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Mitochondrial Respiratory Chain Disorders (MRCD) are a het-
erogeneous group of disorders that share the involvement of the 
cellular bioenergetic machinery due to molecular defects affect-
ing the mitochondrial oxidative phosphorylation system (OX-
PHOS). 
Clinically, they usually involve multiple tissues although they 
tend to mainly affect nervous system and skeletal muscle. 
Cardiological manifestations are frequent and include hyper-
trophic or dilated cardiomyopathies and heart conduction 
defects, being part of adult or infantile multisystemic mito-
chondrial disorders or, less frequently, presenting as isolated 
clinical condition. 
The aim of this review is to update the cardiological manifesta-
tions in both adult and infantile mitochondrial disorders going 
briefly over mitochondrial genetics. 
Cardiac involvement is a common feature associated with early 
and late onset forms of MRCD. In particular cases, these con-
ditions should be considered into the diagnostic algorithm of 
idiopathic cardiomyopathies. Physicians strictly related with this 
disorders need to be aware of heart complications and therefore 
periodical cardiological examinations should be performed in 
such patients. Finally, therapeutic strategies are suggested to 
treat cardiac disorders in MRCD 
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Introduction
The mitochondria are complex organelles responsi-

ble for many essential functions of the cellular machin-
ery. They are primarily involved in the production of en-
ergy, assembling ATP molecules that are the final product 
of the respiratory chain (1). However, mitochondria also 
have an important role in apoptosis through the activation 
of the caspases cascade (2, 3), thus participating to neuro-
degenerative processes  (4,5). Other mitochondrial func-
tions include heat production (6) and the transmission of 
maternal genetic traits (7, 8). 

The respiratory chain is composed of five enzymatic 
multimeric complexes (I, II, III, IV and V), embedded in 
the inner mitochondrial membrane. In addition, coenzyme 
Q (a lipoidal quinone) and cytochrome c are involved in 
mitochondrial respiration, serving as ‘electron shuttles’ 
between the complexes (9, 10). Most of the cellular en-
ergy is produced by mitochondria making them a target 
for the development of bioenergetic tissues deficits. Mito-
chondrial respiratory chain disorders (MRCD) are caused 
by sporadic or inherited mutations in mitochondrial DNA 
(mtDNA) or nuclear DNA (nDNA). 

Mitochondria are the only cellular organelles that 
possess their own genetic material, but their functions are 
crucially dependent on a wide array of proteins encoded 
by nuclear genes. Therefore, mitochondrial physiology 
and pathology are determined by both genomes (11). 

Mitochondrial genetics and cardiological disorders

The human mtDNA is a 16,569-bp, double-stranded, 
circular molecule containing 37 genes, 24 of which partici-
pate in the translation mechanism (2 rRNA’s - 22 tRNA´s). 
The 13 remaining genes left are responsible for the syn-
thesis of respiratory chain subunits. Hence, among the ap-
proximately 900 genes that participate in the function of the 
organelle, only a few are localized in the mtDNA, whereas 
the remainder are in the nDNA. This explains why about 
50% of adults and 80-90% of children, suspected to have 
a mitochondrial disease on the basis of biochemical and/or 
morphological features, remain genetically undiagnosed. 
Indeed, it is reasonable to believe that most mitochondrial 
diseases are caused by undiscovered nuclear genes (12-14). 
On the other hand, mtDNA mutations, which were stud-
ied in greater details, obey to different genetic rules than 
those applied to “mendelian” disorders (15). First, mtDNA 
is maternally inherited as sperm mitochondria’s are elimi-
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nated early in embryogenesis. Hence, mtDNA will only be 
transmitted through the maternal line. Second, there are 
multiple copies of mtDNA in each cell: homoplasmy refers 
to the situation in which all mtDNA copies are identical. If 
two or more sequence variants exist in a cell or individual, 
that condition is referred to as heteroplasmy. If deleteri-
ously mutant (i.e, pathogenic) and normal mtDNA coex-
ist in the same cell, the respiratory chain function will not 
be impaired as long as there is sufficient normal mtDNA 
to overcome the effects of mutant DNA. If, however, the 
ratio of mutant to normal mtDNA exceeds a certain criti-
cal threshold, then the respiratory chain function will be 
impaired. The threshold at which symptoms will manifest 
depends on the tissue involved. Skeletal muscle (especial-
ly extraocular muscles) brain, heart, retina, renal tubular 
cells, and auditory cells of the organ of Corti are the most 
common tissues affected. Third, mitotic segregation of the 
multiple existing copies of mtDNA explains why the level 
of mutant mtDNA can change during life  (16); this may 
depend on the stage of embryonic development in which 
the original mutation occurs.

Point mutations vs large rearrangements

As a general rule, mtDNA can harbour two different 
types of genetic variants, point mutations or large-scale 
rearrangements, which can involve deletions, duplications, 
or both together. Point mutations are commonly mater-
nally inherited and they may differ from non pathogenic 
polymorphisms since a single change of a nucleotide base 
(e.g. A to G in position 3243 commonly for MELAS) (17) 
produces subsequently modifications in the corresponding 
product leading to defects in protein conformation. Several 
mutations in tRNA’s genes (MTT) have been described in 
patients with heart dysfunction as isolated condition or in 
association with other organs involvement, like 3243A > G, 
3260A > G, 3303C > T in the tRNALeu (UUR) gene (MT-
TL1); 4269A > G, 4295A > G, 4300A > G, 4317A > G, 
4320C > T in the tRNAIle gene (MMTI); 8348A > G in the 
tRNALys gene (MTTK), 9997T > C in the tRNAGly gene 
(MTTG), 12297T > C in the tRNA Leu(CUN)(MTTL2) and 
15923A > G in the tRNAThr gene (MTTT). 

The acronimus MIMYCA (Maternally Inherited My-
opathy Myopathy And Cardiomyopathy) has been used in 
some conditions with predominant involvement of skel-
etal and cardiac muscles usually associated to the muta-
tions 3260 A > G or 3303C > T in the tRNALeu (UUR) gene 
(MTTL1). 

Few pathogenic variants of cytochrome b gene (MT-
CYB) have been described as causing a cardiomyopathy 
(see www.mitomap.org). 

Large-scale rearrangements also include partial dele-
tions or duplications of mtDNA  (18). They differ from 
point mutations because they span hundreds or thousands 

of nucleotide bases (i.e. 4977 base pair are abrogated in 
the most frequently found “common deletion”). These 
types of mutations are usually sporadic; neither inherited 
nor transmitted to the offspring and they may produce 
Chronic External Ophthalmoplegia (CPEO), Kearns-
Sayre syndrome or Pearson syndrome. 

They originate during maternal oogenesis or at early 
stages of embryo development (19). Cardiac involvement 
is a rare manifestation of large-scale rearrangements as a 
component of multisystemic syndromes rather than pre-
senting as isolated condition. 

Nuclear genes and their regulation

As we mentioned, mtDNA produces only 13 compo-
nents of the respiratory chain, meaning that most of them 
are codified by nuclear genes, synthesized in the cytosol 
and transported into the organelles. Mutations of nuclear 
genes segregate following mendelian rules, so that mito-
chondrial diseases can be inherited as a dominant, reces-
sive or X-linked traits. The nuclear genes are classified as: 
1) genes involved in the maintenance of mtDNA (POLG1, 
ANT1, PEO1, TK2) (20-24) and producing multiple dele-
tions or depletion of the mtDNA; 2) genes encoding for 
subunits of the respiratory chain complexes (NDUFS2, 
NDUFV2) (25,26); 3) genes regulating the complexes as-
sembly (SURF1, SCO1, SCO2, COX10, COX15) (27,28). 
Mutations in some of these genes have been reported in 
cardiomyopathies, mainly in infants.

ANT1 may cause Sengers’ syndrome (OMIM no. 
103220) characterized by hypertrophic cardiomy-
opathy, congenital cataract and, more variably, lactic 
acidemia (29). Also, in mice, it produces exercise intol-
erance, myopathy with “Ragged Red Fibers” (RRF) and 
hypertrophic cardiomyopathy with an evolution to a con-
gestive heart failure (30). 

Mutations in SCO2 may cause a neonatal cardio-
encephalo-myopathy with a severe cytochrome c oxidase 
deficiency.

TAZ G4.5 gene, which codifies for a putative acyl-
transferase, involved in phospholipid biosynthesis, causes 
Barth syndrome, characterized by dilated or hypertrophic 
cardiomyopathy, endocardial fibroelastosis or left ven-
tricular noncompaction (LVNC) (31). Others genes like 
FXN gene (Frataxin) in Friedreich ataxia may be associ-
ated with cardiac involvement. 

Cardiological considerations  
in MRCD 

The heart is one of the most frequently affected or-
gans in MRCD’s (35, 36). Cardiac involvement of mul-
tisystem mitochondrial disorders either manifests as 
impulse generation or impulse conduction disturbances. 
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or as primary myocardial impairment (hypertrophic or 
dilated cardiomyopathy). Frequent electrocardiographic 
abnormalities are atrial fibrillation, atrioventricular (AV) 
block, Wolff-Parkinson-White (WPW) syndrome, bun-
dle branch blocks, QT prolongation, or ST and T-wave 
anomalies (37).

In addition, in 2007, we reported evidence of a car-
diovascular autonomic impairment in a cohort of patients 
with different mitochondrial disorders (38).

On the other hand, when a mitochondrial condition 
affects selectively the heart, hypertrophic cardiomyopa-
thy (HCM) or dilated mitochondrial cardiomyopathy may 
be clinically indistinguishable from other genetic deter-
mined cardiomyopathies and the onset usually begins in 
the neonatal period (39). 

Cardiac abnormalities are often present in mitochon-
drial syndromes; different patterns of heart involvement 
are described herein and summarized in Table 1. 

Classical mitochondrial syndromes
Kearns-Sayre syndrome (KSS)

This syndrome is characterized by the following triad 
1) onset before the age of 20, 2) pigmentary retinopathy, 
and 3) ophthalmoparesis (40). Other features are usually 
present including cardiac conduction defects, cerebellar 
ataxia, dementia, elevated CSF proteins ( > 100 mg/dl), 
deafness, and low stature. KSS is due to sporadic, single 
large-scale deletions of mtDNA, ranging from 1.3 to 8.8 
kb (90% of the cases) in size, or, rarely, to mtDNA dupli-
cations (41). Calcifications at basal ganglia and thalamus 
or cortical or cerebellar atrophy can be seen by neuroim-
aging studies (42). 

KSS is typically associated with cardiac conduction 
defects with abnormalities on electrocardiogram such as 
PR-interval prolongation, preceding 2nd or 3rd degree AV 
block, His-Ventricular (H-V) interval prolongation due to 
distal disease, dilated cardiomyopathy or Stokes-Adams 
syncope (43). Pacemaker implantation is usually indicat-
ed in these patients despite ventricular arrhythmias have 
been described such as “Torsade de pointes” (44), raising 
the question about which type of device is indicated. In 
addition, patients with KSS with ventricular conduction 
defects also have an accelerated and unpredictable rate of 
progression to complete AV block; sudden death occurs in 
20% of the cases (45). For these reasons, no standard rec-
ommendations are available whether a preventive pace-
maker implantation should be performed before any evi-
dence of electro-cardiologic abnormalities. Some authors 
argue that implantation of defibrillators that simultane-
ously have pacing modes may be the most effective strat-
egy in those patients. As a general rule, all patients with 
KSS should undergo extensive and periodical cardiologic 

examination to determine the presence of conduction ab-
normalities and the appropriate device to be implanted. 

Chronic Progressive External Ophthalmoplegia (CPEO)

CPEO is characterized by a slowly progressive paresis 
of the extra ocular muscles, almost always associated with 
bilateral ptosis. There is often a severe proximal and oro-
pharyngeal muscle weakness. Associations with low stature, 
deafness, diabetes mellitus and depression have also been 
variably described. Age at onset usually ranges in the third or 
fourth decade of life (46). When muscle weakness and exer-
cise intolerance appear, they rarely are debilitating. Sporadic 
single deletion at 4977 bp (namely “common deletion”) is 
the most common cause of sporadic CPEO (47), although 
MTT’s and nuclear gene mutations have also been described, 
respectively in maternal and mendelian (adCPEO, arCPEO) 
variants (48). In CPEO cardiac manifestations are less se-
vere and frequent than in KSS and manifested as partial con-
duction block or isolated ventricular extrasystolia. Periodic 
ECG should be performed in these patients (49). 

Pearson syndrome

This infantile disorder is characterized by refractory 
sideroblastic anaemia and exocrine pancreatic dysfunc-
tion  (50). These infants present refractory, transfusion-
dependent, macrocytic anemia, neutropenia, and throm-
bocytopenia. Most of these patients die precociously and 
those who survive may develop, years later, a Kearns-
Sayre syndrome. Pearson syndrome is usually due to 
heteroplasmic mtDNA deletions with a heteroplasmy rate 
of up to 90% in blood (51). Cardiac involvement is not 
frequently found although left ventricular dilatation and 
heart failure have sporadically been described (52).

Myopathy, encephalopathy, lactic acidosis and stroke-like 
episodes (MELAS)

The key features of this mitochondrial disorder are: 
1) Stroke-like episodes before age 40 with cortical le-
sions, usually in the posterior regions, 2) Dementia and/
or seizures, 3) Proximal muscle weakness with RRF on 
muscle biopsy  (53). These symptoms can be variably 
combined with diabetes mellitus, low stature, deafness, 
cataracts and cardiomyopathy. Frequently, brain strokes 
can be preceded by migraine, fever or seizures and hemi-
paresis, hemianopsia or cortical blindness. Brain injuries 
can be seen as cortical lesions that do not conform to vas-
cular territories, usually on parieto-occipital regions (54). 
Point mutations are frequently found, especially MTTL1 
3243A > G mutation (80% of the cases) (55). Conversely, 
there are at least 12 other distinct pathogenic mtDNA 
gene mutations associated with the MELAS phenotype. 
These include mutations at position 3271 and 3291 in the 
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MTTL1 gene, MT-ND1 3308T > C mutation, various MT-
ND5 gene mutations, MT-COXIII 9957T > C mutation, 
and large-scale deletions (56).

Cardiac involvement usually is part of the MELAS 
clinical spectrum (about 38% of patients), but isolated 
adult onset hypertrophic cardiomyopathy caused by MT-
TL1 3243A > G mutation has been reported (57). Heart 
abnormalities include concentric, non-obstructive hyper-
trophic cardiomyopathy, dilated cardiomyopathy, ar-
rhythmias and sudden death (58, 59). Echocardiographic 

findings could suggest the diagnosis of mitochondrial car-
diomyopathies because they may show a concentric, non-
obstructive hypertrophic pattern, especially when associ-
ated with impaired left ventricle (LV) systolic function 
with a diffuse hypokinesis of wall motion, likely evolving 
to a dilated cardiomyopathy (60). On the other hand, sar-
comeric genes-related cardiomyopathies might present 
with relative normal LV systolic function and asymmet-
ric LV hypertrophy with increased thickness of the inter-
ventricular septum. Conduction disturbances, including 

Table 1. Clinical features of the main mitochondrial syndromes.
General Features Cardiac involvement Common mutations

Kearns-Sayre 
syndrome

*Ophthalmoplegia, Retinitis 
Pigmentosa, onset < 21 years
*Cerebellar ataxia, dementia
*Calcifications at basal ganglia 
and thalamus; cortical or 
cerebellar atrophy

*PR interval prolongation 
preceding 2nd or 3rd degree 
AV block 
*His-ventricular (H-V) interval 
prolongation due to distal 
disease
*WPW syndrome 
*Dilated cardiomyopathy, 
Stokes-Adams syncope

*mtDNA deletions, 
rearrangements or 
exceptionally duplications
*Common Deletion, 1.3 to 8.8 
kb (90% of the cases)

CPEO *Ophthalmoplegia, ptosis
*Proximal muscle weakness 
and dysphagia

*PR interval prolongation 
preceding 2nd or 3rd degree 
AV block 

*mtDNA deletions, 
rearrangements
*mtDNA point mutations (MTTI, 
MTTL1)
*Nuclear mutations in adCPEO 
and arCPEO (POLG, PEO1, 
ANT1,OPA1)

Pearson 
Syndrome

*Refractory sideroblastic, 
anemia and exocrine 
pancreatic dysfunction

*Left ventricular dilatation and 
heart failure

* mtDNA deletions with a 
heteroplasmy rate of up to 
90% in blood

MELAS *Stroke-like episodes before 
age 40 with cortical lesions 
usually in posterior regions 
*Dementia and/or seizures 
*Proximal muscle limb 
weakness with RRF

*Concentric, non-obstructive 
hypertrophic cardiomyopathy 
*Dilated cardiomyopathy 
*Sudden death
*WPW syndrome in both 
childhood and adult patients

*MTTL1 3243A > G(80%), 
3271, 3291
*MT-ND1 3308T > C, various 
MT-ND5 gene mutations, MT-
COXIII 9957T > C 
*Large-scale deletions 
reported

MERRF *Myoclonus, general seizures, 
ataxia, and RRF with 
symptoms usually beginning in 
childhood or in early adulthood

*High prevalence of left 
ventricular dysfunction 
and Wolff-Parkinson-White 
syndrome, an increased 
risk of cardiac death due to 
heart failure in patients with 
myocardial involvement

*MTTK 8344A > G, less 
frequent 8356T > C mutations

Leigh syndrome *Severe subacute 
psychomotor delay and 
necrotizing symmetrical 
lesions in the brainstem, 
thalamus, cerebellum, spinal 
cord and optic nerves
*Elevated lactate in blood 
and CFS

*Hypertrophic or dilated 
cardiomyopathy
*Bradycardia 

*MT-ATPase 6 8993T > G
*Mutations have been 
described in all 14 genes 
coding for core subunits of: 
-Complex I (MT-ND1to6; 
NDUFS1,2,4,7,8; NDUFV1)
-Complex II (SDHA, SDH)
-Complex III (SURF1)
-Others (CoQ10,PDH,SUCLA2)

NARP *Sensory-motor axonal 
neuropathy, ataxia, seizures, 
pigmentary retinopathy and 
dementia

*Hypertrophic cardiomyopathy
*Ventricular pre-exitation, 
peri-partum dilated 
cardiomyopathy 

*MT-ATPase 6 8993T > G, 
8993T > C
*Mutations in Complex I 
subunits
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Wolff-Parkinson-White (WPW) syndrome, are present 
not only in infant population but also in adult MELAS pa-
tients (61). Therefore, the presence of cardiomyopathy in 
MELAS should be taken into account because it worsens 
the prognosis, especially in children, and greatly enhanc-
es the importance of a complete cardiological evaluation. 

Myoclonus epilepsy and ragged red fibers (MERRF)

This clinical entity is characterized by myoclonus, 
general seizures, ataxia, and RRF with symptoms usu-
ally beginning in childhood or in early adulthood (62). A 
majority of genetically tested MERRF patients carry the 
mitochondrial MTTK 8344 A > G mutation  (63). Other 
symptoms may include deafness, cardiomyopathy, and 
lipomatosis. Onset in childhood is frequently described 
although there have also been late-onset cases. 

Wahbi et al.  (64) described in MERRF heart find-
ings similar to the ones reported in MELAS, with a high 
prevalence of left ventricular dysfunction and/or WPW 
syndrome. An increased risk of cardiac death due to heart 
failure in patients with myocardial involvement has also 
been mentioned, especially in patients with an early onset 
of the disease. Interestingly hypertrophic cardiomyopa-
thy was not so frequently found (64). 

Neuropathy, ataxia and pigmentary retinopathy (NARP)

Point mutations at position 8993 (8993T  >  G and 
8993T > C) of the MT-ATP6 gene cause a neurodegenerative 
disorder, NARP syndrome (Neuropathy, Ataxia and Retini-
tis Pigmentosa) (65). The syndrome can be implemented by 
sensorineural hearing loss, seizures and cognitive impair-
ment (66). The same ATPase 6 point mutations that cause 
NARP syndrome may also cause maternally inherited Leigh 
syndrome (MILS), a sub-acute necrotizing encephalopathy 
that could be a final common phenotype for a number of 
mutations associated with impaired bioenergetic produc-
tion  (67). Hypertrophic cardiomyopathy, leading to heart 
failure, is sometimes associated with this condition (68). 

Leigh syndrome

In 1951, Denis Leigh described an infant with severe 
sub-acute psychomotor delay and necrotizing symmetrical 
lesions in the brainstem, thalamus, cerebellum, spinal cord 
and optic nerves (69). This condition is typically seen in in-
fancy and childhood, but adult-onset cases have also been 
reported (70, 71). Clinical sub-acute syndromes that begins 
with ataxia and nystagmus, dystonic features, optic atro-
phy and epilepsy should prompt MRI studies with special 
care to symmetrical brain lesions. Usually, lactate levels 
are increased in blood and CSF. Deficits of the respiratory 
chain (particularly of complexes I, II, IV, or V) or of the 
pyruvate dehydrogenase complex, are responsible of Leigh 

syndrome. Although several mutations in mtDNA have 
now been described in association with this syndrome, 
maternally inherited point mutations in the MT-ATP6 gene 
(m.8993T > G/C and m.9176T > G/C) are the most com-
mon changes (72). Several reports described cardiac abnor-
malities (hypertrophic or dilated cardiomyopathy) in those 
patients, especially in complex I deficiency (68, 73, 74). 

Therapy
Treatment of mitochondrial cardiomyopathies is re-

lated to the different types of heart dysfunction including 
medications, pacemakers, defibrillators or ventricular as-
sist devices (LVADs) implantation or ablation (75).

Drugs such as angiotensin-converting enzyme (ACE) 
inhibitors and beta-blockers have been successfully used 
to treat heart dysfunctions in patients with mitochondrial 
hypertrophic cardiomyopathy (76).

Patients with an isolated heart failure, or with a pre-
dominant cardiac involvement, may benefit from cardiac 
transplantation (77).

Recently, Arakawa et al., using 11C-acetate-PET, 
demonstrated that in MELAS patients with a cardiomy-
opathy, there was a rescue of  the impaired TCA-cycle 
metabolism using the L-Arginine, so improving the myo-
cardial oxidative metabolism (78).

Several palliative therapeutic approaches are cur-
rently available for patients with mitochondrial cardio-
myopathy i. e. the use of drugs preventing a severe mi-
tochondrial damage (likely caused by oxidative stress) 
and supplements protecting or restoring the OXPHOS 
enzymes. The patients also have to avoid environmental 
agents (i.e. certain types of pesticides) that could inhibit 
mitochondrial function. 

Conclusions
Both adult and infantile onset MRCD patients can 

have cardiac disturbances characterized by alterations of 
impulse generation, impulse conduction or myocardial im-
pairment, manifesting either as hypertrophic or dilated car-
diomyopathy. In adult patients, some phenotypes tend to 
affect predominantly cardiac muscle and often can be indis-
tinguishable from other genetically determined cardiomy-
opathies. Among the MRCD syndromes, large deletions of 
mtDNA often tend to be associated with conduction distur-
bances. On the other hand, no correlation between the type 
of heart defects and the clinical presentations are observed 
in paediatric patients. Patients with OXPHOS defects who 
present with cardiac manifestations have a poor outcome; 
physicians should be aware of those complications and 
they must perform a complete heart evaluation in all cases 
and suggest an appropriate therapeutic approach. 



A. Berardo et al.

14

 19.	Shoubridge EA, Wai T. Mitochondrial DNA and the mammalian 
oocyte. Curr Top Dev Biol 2007; 77:87-111.

20.	 Shoubridge EA. Nuclear gene defects in respiratory chain disor-
ders. Semin Neurol 2001;21:261-7.

21.	 Shoubridge EA. Nuclear genetic defects of oxidative phosphoryla-
tion. Hum Mol Genet 2001;10:2277-84.

22.	 Zeviani M: The expanding spectrum of nuclear gene mutations in 
mitochondrial disorders. Semin Cell Dev Biol 2001;12: 407-16.

23.	 Filosto M, Mancuso M, Nishigaki Y, et al. Clinical and genetic het-
erogeneity in progressive external ophthalmoplegia due to muta-
tions in polymerase Y. Arch Neurol 2003;60:1279-84.

24.	 Hudson G, Deschauer M, Taylor RW, et al. POLG1, C10ORF2, and 
ANT1 mutations are uncommon in sporadic progressive external 
ophthalmoplegia with multiple mitochondrial DNA deletions. Neu-
rology 2006;66:1439-41.

25.	 Scacco S, Petruzzella V, Bertini E, et al. Mutations in structural 
genes of complex I associated with neurological diseases. Ital J 
Biochem. 2006;55:254-62.

26.	 Papa S, Petruzzella V, Scacco S, et al. Pathogenetic mechanisms 
in hereditary dysfunctions of complex I of the respiratory chain in 
neurological diseases. Biochim Biophys Acta 2009;1787:502-17. 

27.	 Monnot S, Chabrol B, Cano A, et al. Cytochrome c oxydase-defi-
cient Leigh syndrome with homozygous mutation in SURF1 gene. 
Arch Pediatr. 2005;12:568-71.

28.	 Mobley BC, Enns GM, Wong LJ, et al. A novel homozygous SCO2 
mutation, p.G193S, causing fatal infantile cardioencephalomyopa-
thy. Clin Neuropathol 2009;28:143-9.

29.	 Jordens EZ, Palmieri L, Huizing M, et al. Adenine nucleotide trans-
locator 1 deficiency associated with Sengers syndrome. Ann Neurol 
2002;52:95-9.

30.	 Palmieri L, Alberio S, Pisano I, et al. Complete loss-of-function of 
the heart/muscle-specific adenine nucleotide translocator is associ-
ated with mitochondrial myopathy and cardiomyopathy. Hum Mol 
Genet 2005;14:3079-88.

31.	 Houtkooper RH, Turkenburg M, Poll-The BT, et al. The enigmatic 
role of tafazzin in cardiolipin metabolism. Biochim Biophys Acta 
2009;1788:2003-14. 

32.	 Loeffen J, Elpeleg O, Smeitink J, et al. Mutations in the complex I 
NDUFS2 gene of patients with cardiomyopathy and encephalomy-
opathy. Ann Neurol 2001;49:195-201.

33.	 Joost K, Rodenburg R, Piirsoo A, et al. A novel mutation in the 
SCO2 gene in a neonate with early-onset cardioencephalomyopa-
thy. Pediatr Neurol 2010;42:227-30.

34.	 Delatycki MB. Evaluating the progression of Friedreich ataxia and 
its treatment. J Neurol 2009;256 Suppl 1:36-41. Review.

35.	 Holmgren D, Wahlander H, Eriksson BO, et al. Cardiomyopathy in 
children with mitochondrial disease: linical course and cardiologi-
cal findings. Eur Heart J 2003;4:280-8.

36.	 Scaglia F, Towbin JA, Craigen WJ, et al. Clinical spectrum, mor-
bidity, and mortality in 113 pediatric patients with mitochondrial 
disease. Pediatrics 2004;114:925-31.

37.	 Yaplito-Lee J, Weintraub R, Jamsen K, et al. Cardiac manifesta-
tions in oxidative phosphorylation disorders of childhood. J Pediatr 
2007;150:407-11.

38.	 Di Leo R, Musumeci O, de Gregorio C, et al. Evidence of cardio-
vascular autonomic impairment in mitochondrial disorders J Neu-
rol. 2007; 254:1498-503. 

39.	 Colan SD: Hypertrophic cardiomyopathy in childhood. Heart Fail 
Clin 2010;6:433-44.

40.	 Wabbels B, Ali N, Kunz WS, Roggenkämper P, Kornblum C: 

Acknowledgments

We would like to thank all the colleagues from the Neu-
romuscular Center of the Department of Neurosciences, Psy-
chiatry and Anaesthesiology of the University of Messina for 
their permanent work. Dr. Berardo specially would like to thank 
prof. C. Rodolico for his invaluable teaching lessons.

Funding/Support

The work was supported by Telethon grant n. GUP09004. 

References
1.	 Smeitink J, van den Heuvel L, DiMauro S: The genetics and pathol-

ogy of oxidative phosphorylation. Nat Rev Genet 2001; 2:342-52.

2.	 Niizuma K, Endo H, Chan PH. Oxidative stress and mitochondrial 
dysfunction as determinants of ischemic neuronal death and sur-
vival. J Neurochem 2009;109:133-8.

3.	 Colin J, Gaumer S, Guenal I, et al. Mitochondria, Bcl-2 family pro-
teins and apoptosomes: of worms, flies and men. Front Biosci 2009; 
14:4127-37.

4.	 Wang X, Su B, Zheng L, et al. The role of abnormal mitochondrial 
dynamics in the pathogenesis of Alzheimer’s disease. J Neurochem 
2009;109:153-9.

5.	 Pandolfo M, Pastore A. The pathogenesis of Friedreich ataxia and 
the structure and function of frataxin. J Neurol 2009; 256:9-17.

6.	 de Meis L, Arruda AP, da Costa RM, et al. Identification of 
a Ca2+-ATPase in brown adipose tissue mitochondria: regu-
lation of thermogenesis by ATP and Ca2+. J Biol Chem 
2006;281:16384-90.

7.	 Nakada K, Inoue K, Hayashi JI. Mito-mice: animal models for mi-
tochondrial DNA-based diseases. 2001;12:459-65.

8.	 Birky CW Jr. The inheritance of genes in mitochondria and 
chloroplasts: laws, mechanisms, and models. Annu Rev Genet 
2001;35:125-48.

9.	 Elston T, Wang H, Oster G. Energy transduction in ATP synthase. 
Nature 1998;391:510-3.

10.	 Noji H, Yoshida M. The rotary machine of the cell, ATP synthase. J 
Biol Chem 2001;276:1665-8.

11.	 DiMauro S, Schon E. Mechanisms of disease. Mitochondrial Res-
piratory-Chain Diseases. N Engl J Med 2003;348:2656-68.

12.	 Suomalainen A, Kaukonen J. Diseases caused by Nuclear Genes 
Affecting mtDNA stability. Am J Med Genet 2001;106:53-61.

13.	 Spinazzola A, Zeviani M. Disorders of nuclear-mitochondrial 
intergenomic signaling. Biosci Rep 2007;27:39-51.

14.	 Zhu X, Peng X, Guan MX, et al. Pathogenic mutations of nuclear 
genes associated with mitochondrial disorders. Acta Biochim Bio-
phys Sin 2009; 41:179-87.

15.	 Shanske AL, Shanske S, DiMauro S. The Other Human Genome. 
Arch Pediatr Adolesc Med 2001;155:1210-6.

16.	 Mehrazin M, Shanske S, Kaufmann P, et al: Longitudinal chang-
es of mtDNA A3243G mutation load and level of functioning in 
MELAS. Am J Med Genet 2009;149:584-7.

17.	 DiMauro S, Schon EA. Mitochondrial DNA mutations in human 
disease. Am J Med Genet 2001;106:18-26.

18.	 Akman CI, Sue CM, Shanske S, et al. Mitochondrial DNA Deletion 
in a Child with Megaloblastic Anemia and Recurrent Encephalopa-
thy. J Child Neurol 2004;19:258-61.



Cardiological manifestations of mitochondrial respiratory chain disorders

15

59.	 Finsterer J. MELAS in the heart. Int J Cardiol 2009;137: 65-6

60.	 Anan R, Nakagawa M, Miyata M, et al. Cardiac involvement in 
mitochondrial diseases. A study on 17 patients with documented 
mitochondrial DNA defects. Circulation 1995; 91:955-61.

61.	 Sproule DM, Kaufmann P, Engelstad K, et al. Wolff-Parkin-
son-White syndrome in patients with MELAS. Arch Neurol 
2007;64:1625-7.

62.	 Wiedemann FR, Bartels C, Kirches E, et al. Unusual presentations 
of patients with the mitochondrial MERRF mutation A8344G. Clin 
Neurol Neurosurg 2008;110:859-63.

63.	 Molnar MJ, Perenyi J, Siska E, et al. The typical MERRF (A8344G) 
mutation of the mitochondrial DNA associated with depressive 
mood disorders. J Neurol 2009;256:264-5.

64.	 Wahbi K, Larue S, Jardel C, et al. Cardiac involvement is frequent 
in patients with the m.8344A > G mutation of mitochondrial DNA. 
Neurology 2010;74:674-7.

65.	 López-Gallardo E, Solano A, Herrero-Martín MD, et al. NARP 
syndrome in a patient harbouring an insertion in the MT-ATP6 gene 
that results in a truncated protein. J Med Genet 2009;46:64-7.

66.	 Gelfand JM, Duncan JL, Racine CA, et al. Heterogeneous patterns 
of tissue injury in NARP syndrome. J Neurol 2010 Oct 16. [Epub 
ahead of print].

67.	 Rojo A, Campos Y, Sánchez JM, et al. NARP-MILS syndrome 
caused by 8993 T  >  G mitochondrial DNA mutation: a clini-
cal, genetic and neuropathological study. Acta Neuropathol 
2006;111:610-6.

68.	 Bugiani M, Invernizzi F, Alberio S, et al. Clinical and molecular 
findings in children with complex I deficiency. Biochim Biophys 
Acta 2004;1659:136-47.

69.	 Leigh D. Subacute necrotizing encephalomyelopathy in an infant. J 
Neurol Neurosurg Psychiatry 1951;14:216-21.

70.	 Nagashima T, Mori M, Katayama K, et al. Adult Leigh syndrome 
with mitochondrial DNA mutation at 8993. Acta Neuropathol 1999; 
97:416-22.

71.	 Piao YS, Tang GC, Yang H, et al. Clinico-neuropathological study 
of a Chinese case of familiar adult Leigh syndrome. Neuropathol 
2006;26:218-21.

72.	 Carrozzo R, Tessa A, Vazquez-Memije ME. The T9176G mtDNA 
mutation severely affects ATP production and results in Leigh syn-
drome. Neurology 2001; 56:687-90.

73.	 Wang J, Brautbar A, Chan AK, et al. Two mtDNA mutations 
14487T > C (M63V, ND6) and 12297T > C (tRNA Leu) in a Leigh 
syndrome family. Mol Genet Metab 2009;96:59-65.

74.	 Levitas A, Muhammad E, Harel G, et al. Familial neonatal isolated 
cardiomyopathy caused by a mutation in the flavoprotein subunit of 
succinate dehydrogenase. Eur J Hum Genet 2010;18:1160-5.

75.	 Fosslien E. Mitochondrial medicine--cardiomyopathy caused by de-
fective oxidative phosphorylation. Ann Clin Lab Sci 2003;33:371-
95. Review.

76.	 Finsterer J, Stöllberger C, Gelpi E. Successful heart failure therapy 
in mitochondrial disorder with noncompaction cardiomyopathy Int 
J Cardiovasc Imaging 2006;22:393-8.

77.	 Santorelli FM, Gagliardi MG, Dionisi-Vici C, et al. Hypertrophic 
cardiomyopathy and mtDNA depletion. Successful treatment with 
heart transplantation. Neuromuscul Disord 2002;12:56-9.

78.	 Arakawa K, Kudo T, Ikawa M, et al. Abnormal myocardial energy-
production state in mitochondrial cardiomyopathy and acute response 
to L-arginine infusion: C-11 acetate kinetics revealed by positron emis-
sion tomography. Circ J 2010;74:2702 -11.

Chronic progressive external ophthalmoplegia and Kearns-Sayre 
syndrome: interdisciplinary diagnosis and therapy. Ophthalmology 
2008;105:550-6.

41.	 Zeviani M, Moraes CT, DiMauro S, et al. Deletions of mitochon-
drial DNA in Kearns-Sayre syndrome. Neurology 1998;51:1525-
33.

42.	 Sacher M, Fatterpekar GM, Edelstein S, et al. MRI findings in an 
atypical case of Kearns-Sayre syndrome: a case report. SKS Neuro-
radiology 2005;47:241-4.

43.	 Young TJ, Shah AK, Lee MH, Hayes DL. Kearns-Sayre syndrome: 
a case report and review of cardiovascular complications. Pacing 
Clin Electrophysiol 2005;28:454-7. Review.

44.	 Subbiah RN, Kuchar D, Baron D. Torsades de pointes in a patient 
with Kearns-Sayre syndrome: a fortunate finding. Pacing Clin Elec-
trophysiol 2007;30:137-9.

45.	 Charles R, Holt S, Kay JM, Epstein EJ, Rees JR: Myocardial 
ultrastructure and the development of atrioventricular block in 
Kearns- Sayre syndrome. Circulation 1981;63:214–9.

46.	 Berardo A, Coku J, Kurt B, et al. A novel mutation in the tRNAIle 
gene (MTTI) affecting the variable loop in a patient with chronic 
progressive external ophthalmoplegia (CPEO).Neuromuscul Di-
sord. 2010;20:204-6. 

47.	 López-Gallardo E, López-Pérez MJ, Montoya J, et al. CPEO and 
KSS differ in the percentage and location of the mtDNA deletion. 
Mitochondrion. 2009;9:314-7. 

48.	 Van Goethem G, Martin JJ, Van Broeckhoven C. Progressive ex-
ternal ophthalmoplegia and multiple mitochondrial DNA deletions. 
Acta Neurol Belg 2002;102:39-42. Review

49.	 Jiménez-Caballero PE, Serviá M, Cabeza CI, Marsal-Alonso C, 
Alvarez-Tejerina A, et al. Rev Neurol 2006;43:724-8

50.	 Finsterer J. Hematological manifestations of primary mitochondrial 
disorders. Acta Haematol 2007;118:88-98.

51.	 Knerr I, Metzler M, Niemeyer CM, et al. Hematologic features 
and clinical course of an infant with Pearson syndrome caused by 
a novel deletion of mitochondrial DNA. J Pediatr Hematol Oncol 
2003;25:948-51.

52.	 Krauch G, Wilichowski E, Schmidt KG, et al. Pearson marrow-
pancreas syndrome with worsening cardiac function caused by 
pleiotropic rearrangement of mitochondrial DNA. Am J Med Genet 
2002;110:57-61.

53.	 Sproule DM, Kaufmann P. Mitochondrial encephalopathy, lactic 
acidosis, and strokelike episodes: basic concepts, clinical pheno-
type, and therapeutic management of MELAS syndrome. Ann N Y 
Acad Sci 2008;1142:133-58.

54.	 Kolb SJ, Costello F, Lee AG, et.al. Distinguishing ischemic stroke 
from the stroke-like lesions of MELAS using apparent diffusion 
coefficient mapping. J.Neurol Sci 2003;216:11-5. 

55.	 Goto Y, Nonaka I, Horai S. A mutation in the tRNA Leu(UUR) gene 
associated with the MELAS subgroup of mitochondrial encephalo-
myopathies. Nature 1990;348:651-3.

56.	 Finsterer J. Genetic, pathogenetic, and phenotypic implications of 
the mitochondrial A3243G tRNALeu (UUR) mutation. Acta Neurol 
Scand 2007;116:1-14. Review.

57.	 Hsu PC, Chu CS, Lin TH, et al. Adult-onset hypertrophic cardiom-
yopathy manifested as initial major presentation of mitochondrial 
disease with A-to-G 3243 tRNA Leu (UUR) point mutation. Int J 
Cardiol 2008;129:441-3. 

58.	 Vilarinho L, Santorelli FM, Rosas MJ, et al. The mitochondrial 
A3243G mutation presenting as severe cardiomyopathy. J Med Ge-
net 1997;34:607-9.


