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Universidad de Zaragoza, Zaragoza, Spain

Abstract

Gene expression data are influenced by multiple biological and technological factors leading to a wide range of dispersion
scenarios, although skewed patterns are not commonly addressed in microarray analyses. In this study, the distribution
pattern of several human transcriptomes has been studied on free-access microarray gene expression data. Our results
showed that, even in previously normalized gene expression data, probe and differential expression within probe effects
suffer from substantial departures from the commonly assumed symmetric Gaussian distribution. We developed a flexible
mixed model for non-competitive microarray data analysis that accounted for asymmetric and heavy-tailed (Student’s t
distribution) dispersion processes. Random effects for gene expression data were modeled under asymmetric Student’s t
distributions where the asymmetry parameter (l) took values from perfect symmetry (l= 0) to right- (l.0) or left-side
(l.0) over-expression patterns. This approach was applied to four free-access human data sets and revealed clearly better
model performance when comparing with standard approaches accounting for traditional symmetric Gaussian distribution
patterns. Our analyses on human gene expression data revealed a substantial degree of right-hand asymmetry for probe
effects, whereas differential gene expression addressed both symmetric and left-hand asymmetric patterns. Although these
results cannot be extrapolated to all microarray experiments, they highlighted the incidence of skew dispersion patterns in
human transcriptome; moreover, we provided a new analytical approach to appropriately address this biological
phenomenon. The source code of the program accommodating these analytical developments and additional information
about practical aspects on running the program are freely available by request to the corresponding author of this article.
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Introduction

Mixed models have been advocated in gene expression analyses

due to their superiority in partitioning sources of variation and

their flexibility for accommodating various experimental designs

[1]; furthermore, they can be used for joint analysis of all loci [2],

appropriately accounting for variability both across and within

microarray probes [3]. Microarray data sets are characterized by

high dimensionality in the sense of a small number of replicates

(i.e. microarray slides) and a large number of probes per replicate.

Mixed models account for these peculiarities of the microarray

gene expression data, the sources of variation being preferentially

treated as random effects [4] to appropriately address large

numbers of levels with scarce amounts of information per level. A

typical assumption for the distribution of random effects in mixed

model analyses is the Gaussian density function [4], which is

systematically applied in standard gene expression analyses [3,5].

Although this parametric assumption could be viewed as a reason-

able compromise between mathematical convenience and bi-

ological plausibility, its suitability in gene-expression analyses has

been questioned in recent studies [6–12].

Taking the probe-specific differential expression effect between

two treatments, the Gaussian distribution forces a symmetrical

pattern between the two treatments, whereas a wide range of

skewed distributions and treatment-related over-expressions may

seem more reasonable. Moreover, the Gaussian assumption suffers

substantial misadjusts in the presence of outliers [13], which are

common in microarray data [14]. Given the inconsistencies of the

Gaussian distribution for random effects in the gene expression

data, recent researches have proposed parametric alternatives for

modeling gene expression data, assuming heavy-tailed processes

like Cauchy [8] and Student’s t distributions [7] or asymmetric

distributions like Pareto [15], Gamma [6] and skew Laplace

[16,17]. Although these studies have reported substantial im-

provements in terms of model fit to experimental data, none of

them allowed joint, flexible modeling of gene expression data

under variable incidence of outliers or asymmetry, or the

incidence of both positive (right-hand tail over-expressed) and

negative (left-hand tail over-expressed) asymmetric patterns.

The Student’s t distribution has been proposed as a useful

assumption for attenuating the impact of outliers in mixed

models [7] and, furthermore, asymmetry can be easily accom-

modated in the Student’s t density [18]. Within this context, the

aim of this research was to check for asymmetric and heavy-

tailed patterns in random effects of gene expression data,

developing a new analytical approach to appropriately accom-

modate both sources of departure from the standard symmetric

Gaussian assumption.

Results

Model Comparison
Four independent microarray gene expression data sets from

human tissues (Table 1) were analyzed under three different
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hierarchical mixed linear models. These analyses accounted for

the systematic effect of each microarray slide and two random

sources of variation, probe and treatment within probe (with two

levels in each data set). Models differed in the a priori distributions

of these random effects, they being multivariate normal densities

(Model SG) [5], symmetric Student’s t densities (Model ST), or

asymmetric Student’s t densities (Model AS) following Sahu et al.

[18]. The deviance information criterion (DIC) [19] assessed

model performance under these three different prior distributions

for random effects, revealing a huge penalization for model SG in

all cases (Table 2). Note that models with a smaller DIC were

favored as this indicated a better fit and lower degree of model

complexity [19]. In all four comparisons, DIC sequentially and

drastically reduced with models ST and AT (Table 2), where Sahu

et al. [18] asymmetric Student’s t priors for probe and differential

expression within probe effects were clearly preferred (Table 2).

Note that differences larger that 3 to 5 DIC units are assumed as

statistically relevant [19] and Model AT showed the lowest DIC

with 4,678 (dataset 1) to 60,335 (dataset 3) less DIC units than

Model ST. These large DIC departures ruled out any possible

controversy concerning the most preferable model. It is important

to note that the number of differentially expressed genes reduced

with Model AT, also suggesting a more conservative behavior for

this parameterization (Table 2).

Estimates for Asymmetry and non-Gaussian Patterns
Under Model AT, the non-Gaussian distributions of probe and

differential expression within probe effects were characterized in

terms of heavy tails (Student’s t) and asymmetric dispersion

patterns by means of v (degrees of freedom of the Student’s t

distribution) and l (asymmetry parameter). Probe effects revealed

both heavy tails and positive asymmetry with a substantial over-

expression of the right tail of the distribution. The modal estimates

of the degrees of freedom fluctuated between 5.62 (data set 2) and

8.95 (data set 1), with the highest posterior density region at 95%

roughly ranged between 4 and 30. The right-hand asymmetry was

clearly demonstrated in all datasets with positive modal estimates

of l, their HPD95 excluding the null or negative values (Figure 1a).

The differential expression within probe effect showed a similar

pattern with small v, although significant asymmetry was only

revealed in data set 3 (l=21.88; HPD95: 21.96 to 21.81;

Figure 1b).

Discussion

The asymmetric and non-Gaussian distribution of the human

transcriptome has been revealed in four independent human data

sets from different microarray platforms and technologies.

Although our results cannot be completely extrapolated to all

microarray data, they show that deviations from the standard

Gaussian prior for random effects should be accurately considered

in current gene expression studies. Normalization of gene

expression data has been a topic of main interest during the last

decade [20,21], but our results suggested that non-Gaussian

patterns must be considered as an inherent property of gene

expression data, and this phenomenon should be appropriately

accounted for in analytical models in order to avoid biases on final

estimates (Table 2). Note that the Student’s t density converges to

a Gaussian density when v tends to infinity, although both densities

are assumed roughly similar for v values larger than 30 [13]. In our

case, small modal estimates (,10) were obtained for the degrees of

freedom of the Student’s t distribution, suggesting a relevant

departure from the standard Gaussian distribution as corroborated

by the DIC statistic. Our small values for v reported a substantial

incidence of outlier gene expressions as was previously sugested by

Gottardo et al. [7] and Khondoker et al. [8] in alternative

microarray data sets. Moreover, Model AT was preferred,

highlighting the usefulness of the hierarchical mixed model with

asymmetric Student’s t prior distributions for random sources of

variation.

All data sets agreed with right-hand over-distributed probe

effects, whereas left-hand over-expression was revealed for

differential expression within probe estimates in data set 3

(Figure 1b). This right-hand asymmetry in human transcriptome

must be linked to the fact that lowly expressed probes are roughly

grouped in the left tail of the scanning spectrum due to

technological limitations of the microarray technique, whereas

a substantial incidence of high or extremely-high gene expression

intensities can be anticipated [22]. Note that this phenomenon is

not commonly accounted for in gene expression analyses

worldwide, whereas the mixed model parameterization developed

in this manuscript provides a highly flexible statistical tool

accounting for the non-Gaussian properties of human (and even

non-human) transcriptome. As shown in Figure 1a, departures

from the standard Model SG do not reduce to the symmetry

pattern only, but also rely on the average mathematical

expectation for probe effects. Sahu’s et al. [18] method can

Table 1. Summary of the free-access data sets analyzed.

Platform(a) Tissue
Groups of comparison (number of
samples per group) Reference GEO(b)

Dataset 1 Affymetrix GeneChip Human Full
Length Array HuGeneFL

Mononuclear cell
layer

Non-pulmonary arterial hypertension (6)
vs. pulmonary arterial hypertension (14)

Bull et al. [26] GSE703

Dataset 2 Affymetrix GeneChip Human Full
Length Array HuGeneFL

Bronchoalveolar
lavage cells

Non-smoker (5) vs. smoker (5) Heguy et al. [27] GSE3212

Dataset 3 Affymetrix GeneChip Human Genome
U133 Plus 2.0 Array

Spermatozoa Normal (12) vs. teratozoospermic
individuals (8)

Platts et al. [28] GSE6969

Dataset 4 Illumina humanRef-8 v2.0 expression
beadchip

Carotid
endarterectomy
samples

Carotid artery stenosis treated with
mycophenolate (9) vs. placebo (11)

Unpublished GSE13922

(a)The approximate number of interrogated transcripts were 5,000, 47,000 and 16,000 for Affymetrix GeneChip Human Full Length Array HuGeneFL (Affymetrix, Inc.,
Santa Clara, CA), Affymetrix GeneChip Human Genome U133 Plus 2.0 Array (Affymetrix, Inc., Santa Clara, CA) and Illumina human Ref-8 v2.0 expression beadchip
(Illumina, Inc., San Diego, CA), respectively.
(b)Gene Expression Omnibus accession number (http://www.ncbi.nlm.nih.gov/geo/).
doi:10.1371/journal.pone.0038919.t001
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accommodate distributions with non-zero modal estimates

(Figure 1a). Focusing on data set 3, the modal estimate for

differential expression effects was placed around 2 (Model AT) and

linked to larger estimates for the array effect when comparing with

Model SG. It implied a moderate relocation of systematic and

random sources of variation for gene expression data in the output

of the mixed model.

Results from differential expression within probe effects

highlighted the remarkable flexibility of Sahu’s et al. [18] method

to accommodate any kind of asymmetry pattern. This peculiarity

is of special relevance for differential gene expression given that

a wide range of asymmetric patterns could be find in gene

expression studies. Although the standard symmetric Gaussian

distributions may be valid sometimes, a wide range of left- and

right-tail over-expressions could be addressed with Model AT.

Indeed, data set 3 (all datasets) showed that asymmetric (heavy-

tailed) patterns are not unusual and they must be considered in

gene expression analyses. The relevance of a proper modeling of

random effects is clearly highlighted in Figure 1b where the

symmetric Gaussian prior distribution for the differential expres-

sion produces a bimodal artifact in the posterior distribution of the

estimates, clearly differing from the expected drawn under the

a priori assumption.

Note that all model comparisons were made on the basis of

the DIC statistic [19], a widely used statistical criterion to assess

model complexity and fit. Indeed, DIC measures posterior

predictive error by penalizing the fit of the model (i.e., deviance)

by its complexity, determined by the effective number of

parameters as defined by Spiegelhalter et al. [19]. Within this

context, model AT must be clearly viewed as the most

parsimonious and reliable parameterization, at least among

the alternatives we are considering in this study. DIC evidenced

that the incidence of asymmetry and heavy-tailed patterns in

human gene expression data must be out of any doubt and, as

consequence, model AT characterized a quasi-optimum ap-

proach to analyze this kind of microarray data. Nevertheless,

DIC does not provide specific information about testing

properties of current models when evaluating differentially

expressed genes, although better model fit must be linked to

better testing properties. Model AT reported the smallest

number of differentially expressed probes in all data sets

Table 2. Model comparison and characterization of the dispersion patter of probe and differential expression within probe under
Model AT.

Dataset 1 Dataset 2 Dataset 3 Dataset 4

DIC(a) (and number of probes with significant differential expression(b))

Model SG(c) 284,161 (189) 231,581 (5) 3,692,344 (702) 1,756,122 (12)

Model ST(d) 247,509 (31) 224,741 (1) 3,614,823 (692) 1,734,053 (4)

Model AT(e) 242,831 (2) 188,835 (0) 3,554,488 (639) 1,724,667 (2)

Parameters(f) under Model AT. Mode (and highest posterior density region at 95%)

vp 8.95 (4.21 to 26.61) 5.62 (4.16 to 11.05) 6.77 (4.15 to 16.0) 8.87 (4.40 to 30.09)

lp 0.38 (0.04 to 0.66) 0.13 (0.01 to 0.32) 1.84 (1.61 to 1.93) 2.03 (1.98 to 2.09)

vd 7.36 (4.18 to 18.05) 6.90 (4.15 to 19.76) 5.99 (4.38 to 11.51) 8.48 (4.66 to 23.90)

ld 0.01 (20.04 to 0.06) 20.00 (20.04 to 0.04) 21.88 (21.96 to 21.81) 20.00 (20.01 to 0.01)

(a)Deviance information criterion.
(b)Differentially expressed genes after Bonferroni [29]-like correction (a=0.05). The adjusted significance threshold for posterior probabilities was calculated as a/p, were
p was the number of probes included in each analysis.
Random effects g and d(g) were assumed as symmetric Gaussian(c), symmetric Student’s t(d) or asymmetric Student’s t(e) distributed following Sahu et al. [18].
(f)Degrees of freedom (v) and asymmetry parameter (l) for probe (p) and differential expression within probe (d) effects.
doi:10.1371/journal.pone.0038919.t002

Figure 1. Distribution of mean estimates for probe (a) and differential
expression within-probe (b) effects under Model SG (grey line) and
Model AT (black line) for data set 3.
doi:10.1371/journal.pone.0038919.g001
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(Table 2) and all those probes were previously identified as

differentially expressed by models SG and ST. The same

patterns were obtained in preliminary analyses of simulated

gene expression data (results not shown) and suggested that the

better fit and more restrictive testing behavior of model AT

could be linked to false positives under models SG and ST.

In conclusion, the incidence of asymmetric random effects has

been highlighted in non-competitive gene expression data from

human tissues; the new model proposed below provides a better

adjustment of gene expression data and even a more conservative

testing pattern has been suggested. Although this manuscript has

focused on non-competitive hybridization microarrays, models can

be easily adapted to two channel microarrays following Purdom

and Holmes [16].

Materials and Methods

Mixed Model for Non-competitive Microarray Data
We assume as a starting point non-competitive hybridization

microarray data from n unrelated individuals appropriately

grouped in two different treatments (e.g. normal versus tumor

cells) and m probes. These data (y) can be analyzed by the mixed

model:

y~XazZ1pzZ2d pð Þze

where X, Z1, and Z2 are incidence matrices for array (a), probe (p)

and differential expression (between treatments) within probe

(d pð Þ) effects, and e is the vector of residuals. Following a standard

Bayesian development, the joint posterior distribution of all

parameters in the model conditional to the data is proportional

to the Bayesian likelihood,

p yDa,p,d pð Þ,Rð Þ!

exp {
1

2
XazZ1pzZ2d pð Þ’R{1 XazZ1pzZ2d pð Þð Þ
� �� �

multiplied by the a priori distribution of each parameter in the

model. Note that this equation describes a heteroskedastic normal

density [5] with gene-specific residual variances and with null

residual covariance between genes (R). A priori distributions for p
and d pð Þ could be described as

p pDs2p
� �

! P
r

i~1
exp {

p2i
2s2p

 !

and

p d pð ÞDs2d
� �

! P
s

j~1
exp {

d2
j

2s2d

 !

they being independent Gaussian densities with a mean of zero

and variances equal to s2p and s2d , respectively (Model SG). Note

that i was the number of elements in p and j was the number of

elements in d(p). Nevertheless, robustness must be gained under

a skew-Student’s t prior. This prior can be parameterized as

a skewed-normal density,

p aDs2a, la, sk
� �

!

P
t

k~1

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2a
s2
k

� 	
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akffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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s
0
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1
CCCCA,

multiplied by the conditional distribution of the mixing parameter

(sk), this being a Gamma prior,

p s2kDna
� �

~

1
2na

� � 1
2na

C 1
2na

� � s2k
� � 1

2na
{1

� �
exp {

s2k
2na

� 	

Note that s2a was the scale parameter, na were the degrees of

freedom, and la was the asymmetry parameter modelled following

Sahu et al. [18] (Model AT). Moreover, w and W denoted the

density function and cumulative distribution function of a standard

normal distribution with kernel as defined between parentheses,

respectively, and C was the standard gamma function with

argument as defined within parentheses. Note that la~0 describes

perfect symmetry, whereas right (or left) tail proportionally

increases for positive (or negative) values of la. An uniform prior

distribution was defined for la, as previously suggested by Varona

et al. [23]. Symmetric Student’s t priors (Model ST) can be easily

defined if la is appropriately fixed to 0. A priori distributions for

degrees of freedom were defined as exponential [24] and flat priors

were assumed for the remaining parameters. Note that the

Student’s t density converges to the Gaussian one when degrees of

freedom tend to infinity, whereas few degrees of freedom account

for heavy-tailed densities [13]. All the unknown factors in the

model can be easily sampled from their joint posterior distribution

by Markov chain Monte Carlo methods [25].

Example with Free-access Human Gene Expression Data
To illustrate the asymmetric pattern of the human transcrip-

tome, we applied the models to four free-access human microarray

datasets (http://www.ncbi.nlm.nih.gov/geo/; accession numbers

GSE703, GSE3212, GSE6969 and GSE 13922). Note that all data

sets are MIAME compliant and they were previously deposited in

the Gene Expression Omnibus database (http://www.ncbi.nlm.

nih.gov/geo/). These datasets were representative of two different

trademarks and hybridization technologies, evaluated in diverse

human tissues (see Table 1). All of them focused on the

comparison between two groups, non-pulmonary arterial hyper-

tension versus pulmonary arterial hypertension (Dataset 1; [26]),

non-smoker versus smoker (Dataset 2; [27]), normal versus

teratozoospermic individuals (Dataset 3; [28]) and carotid artery

stenosis treated with mycophenolate versus placebo (Dataset 4;

unpublished). A base 2 logarithm was applied to normalize gene-

expression scores.

Note that the four human data sets were selected at random to

evaluate the three mixed model parameterizations on different

human tissues and microarray platforms. Of course, both tissue and

data quality could have some impact on the distribution pattern,

although this escaped from the objectives of this research. Different

preprocessing approaches would have different impacts on further

analyses of gene expression data and even skewed or heavy-tailed

patterns could be partially addressed by preliminary data editing

Skewness and Gene Expression
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methodologies such as normalization of background correction.

Nevertheless, we focused on the development, implementation and

evaluation of a reliable parameterization to account for non-

Gaussian patterns in gene expression data, assuming that all

preliminary data editing processes where properly satisfied.

For each dataset, the three different models were analyzed

(models SG, ST and AT). Each model was solved through

Bayesian inference with a single Monte Carlo Markov chain of

500,000 elements after discarding the first 50,000 as burn-in.

Models were compared with the DIC [19].
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