposition rate observed on
highly enriched leaves may be due to a pungent odor that is caused by the extreme anoxic
environment and repels gravid female mosquitoes (Hoekman et al., 2007). Similar behavior
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was also observed in peach twig borers, Anarsia lineatella Zeller, of which female adults
can determine whether peach fruits are fresh and viable for oviposition so that their larvae
can have enough time to develop into adults before the peach fruits decompose (Sidney et
al., 2008). In addition to odor and freshness, the sweetness and hardness of substrates also
affected the egg-laying site selection of insects. (Wu et al., 2019) showed that activation of
sweet neurons by sucrose can promote Drosophila females to become indifferent between
two substrates of different hardness levels during egg laying. In this study, we assumed that
the seam of KBP might be a good place since the eggs would remain more hidden, allowing
it to provide a kind of refuge and that in the extreme (tip), the tissues may be softer than
in the middle. This could also be related to oviposition efficiency.

However, regardless of the reason for the egg-laying site selection, insects choose to lay
eggs on well-nourished hosts or tissue to ensure the healthy development and survival of
their offspring (Jeong et al., 2016;Malheiro et al., 2018;Mitchell et al., 2019). Here, we found
that O. strigicollis laid the most eggs at the tip of the KBPs, which indicated this location
as their preferred oviposition site. The egg hatching rate is an important biological index
used to measure host fitness or the suitability of oviposition substrates (Murai, Naraim
& Sugiura, 2001; Bonte & De Clercq, 2011; Bonte & De Clercq, 2010; Krug & Sosa, 2019),
and it is also the most intuitive criterion to judge (Castane & Zalom, 1994). Therefore,
we further analyzed the hatching rates of eggs laid on different parts of the KBPs (tail vs.
middle). The data showed that the hatching rates on these four sections (middle L and R,
tail L and R) were not significantly different. We suggest that the factors that influence
the selection of oviposition sites may not be those that restrict the hatching or survival
of eggs. Additionally, we found that the eggs were embedded in the KBP tissue, and the
lid of the egg was opened when it hatched. Embedding eggs may simply protect the eggs
from predation or parasitism and from abiotic factors, in addition to stabilizing the eggs
or keeping them in a moist environment (Shapiro & Ferkovich, 2006). According to the
optimal oviposition theory, plant tissue acceptability for oviposition may also be affected
by the subsequent development or survival of Orius nymphs (Jaenike, 1978; Lundgren &
Fergen, 2006). It is known that in many Orius species newly emerged nymphs use plant
tissues to gain energy and begin their dispersal. Perhaps in the tip part of the KBPs, the
tissues are softer or have some characteristics that make it easier for the small nymphs to
feed more easily, but this hypothesis is worth further systematic study.

Based on our observation of the entire egg-laying process of the females and our
measurements of the time required for the females to lay eggs, we suggest that females
select the tip of the KBPs as their first oviposition site to achieve higher egg-laying efficiency,
and reducing their time spent ovipositing also reduces their risk of predation and allows
more time for foraging and perching (Martens, 2001; Philippe, Besnard & Natalia, 2015).
Furthermore, we suggest that the increased egg-laying efficiency is due to the ‘ergonomics’
of this egg-laying position. The females must use force to insert their eggs into the KBP. To
achieve this, they need anchor points for both their propodeum and metapodium to push
against to gain the required power. Comparing the seam at the tip and in the middle section
of the KBPs, the females were able to clasp the tip of the KBPs using their propodeum. This
allowed oviposition in KBPs with much greater ease (see Supplemental Information 2 for
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more details). In contrast, because the side of the KBP is nearly flat, the females are required
to use more strength and expend more energy to insert their eggs there. There is a similar
explanation for the low egg distribution on the seam on the other side—compared with the
preferred seam, the other seam is relatively shallow, and more energy might be required
for the females to lay their eggs inside it. Similar observations and speculations were also
mentioned briefly by Shapiro & Ferkovich (2006), who speculated that female adults of O.
insidiosusmay need to take advantage of the internal angles or surface irregularities to gain
leverage for the ovipositor.

CONCLUSIONS
In this study, according to different positions and parts, the KBPs (oviposition substrates)
were divided into different sites, e.g., face, seam, tail (including the neck and tip), middle,
and head. We found that the physical features of each site were ultimately reflected in the
corresponding egg-laying efficiency. The results suggest that the preference for oviposition
sites of O. strigicollis is significantly influenced by the topography of the KBP surface,
and the more ‘comfortable’ the females are, the higher their egg-laying efficiency. The
behavioral mechanism of the preference ofO. strigicollis females for oviposition sites on the
KBPs was found and identified, which is conducive to our later development of artificial
media to attract O. strigicollis to lay eggs. The results also provide the necessary knowledge
to advance the massive production of O. strigicollis for their release within the framework
of an augmentative biological control strategy.
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