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Obesity has become one of the most serious chronic diseases threatening human

health. Its occurrence and development are closely associated with gut microbiota

since the disorders of gut microbiota can promote endotoxin production and induce

inflammatory response. Recently, numerous plant extracts have been proven to mitigate

lipid dysmetabolism and obesity syndrome by regulating the abundance and composition

of gut microbiota. In this review, we summarize the potential roles of different plant

extracts including mulberry leaf extract, policosanol, cortex moutan, green tea, honokiol,

and capsaicin in regulating obesity via gut microbiota. Based on the current findings,

plant extracts may be promising agents for the prevention and treatment of obesity

and its related metabolic diseases, and the mechanisms might be associated with

gut microbiota.
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INTRODUCTION

In recent years, obesity has been increasing at an alarming rate worldwide and seriously affects not
only developed countries but global people (1). Obesity is characterized by a series of metabolic
disorders, especially lipid dysmetabolism and its complication (2). Lipid metabolism involves the
biosynthesis and degradation of lipids such as triglycerides, cholesterol, phospholipids, and fatty
acids (3). The disorder of lipid synthesis and decomposition processes can lead to lipid metabolism
dysregulation (also known as lipid dysmetabolism), subsequently giving rise to the progression of
obesity and its related metabolic diseases such as diabetes (4–7). Thus, maintaining the balance of
lipid metabolism is of great importance to prevent and treat obesity.

Obesity is regulated by various factors such as genetic factors, dietary habits (e.g., high glycaemic
diets), underlying diseases (e.g., insulinoma), and exercise (8). Recently, direct evidence pointed to
a strong relationship between obesity and gut microbiota (9). The colonization of germ-free mice
with a “normal microbiota” from conventionally raised mice resulted in an increase in body fat
mass despite reduced food intake (10). Similarly, germ-free mice fed low-fat chow were colonized
with obese co-twin’s fecal microbiota presenting obese phenotype compare with those colonized
with lean co-twins’ fecal microbiota (11). Further evidence comes from the finding that total
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fecal microbiota transplantation from normal mice significantly
attenuated high-fat diets-induced lipid dysmetabolism in mice
(12). Moreover, obese individuals exhibited significant alteration
in gut microbiota compared with lean controls, as manifested by
increased ratio of Firmicutes toBacteroidetes (13, 14). In addition,
increasing lines of evidence suggested that obesity and its related
metabolic diseases exert seriously adverse effects on the structure
of host gut microbiota, as indicated by a significant alteration
in gut microbiota composition and diversity (11, 12, 15–17).
In turn, gut microbiota dysregulation may not only increase
the intestinal permeability to gut microbes but also elevate the
production of harmful microbial metabolites, thus aggravating
lipid dysmetabolism and resulting in obesity and its related
diseases, such as diabetes and nonalcoholic fatty liver disease
(NAFLD) (18, 19). Accordingly, gut microbiota plays important
role in the regulation of obesity and lipid metabolism, and it may
be a potential therapeutic target for ameliorating obesity.

Over the past years, increasing evidence has demonstrated
that diets and/or nutrients exert roles in the regulation of
gut microbiota composition and obesity (3, 7, 20–22). In this
review, we will discuss the anti-obesity activity of plant extracts,
with highlighting of their potential mechanisms related to gut
microbiota, in order to provide an updated understanding of the
relationship among plants extracts, gut microbiota, and obesity
(Figure 1). We hope that this review can provide some available
information to develop dietary strategies for the treatment and
prevention of obesity and its related diseases.

PLANT EXTRACTS IN OBESITY:
POTENTIAL IMPLICATION OF THE GUT
MICROBIOTA

Mulberry Leaf Extracts
Flavonoids from mulberry leaves (FML) are one of the main
functional components of mulberry leaf extracts, which are edible
food and widely used as a kind of traditional Chinese medicine. It
has been reported that mulberry leaf extracts such as FML possess
multiple biological activities, such as antioxidant, improving
skeletal muscle function, cardioprotective, and anti-cancer (23–
26). In addition, there is evidence showing that mulberry leaf
extracts confer anti-obesity effects (Figure 2).

Evidence from hyperlipidemic mice showed that FML
treatment (30mg kg−1 body weight) for 12 h improved blood
lipid metabolism, as evidenced by reduced levels of serum
total triglycerides (TG), total cholesterol (TC) and low-
density lipoprotein cholesterol (LDL-C) by 152, 207, and 110
mg/100mL, respectively (27). Similar improvements in blood
lipid metabolism were also observed in high fat diets (HFD)-
fed mice, in which FML administration (240mg kg−1 body
weight) for 6 weeks could also reduce body weight gain and
adipose tissue mass, and alleviate the whitening of brown
adipose tissue (BAT) (28). Moreover, mulberry water extracts
could reduce lipid peroxidation and lipid accumulation in
the liver of rats (29). Apart from using alone, mulberry leaf
extracts combined with mulberry fruit extract also exhibited anti-
obesity effects in HFD-induced obese mice, as evidenced by

FIGURE 1 | The overview of anti-obesity effects of plant extracts via gut

microbiota.

decreased body weight gain, improved fasting plasma glucose and
insulin, and alleviated inflammation and oxidative stress (30).
Consistent with in vivo studies, in vitro studies have also reported
that treatment of mulberry leaf extracts to aortic vascular
smooth muscle cells (VSMCs) could inhibit its proliferation and
migration, thus preventing atherosclerosis, a disease related to
lipid dysmetabolism (31).

Although much of the work in this field has been done on
rodent models, these models have yielded important insights
into the anti-obesity mechanisms of mulberry leaf extracts. Since
flavonoids are enzymatically hydrolyzed by gut microbiota and
absorbed in the intestine (32), it is posited that the beneficial
effects of FML might be via gut microbiota. In support, FML
treated-obese mice exhibited increased Bacteroidetes abundance
and decreased Firmicutes abundance (28, 33, 34). Increased
Bacteroidetes abundance led to an elevation in the production of
acetic acid, which further promotes lipolysis and inhibits lipid
accumulation through activating G protein-coupled receptor
43 (GPR43), a short chain fatty acid receptor (28, 35). Taken
together, the anti-obesity mechanisms of mulberry leaf extracts
are summarized in Figure 2.

Policosanol
Policosanol is a natural mixture of long-chain aliphatic primary
alcohols extracted from the wax constituent of plants and
seeds, such as sugar cane, wheat, corn, sesame, soybean, perilla
seed, grape seed and rice bran, whose main ingredient is
octacosanol (36). Policosanol has multiple bioactivities, such
as anti-nociceptive, anti-inflammatory, anti-cancer, and anti-
parkinsonian properties (37–41). In addition, policosanol also
exerts beneficial effects on lipid dysmetabolism and obesity,
such as improving blood lipid profile, elevating BAT activity,
improving glucose homeostasis, and regulating cholesterol
synthesis (42–44).
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First, evidence from human subjects has shown that the
reduction of serum high-density lipoprotein-cholesterol (HDL-
C) levels and the elevation of serum TG, TC and glucose
levels were reversed by policosanol treatment (10mg day−1) for
8 weeks, indicative of an anti-obesity effect (42, 45). Similar
reduction of serum TG levels was also obtained in HFD-fed
rats, in which octacosanol treatment (10 g kg−1 diet) for 20 days
also significantly reduced perirenal adipose tissue weight (46).
Apart from the regulation of blood lipid profile and adipose
tissue mass, policosanol treatment (60mg kg−1 day−1, for 4
weeks) could attenuate insulin resistance and improve glucose
homeostasis by elevating BAT activity and reducing hepatic
lipid content in HFD-induced obese mice (43). In addition,
policosanol also exerts roles in regulating cholesterol metabolism.
For example, policosanol treatment (0.38–1.5 g kg−1 diets) in
hamsters greatly decreased serum levels of total cholesterol
by 15–25% and increased the excretion of acidic sterols (the
cholesterol end-product) by 25–73%, indicating that policosanol
lowered cholesterol via restraining the absorption of bile acids
(44). One potential mechanism for the hypocholesterolemic
effect of policosanol is its down-regulation of 3-hydroxy-3-
methylglutary coenzyme A (HMG-CoA) reductase, the key rate-
limiting enzyme in cholesterol biosynthesis (47, 48). In support,
an in vitro study found that policosanol suppressed HMG-CoA
reductase activity by activating adenosine 5

′
-monophosphate-

activated protein kinase (AMPK) (48, 49).
Cholesterol degrading into bile acids functions as the main

way to expel excess cholesterol from host, which can effectively
reduce the risk of atherosclerosis (50). On the other hand, bile
acids act as an important regulator of cholesterol metabolism.
The biosynthesis and biotransformation of bile acids are closely
associated with host gut microbiota. In detail, primary bile
acids are synthesized and secreted by host hepatocytes, and
then transformed into secondary bile acids with the chemical
modification effect of gut microbiota (51). The disorder of gut
microbiota results in bile acid dysmetabolism and in turn affects
cholesterol metabolism, suggesting that the regulation effects of
policosanol on cholesterol metabolism is partially mediated by
gut microbiota (52–55). In summary, these findings show that
policosanol seems to be a promising phytochemical alternative
to classic cholesterol-lowing agents such as statins. However, the
detailed mechanisms of the mode of policosanol’s action remain
unclear, but alterations in gut microbiota are probably involved.

Cortex Moutan
Cortex Moutan (CM), the root bark of Paeonia suffruticosa
Andrews, is widely used as a traditional Chinese herbal
medicine that has multiple bioactive ingredients. Both CM
and its bioactive ingredients possess many pharmacological
properties on cardiovascular diseases, anti-tumor, and nervous
system (56–58). The main pharmacological effects of CM are
attributed to its bioactive component paeonol. Recently, more
and more studies have found that CM and paeonol are also able
to regulate preadipocyte differentiation, glucose homeostasis,
lipid peroxidation, and inflammatory response, thus mitigating
obesity (Figure 3).

It has been reported that administration of paeonol (150 and
300mg kg−1) to diabetic mice for 8 weeks resulted in a reduction
in fasting blood glucose, serum TG and TC, hepatic TG and TC
though activation of serine/threonine kinase B (Akt) (59). Similar
improvements in lipid metabolism were obtained in myocardial
ischemia rabbits (60). In addition, paeonol administration could
ameliorate lipid peroxidation and inflammatory response (61,
62). In HFD-induced atherosclerotic rabbits, paeonol exerts
anti-atherosclerosis effects by inhibition of lipid peroxidation
and improvement of anti-inflammatory action (63). In accord
with these findings in in vivo studies, several in vitro studies
have reported that paeonol can markedly and dose-dependently
reduce intracellular lipid accumulation in mouse preadipocytes
and macrophages, and delay preadipocytes differentiation into
mature adipocytes, thus protecting against metabolic diseases
(64, 65). Overall, overwhelming evidence suggests that paeonol
treatment can combat obesity and its related metabolic diseases
such as atherosclerosis and steatohepatitis.

Since its low bioavailability and phenolic hydroxyl groups in
its chemical structure, CM can interact with gut microbiota in
the intestinal tract over extended periods of time (66, 67). These
observations raise the possibility that gut microbiota may play a
role in the mode of CM’s action (Figure 3). Evidence to support
this hypothesis is that CM possess antimicrobial activity against
a broad range of bacteria, such as Escherichia coli, Streptococcus
sanguis, and Cholera vibrio (68, 69). Further evidence for a
relationship between CM treatment and gut microbiota comes
from the findings that CM administration (0.4 g crude drug kg−1,
either along or as part of a therapeutic regimen) to HFD-induced
obese mice for 6 weeks significantly reverse the composition and
diversity of gut microbiota, as evidenced by restored abundances
of Bacteroides, Parabacteroides, Akkermansia, andMucispirillum.
Subsequently, improved gut microbiota could affect the levels
of blood metabolites such as branched-chain amino acids
(BCAAs), and down-regulate the expression of sterol-regulatory
element binding proteins (SREBPs, crucial regulators controlling
cholesterol and fatty acid de novo synthesis) in the liver, thus
alleviating obesity (70). In addition, paeonol can reduce intestinal
fungal abundance (especially Candida albicans abundance) and
inhibit the mycobiota-mediated dectin-1/interleukin-1β (IL-1β)
signaling pathway, thus ameliorating alcohol liver disease in mice
(71). In summary, CM and paeonol exert anti-obesity effects
through the gut microbiota-blood metabolites-liver axis and
microbiota-mediated signaling pathway, making them potential
pharmaceutical agents against obesity.

Green Tea Extract
Green tea, the unfermented dried leaves of Camellia sinensis,
is one of the most popularly traditional beverages worldwide.
The major bioactive ingredients of green tea are flavan-3-ols
(also known as catechins), which are natural plant-derived and
powerful antioxidant for alleviating oxidative stress. In particular,
(–)-epigallocatechin-3-gallate (EGCG) is the most abundant and
active catechin in green tea. Apart from antioxidant, green tea
also possesses anti-obesity and anti-diabetic effects (72, 73).

In vitro studies presented evidence showing that catechin-
rich green tea extract (GTE) could ameliorate lipid accumulation
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FIGURE 2 | Possible mechanisms explaining the anti-obesity effects of mulberry leaf extracts and green tea extracts. SCFAs, short chain fatty acids; WAT, white

adipose tissue.

FIGURE 3 | Possible mechanisms explaining the anti-obesity effects of cortex moutan. BCAAs, branched-chain amino acids; SREBPs, sterol-regulatory element

binding proteins; IL-1β, interleukin-1β.
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through inhibiting the differentiation of 3T3-L1 preadipocytes
into adipocytes and stimulating the browning of white adipocytes
(72, 74, 75). Similarly, in 3T3-L1 adipocytes, EGCG could
improve glucose homeostasis through normalizing the redox
imbalance and mitochondrial dysfunction (75). In line with these
findings, in vivo studies also reported a beneficial role of GTE
on obesity. For instance, evidence from human studies showed
that daily ingestion of GTE (containing 583mg of catechins) for
12 weeks resulted in decreases in body weight, adipose tissue
mass, and serum LDL-C levels (76, 77). Similar observations
were also obtained in diets-induced obese rodents, in which
GTE was supplemented at a dose of 500mg kg−1 body weight
for 12 weeks, and the mechanisms might be related to AMPK
activation and down-regulated microRNA 335 expression in the
adipose tissue (78, 79). Apart from the above-mentioned roles,
GTE supplementation could mitigate inflammation, enhance
energy expenditure, and attenuate insulin resistance (80, 81).
Altogether, GTE is a beneficial food constituent for preventing
and treating obesity.

A potential mechanism for the anti-obesity of GTE was
attributed to the alteration of gut microbiota, based on
observations of increased Bacteroides abundance in response to
GTE treatment (82–84). Two mechanisms may be responsible
for the beneficial effects of GTE on obesity via improving gut
microbiota. One hypothesized mechanism may be the increased
production of short chain fatty acids (SCFAs) and the inhibition
of endotoxin formation and translocation, thus attenuating
obesity-associated adipose inflammation and decreasing body
weight (84, 85). Another hypothesizedmechanismmay be via gut
microbiota-improved intestinal redox state (86). Despite these
positive outcomes, there is evidence showing that treatment
of obese mice with overdose tea polyphenols would present
side effects on their intestinal health (86). Taken together, GTE
can exert protective roles against obesity, and its underlying
mechanisms might be associated with gut microbiota (Figure 2).
In future, more efforts should be made to investigate how GTE
targets the specific gut microbiota.

Resveratrol
Resveratrol (3, 5, 4′-trihydroxystilbene, RES)is a plant-derived
polyphenolic compound, which could be isolated and purified
from a variety of plants, such as grape, peanut, mulberry and
polygonum cuspidatum. Over the past decade, RES is also one of
the most studied plant active ingredients, because of its presumed
pharmacological effects on cancer, cardiovascular diseases, and
alzheimer’s diseases (87–90).Meanwhile, it has been reported that
RES also plays a crucial role in mitigating obesity, as evidenced by
increased energy expenditure, BAT activity, white adipose tissue
(WAT) browning, and glucose homeostasis (Figure 4).

In obesogenic diets-fed rats, RES supplementation (30
mg/kg/day, for 6 weeks) increased thermogenesis in skeletal
muscle and BAT by upregulating uncoupling protein
(UCP) expression, consequently improving whole-body
energy dissipation and attenuating obesity (91). Likewise,
supplementation of 4% RES to db/db mice for 10 weeks
could enhance BAT activity and WAT browning and improve
glucose homeostasis (92). Daily delivery of 300mg kg−1

RES to HFD-fed mice for 16 weeks improved hepatic lipid
metabolism and reduced liver steatosis, thus alleviating NAFLD
(93). Administration of RES (10 mg/kg) to atherosclerotic
mice for 24 weeks significantly reduced the intestinal fatty
acid and monoglyceride accumulation, conferring beneficial
effects on cardiovascular health (94). Consistent with these
findings, several in vitro studies using stromal vascular cell
model also demonstrated that RES could enhance brown
adipocyte formation and thermogenic function and elevate
oxygen consumption by activating AMPKα1 (95, 96). Besides,
RES dose-dependently decreased triglyceride accumulation in
mouse 3T3-L1 preadipocytes via up-regulation of Sirtuin1 (Sirtl)
expression (97). Moreover, RES facilitated epinephrine-induced
lipolysis, inhibited lipogenesis and glucose conversion to lipids,
and counteracted insulin antilipolytic action in rat and human
adipocytes (98, 99).

The colonization of HFD-fed obese mice with an “RES-
microbiota” (RES-induced gut microbiota) is sufficient to
improve lipid metabolism and to ameliorate obesity, suggesting
the anti-obesity effects of RES may be partially mediated by the
regulation of gut microbiota (100). Due to its poor bioavailability,
RES mainly accumulates in the intestinal tract and rarely
enters the circulatory system after intake. In the intestinal
tract, RES can be metabolized into bioactive small molecules
by gut microbiota, which greatly facilitates the regulation of
RES on lipid metabolism (100–102). For instance, RES can
be biotransformed into 4-hydroxyphenylacetic acid (4-HPA)
and 3-hydroxyphenylpropionic acid (3-HPP) by gut microbiota,
which conversely improved the gut microbiota composition,
as evidenced by the restored abundance of Lactobacillus,
Bifidobacterium, and Firmicutes (103). Thereafter, the improved
gut microbiota alleviated obesity through the fasting-induced
adipose factor (Fiaf) and sirtuin-1 (Sirt1) signaling pathway
(104, 105). On the other hand, RES can lower the level of gut
microbial metabolite trimethylamine-N-oxide (a novel risk factor
of metabolic syndrome) and enhance bile acid neosynthesis,
possibly representing an additional mechanism for the beneficial
effects of RES (106). Taken together, these observations raise
the possibility that the beneficial effects of RES on obesity are
associated with improved gut microbiota (93, 100, 104, 105, 107,
108).

Grape Seed Proanthocyanidin Extract
Grape seed proanthocyanidin extract (a polymers of flavan-3-
ols, GSPE) is the main polyphenolic compound of grape seed
extracts, which can transform into anthocyanidin under acid and
heating conditions. In addition to its antioxidant function, GSPE
also possesses pharmacological effects on cardiovascular disease,
inflammatory processes, muscle fatigue, and other metabolic
complications (109–111). Recently, increasing evidence has
found that GSPE is capable to normalize the disturbance of lipid
metabolism and to mitigate obesity.

Works in rodent models found that daily administration of
GSPE (250mg kg−1 body weight) to hyperlipidemic rats for
7 days resulted in a 41% reduction in serum TG levels via
increasing fecal bile acid and cholesterol excretion (112). In
cafeteria diet-induced obese rats, daily delivery of GSPE (25 and
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FIGURE 4 | Possible mechanisms explaining the anti-obesity effects of resveratrol. 4-HPA, 4-hydroxyphenylacetic acid; 3-HPP, 3-hydroxyphenylpropionic acid; Fiaf,

fasting-induced adipose factor; Sirt1, sirtuin 1; TMAO, trimethylamine-N-oxide, BAT, brown adipose tissue, NAFLD, nonalcoholic fatty liver disease.

50mg kg−1 body weight) for 21 days resulted in an improvement
of mitochondrial function and thermogenic capacity of the BAT,
thus increasing energy expenditure and ameliorating obesity
(113). Further investigation found that long-term treatment of
GSPE (12 weeks) could exert an anti-hyperlipidemia effect, as
evidenced by decreased serum levels of TG, TC, and LDL-
C and reduced visceral WAT mass (114, 115). Similar results
were also obtained in the ovariectomized mice and weaned
pigs (116, 117). Consistent with these findings, in vitro studies
using murine and porcine cell models also elucidated that GSPE
could suppress preadipocyte differentiation and proliferation,
and promote lipolysis of adipocytes, thus inhibiting adipose cell
formation and fat accumulation (118, 119). Besides, both in

vivo and in vitro studies have found that GSPE could prevent
low-grade inflammation through inhibiting the production of
proinflammatory cytokines [cytokine C-reactive protein (CRP),
interleukin-6 (IL-6), and tumor necrosis factor-α] and increasing
the production of the anti-inflammatory adipokine adiponectin
(120, 121).

Mechanically, GSPE can suppress the disorder of lipid
metabolism through regulating gut microbiota. In support,
GSPE can restore the obesogenic diet-induced gut microbiota
dysbiosis, as manifested by the normalized ratio of Firmicutes to
Bacteroidetes and the increased Bacteroides abundance (110, 116,
117). Further evidence comes from the finding that the beneficial
effects of GSPE on obesity were abolished when gut microbiota
was cleared by antibiotics treatment (110, 117). Interestingly,

further investigation suggested that the bacterial metabolites
SCFAs (especially propionate) could also communicate in the
beneficial effects of GSPE. Alterations of gut microbiota in
response to GSPE treatment (250mg kg−1 body weight) in
weaned pigs for 28 days led to a 30.2% elevation in the
production of propionate comparedwith the control group (117).
On one hand, propionate stimulated the secretion of glucagon
like peptide-1 (GLP-1) and peptide YY (PYY, an important
regulator of appetite and energy homeostasis) from colonic cells
via activation of free fatty acid receptor 2 (FFAR 2), further
inhibiting energy intake and fat accumulation (117, 122, 123).
On the other hand, propionate could in turn restored the
gut microbiota dysbiosis induced by HFD, thus reducing body
weight andmitigating obesity (124). In conclusion, these findings
suggest that the beneficial effects of GSPE on obesity are partially
attributed to the gut microbiota-propionate axis.

Honokiol
Honokiol (HON) is a natural neolignan derived from the widely
used Chinese medicinal herb, Magnolia officinalis. HON has
been regarded as a promising therapeutic agent for various
chronic diseases due to its bioactive effects, such as anti-
parkinsonian, anti-inflammatory, anti-cancer, anti-fatigue, and
antioxidant properties (125–129). Notably, recent evidence has
indicated that HON exerts critical effects on obesity by regulating
adipogenesis and lipolysis.
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FIGURE 5 | Possible mechanisms explaining the anti-obesity effects of capsaicin.

There is evidence showing that HON administration (at doses
of 200, 400, and 800mg kg−1 body weight) to diets-induced
obese mice for 8 weeks dose-dependently reduced body weight
and adipose tissue mass (130). Besides, upon HON treatment
(200mg kg−1, for 8 weeks), insulin sensitivity was improved
in streptozotocin-induced type 2 diabetic mice by targeting
protein tyrosine phosphatase 1B (PTP1B) (131). Apart from
using alone, HFD-fed mice fed HON plus magnolol for 16
weeks exhibited a drastically reduction in WAT weight and
adipocyte size (132). Consistently, in vitro studies using 3T3-
L1 adipocytes also demonstrated that HON could exert effects
on lipid metabolism, including reducing viability, inducing
apoptosis, promoting browning of white adipocytes, improving
insulin resistance, and inhibiting apoptosis of brown adipocytes
(133–135). Therefore, HON exerts regulatory effects on lipid
metabolism and exhibits therapeutical potential against obesity.

Notably, due to its low bioavailability, <10% of HON
is absorbed into circulatory system from intestine and the
remainders are metabolized by gut microbiota in posterior
intestine to generate bioactive molecules and to remodel gut
microbiota structure (136). These findings indicate that gut
microbiota exerts an irreplaceable role in the lipid metabolic
benefits of HON. Using different sexes of HFD-induced obese
mice, previous studies have reported that the male mice treated

with HON exhibited a significant anti-obesity effect through
regulating gut microbiota and metabolites, as manifested by
increased Bacteroides abundance and reduced lipopolysaccharide
(LPS) levels. Nevertheless, HON treatment in female mice
did not exhibit the same impact as to male mice (130). In
summary, HON plays a vital role in warding off obesity and
the related mechanisms might be partially mediated by gut
microbiota. However, the detailed mechanisms have not yet been
fully identified.

Capsaicin
Capsaicin (CAP) is the major pungent ingredient isolated
from red chili peppers (genus Capsicum), which are widely
consumed as foods and flavoring spices all over the world.
CAP has been widely used to treat various diseases because
of its bioactive effects, such as anti-cancer, analgesic, neuro-
modulating, anti-fatigue, anti-inflammatory properties (137–
141). Recently, accumulating evidence has suggested that CAP
has beneficial effects on obesity, including reducing lipid
accumulation, inducing the browning of WAT, and mitigating
inflammation responses (Figure 5).

Using women with gestational diabetes mellitus model,
previous studies shown that daily supplementation of 5mg CAP
for 4 weeks can improve serum lipid profiles, as evidenced by
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FIGURE 6 | Possible mechanisms explaining the anti-obesity effects of konjac glucomannan.

lowered levels of fasting serum lipids and postprandial plasma
glucose (142). Similar improvements in serum lipid profile
were observed in diets-induced obese mice, in which long-
term supplementation (5 months) of dietary CAP at a low
dose (0.01%) also resulted in a reduction in body weight and
adipose tissues mass (143). Apart from the regulation of body
weight and serum lipid profile, CAP treatment could improve
glucose homeostasis. For instance, treatment of CAP (2mg
kg−1 body weight) to transient receptor potential vanilloid-1
(TRPV1)-knockout (KO) obese mice for 12 weeks significantly
decreased serum glucose and insulin concentrations (144). Upon
further investigation, CAPwas found to promoteWAT browning
and increase thermogenesis (145, 146). Consistently, in 3T3-L1
white adipocytes, a combination treatment of CAP (25µM) and
capsiate (25µM) could induce browning through activation of
peroxisome proliferator-activated receptor γ and β3-adrenergic
receptor (PPARγ/β3-AR) signaling pathway (147). Moreover,
CAP time- and dose-dependently inhibited lipid accumulation
in 3T3-L1 adipocytes via inducing apoptosis and suppressing
adipogenesis (148). Likewise, an in vitro study also showed that
palmitic acid-treated HepG2 cells exhibited an improvement in
lipid metabolism upon CAP treatment (100µM), as evidenced
by decreased lipid accumulation and concentrations of TG
and TC as well as increased HDL-C levels (149). In addition,
CAP also attenuated obesity-induced inflammatory responses by
regulating adipokine release from and macrophage behavior in
adipose tissues of obese-mice (150).

Mechanically, CAP exerts anti-obesity effects via altering
gut microbiota composition and elevating SCFAs production
(Figure 5) (144). In particular, dietary CAP supplementation
in diets-induced obese mice could increase the abundance of
butyrate-producing bacteria (e.g., Roseburia spp.) and promote
the generation of butyrate (a metabolic substrate for intestinal
epithelial cells), thus improving gut barrier integrity. The
improved gut barrier integrity prevented the bacterial endotoxins
across the gut barrier and metabolic endotoxemia, thereby
ameliorating chronic low-grade inflammation and obesity (151).
In line with the alteration in the abundance of butyrate-
producing bacteria, the abundance of Akkermansia muciniphila
(a mucin-degrading bacterium proven to inversely correlate with
adiposity) has also been shown to be increased in response
to CAP supplementation. However, it remains unclear how
dietary CAP supplementation elevated the relative abundance
of Akkermansia muciniphila (152). Taken together, CAP can
serve as a therapeutic agent in the prevention of obesity and the
related mechanisms might be associated with gut microbiota-
butyrate signaling.

Konjac Glucomannan
Konjac flour (KF) is a powder processed from the konjac
tuber (Amorphophallus konjac), which has traditionally been
consumed as a food source and as a component for traditional
Chinese medicine in Asian countries for centuries. Konjac
glucomannan (KGM), a primary ingredient of KF, is a
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TABLE 1 | Summary of the effects of plant extracts on gut microbiota, obesity and its related metabolic disorder.

Plant extracts Experimental model and

subjects

Plant extract treatment Microbiota effects Association Response References

FML HFD-induced obese mice FML (240 mg/kg/day) via oral

gavage for 6 weeks

Firmicutes/Bacteroidetes ratio ↓;

Clostridiales ↑

Acetic acid production ↑ Lipid accumulation, liver

steatosis and the whitening of

BAT ↓

(28)

Mulberry leaves HFD-induced obese mice Mulberry leaves (20%) for 13

weeks

Firmicutes/Bacteroidetes ratio and

Proteobacteria ↓; Akkermansia ↑

SCFAs production ↑ Body weight gain, fat

accumulation and fasting blood

glucose ↓; insulin sensitivity ↑

(33)

CM HFD-induced obese mice CM (0.4 g crude drug/kg) for 6

weeks

Bacteroides and Akkermansia ↑;

Mucispirillum ↓

Microbiota-blood

metabolites-liver axis

Adiposis and insulin resistance

↓; glucose uptake ↑

(70)

Paeonol Alcohol-induced ALD mice Paeonol (480 mg/kg) for 11 days Candida albicans ↓ mycobiota-mediated

dectin-1/IL-1β signaling pathway

↓

ALD inflammatory response and

liver fat lesions ↓

(71)

Green tea

infusions

HFD-induced obese C57BL/6J

mice

Green tea infusions as drinking

water for 13 weeks

Alistipes, Rikenella, Lachnospiraceae,

Akkermansia, Bacteroides,

Allobaculum and Parabacteroides ↑

SCFAs, gastrointestinal immunity

and gut barrier function ↑

Body weight gain, adipose tissue

accumulation, hyperglycemia,

hypertriglyceridemia, and

hypercholesterolemia ↓

(82)

GTE HFD-induced obese Swiss

albino mice

GTE (200 mg/kg) combined with

isomalto-oligosaccharide (1 g/kg)

for 12 weeks

Lactobacillus, Bifidobacteria,

Akkermansia and Roseburia spp. ↑

Metabolic endotoxemia ↓ Adiposis, lipid accumulation in

liver and fasting blood glucose ↓

(83)

GTE HFD-induced obese C57BL/6J

mice

GTE (2%) for 8 weeks Firmicutes/Bacteroidetes ratio ↓;

Bifidobacterium and Lactobacillus ↑

Gut barrier function ↑; endotoxin

translocation ↓

Adiposis and its related

inflammatory response ↓

(84)

Green tea water

extracts

HFD-induced obese C57BL/6J

mice

Green tea water extracts (1%) for

28 weeks

Family Rikenellaceae and

Desulfovibrionaceae ↓

SCFAs production ↑; endotoxin

LPS production ↓

Glucose tolerance ↑; body

weight gain, hepatic lipids, and

WAT weights ↓

(85)

Green tea

polyphenols

HFD-induced obese C57BL/6

mice

Green tea polyphenols (200

mg/kg) for 12 weeks

Lachnospiraceae, Bacteroides,

Alistipes, and Faecalibaculum ↑

the maintaining of intestinal

redox state ↑

Lipid metabolism ↑;

hyperlipidemia and inflammation

↓

(86)

RES HFD-induced obese C57BL/6J

mice

RES by gavage (300 mg/kg/day)

for 16 weeks

Desulfovibrio,

Lachnospiraceae_NK4A316_group

and Alistipes ↓; Allobaculum,

Bacteroides and Blautia ↑

Gut intestinal barrier integrity and

intestinal redox state ↑

Body weight, liver steatosis and

NAFLD ↓; lipid metabolism and

insulin resistance ↑

(93, 100, 103)

RES HFD-induced obese mice RES (200 mg/kg/day) for 12

weeks

Lactobacillus and Bifidobacterium ↑;

Firmicutes/Bacteroidetes ratio and

Enterococcus faecalis ↓

Fiaf signaling pathway ↑ Body and visceral weights, blood

glucose, and lipid levels ↓

(104)

RES HFD-induced obese C57BL/6J

mice

RES (0.4%) for 4 weeks Lactobacillus and Bifidobacterium↑;

Firmicutes/Bacteroidetes ratio and

Proteobacteria ↓

Sirtuin-1 signaling pathway ↑ Fat accumulation ↓; WAT

browning ↑

(105)

RES HFHS-induced obese C57Bl/6N

mice

RES (0.4%) for 8 weeks Turicibacteraceae, Moryella,

Lachnospiraceae, and Akkermansia

↓; Bacteroides and Parabacteroides

↑

Inflammatory state ↓ Glucose homeostasis and insulin

sensitivity ↑

(108)

GSPE HFD-induced obese C57BL/6

mice

GSPE by gavage (300

mg/kg/day) for 7 weeks

Clostridium XIVa, Roseburia, and

Prevotella ↑

Inflammatory response ↓ Insulin sensitivity ↑; visceral fat

accumulation and adiposity ↓

(110)

GSPE Weaned pigs at day 28 GSPE (250 mg/kg) for 28 days Firmicutes/Bacteroidetes ratio↓;

Akkermansia, Alistipes and

Bacteroides ↑

Propionate production ↑ Adipose accumulation and

inflammation ↓; lipid metabolism

↑

(117)

(Continued)
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TABLE 1 | Continued

Plant extracts Experimental model and

subjects

Plant extract treatment Microbiota effects Association Response References

HON HFD-induced obese C57BL/6

mice

HON (200, 400, 800 mg/kg) for

8 weeks

Akkermansia and Bacteroides ↑;

Oscillospira↓

SCFAs production ↑; endotoxin

LPS production ↓

Body weight, adipose tissue

weight, insulin resistance and

blood lipid ↓

(130)

CAP HFD-induced obese C57BL/6J

mice

CAP (2 mg/kg) for 12 weeks Bacteroides, Coprococcus, Prevotella

and Akkermansia ↑; Proteobacteria

spp. ↓

SCFAs production ↑;

inflammatory response ↓

Body weight gain and food

intake ↓; lipid profile ↑

(144)

CAP HFD-induced obese C57BL/6J

mice

CAP (0.01%) for 12 weeks Ruminococcaceae and

Lachnospiraceae (including

Roseburia spp.) ↑; family S24_7 ↓

Butyrate production ↑; endotoxin

LPS production ↓

Chronic low-grade inflammation,

body weight gain and adiposity ↓

(151)

CAP HFD-induced obese C57BL/6

mice

CAP (0.01%) for 9 weeks Proteobacteria ↓; Akkermansia

muciniphila ↑

Intestinal mucin degradation ↑ Body weight ↓; glucose

tolerance and glucose

homeostasis ↑

(152)

KGM HFD-induced obese C57BL/6J

mice

KGM (4%) combined with

bacterial cellulose (4%) for 16

weeks

Firmicutes and Mucispirillum ↓;

Bacteroidetes and Akkermansia ↑

SCFAs production and intestinal

integrity ↑

Glucose homeostasis, fatty acid

profiles and lipid metabolism ↑;

body weight ↓

(161)

Konjaku flour HFD-induced obese C57BL/6J

mice

Konjaku flour (300 mg/day) for

12 weeks

Megasphaera elsdenii and

Aerococcaceae ↑; Alistipes,

Alloprevotella and Bacteroides

acidifaciens ↓

Gut Intestinal barrier function ↑ Body weight gain, fat mass and

inflammatory state ↓

(166)

KGM streptozotocin-induced type 2

diabetic rats

KGM (160 mg/kg) for 4 weeks Clostridium spp., Bacteroides spp.,

Prevotella spp., Klebsiella spp.,

Streptococcus spp., and S. aureus ↓

Bacterial-associated BCAAs ↓;

BCAA metabolism ↑

Type 2 diabetes ↓; lipid and

glucose metabolism ↑

(169)

Chlorophyll HFD-induced obese C57BL/6J

mice

Chlorophyll-rich spinach extract

(0.18 mg/10 g /day) for 13 weeks

Blautia,

norank_f_Bacteroidales_S24-7_group

and Akkermansia ↑; Lactobacillus

and Lactococcus ↓

SCFAs production ↑; endotoxin

LPS production ↓

Body weight gain and low-grade

inflammation ↓; glucose

tolerance ↑

(174, 175)

Chlorophyllin Carbon tetrachloride-induced

liver fibrosis BALB/c mice

Chlorophyllin (5 mg/kg) for 6

weeks

Firmicutes/Bacteroidetes ratio ↓ Plasma endotoxin concentration

↓

Hepatic inflammation and liver

fibrosis ↓

(179)

FML, flavonoids frommulberry leaves; HFD, high fat diets; BAT, brown adipose tissue; SCFAs, short chain fatty acids; CM, cortex moutan; ALD, alcoholic liver disease; IL-1β, interleukin-1β; GTE, green tea extract; LPS, lipopolysaccharide;

NAFLD; nonalcoholic fatty liver disease; RES, resveratrol; Fiaf, fasting-induced adipose factor; WAT, white adipose tissue; HFHS, high fat/high sugar; GSPE, grape seed proanthocyanidin extract; HON, honokiol; CAP, capsaicin; KGM,

konjac glucomannan; BCAAs, branched-chain amino acids; ↑, promotion; ↓, inhibition.
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hydrophilic dietary fiber composed of D-glucose and D-mannose
residues connected by β-1,4-glycosidic bonds. It has been widely
used as a food additive and dietary supplements in medical
practice, pharmaceutical engineering, nutraceutical and food
industry (153). KGM has multiple pharmacological effects for
the management of diseases such as constipation, wound healing,
and colitis (154–156). Recently, growing evidence has suggested
that KGM could ameliorate lipid dysmetabolism and exhibit
hypoglycemic effects (Figure 6).

It has been shown that dietary KGM supplementation (3.6
g/day) in type 2 diabetic patients with hyperlipidemia for 4
weeks reduced the concentrations of plasma cholesterol, LDL-C,
and fasting glucose by 11.1, 20.7, and 23.2%, respectively (157).
When combined with exercise, treatment of overweight humans
with KGM (3,000 mg/day) for 8 weeks significantly improved
blood lipid levels and body composition (158). Similar results
were also found in diabetic rodent models (159). In addition,
long-term supplementation of dietary KGM (4%, for 16 weeks)
to nutritional obese mice effectively decreased body weight,
improved lipid metabolism, and inhibited insulin resistance (160,
161). Moreover, in type 2 diabetic rats induced by HFD and
streptozotocin, KGM administration (80mg kg−1 body weight,
for 28 days) attenuated oxidative stress by regulation of nuclear
factor erythroid 2-related factor 2 (Nrf2) pathway and decreased
inflammatory responses through regulating nuclear factor-kappa
B (NF-κB) pathway, thus ameliorating hyperglycemia (162).
Taken together, KGM supplementation, alone or together with
exercise, may be a good nutritional tool to prevent and to
treat obesity.

KF is a native soluble dietary fiber with high molecular
weight, viscosity, and swelling capacity in the intestine, which
can remarkably speed up the peristalsis of bowel and slow down
the movement of gut microbiota across the cecum (161, 163).
Notably, low grain size of KF can swell in intestinal tract more
easily and rapidly compared with the native KF (164). Evidence
from rodents (161, 165, 166), sows (167), and humans (168)
models suggests that alteration of gutmicrobiota is a contributing
mechanism for the anti-obesity effects of KF or/and KGM
supplementation. In detail, dietary KF supplementation could
normalize the gut microbiota dysbiosis induced by HFD, such
as improving the gut microbiota diversity and composition (161,
166). In turn, the amendatory gut microbiota could accelerate the
fermentation of dietary KF to improve the SCFAs’ concentration
in the intestinal contents, thus ameliorating obesity and its-
related complications (161, 163). On the other hand, it is well
known that increased circulating BCAA concentrations can
deteriorate host glucose and lipid metabolism, and subsequently
prognosticate future risk of developing insulin resistance and
diabetes (169). Interestingly, a recent study has demonstrated
that KGM treatment (160mg kg−1) of type 2 diabetic rats for
4 weeks reduced the abundance of BCAA-producing bacteria
and improved BCAAmetabolism, further ameliorating host lipid
metabolism and diabetes (169). In summary, KF might be a
promising agent to prevent and to treat obesity, and the potential
mechanism was associated with reprogramming gut microbiota
and metabolism, especially decreasing BCAA-producing bacteria
abundance (Figure 6).

Chlorophyll
Chlorophyll is an abundant green pigment and non-nutrient
compound ubiquitously found in higher plants and other
photosynthetic organisms. Chlorophyll has been widely used
to prevent various chronic diseases because of its numerous
pharmacological effects, such as anti-cancer, anti-inflammatory,
and antioxidant properties (170–172). Recently, more and more
studies have reported that chlorophyll also plays important roles
in ameliorating obesity. A study found that daily consumption of
5 g green-plant membranes containing chlorophyll in overweight
subjects for 3 months led to decreases in body weight and
serum cholesterol levels (173). Similar results were obtained in
HFD-induced obese mice, in which dietary supplementation of
a chlorophyll-rich spinach extract (0.18 mg/10 g body weight,
for 13 weeks) reduced body weight gain and inflammation
as well as improved glucose tolerance (174, 175). Apart from
in vivo studies, several in vitro studies using a 3T3-L1 cell
model also discovered that chlorophyll could regulate lipid
metabolism, including inhibition of adipocyte proliferation
and differentiation, suppression of adipogenesis and lipid
accumulation, and activation of browning (176–178).

Evidence from human and rodent models suggests that
chlorophyll can modulate the composition and diversity of gut
microbiota (179, 180). First, chlorophyll-rich thylakoid treatment
of healthy human subjects for 12 weeks elevated the abundance
of total bacteria, especially the Bacteriodes fragilis group (180).
Studies performed in HFD-fed mice also found that chlorophyll
increased the relative abundance of Blautia, Akkermansia,
and norank_f_Bacteroidales_S24-7_group and decreased the
relative abundance of Lactococcus and Lactobacillus (174, 175).
Moreover, chlorophyllin, an extract isolated from chlorophyll,
could alleviate hepatic fibrosis in mice through restoring the
gut microbiota, as evidenced by reduced ratio of Firmicutes-
to-Bacteroidetes populations (179). Therefore, chlorophyll, as
the most plentiful green pigment in nature, confers beneficial
effects on obesity and the mechanisms might be associated
with gut microbiota. However, further research is required to
examine the specific mechanisms of chlorophyll-gut microbiota-
lipid metabolism axis.

Others
Apart from the above-mentioned plant extracts, several
others are also proved to exert roles in mitigating obesity
via reprogramming gut microbiota. For instance, dietary
supplementation of Luffa cylindrica (L.) Roem (2 g kg−1

body weight, for 14 weeks) in diets-induced obese mice could
ameliorate adiposity and related metabolic complications via
increasing the abundance of SCFAs-producing bacteria and the
content of SCFAs (181).Coreopsis tinctoria, a multifunctional and
widely cultivated plant, could improve blood lipid metabolism
in hyperlipidemic models by normalizing the disorders of gut
microbiota (182). Garcinol supplementation (0.1% or 0.5%)
to HFD-fed mice for 13 weeks restored the gut dysbiosis, as
evidenced by the augmented Bacteroidetes-to-Firmicutes ratio,
which further dose-dependently improved plasma lipid profile
and reduced adipose tissue weight and body weight gain (183).
Similarly, diets-induced obese mice treated with a cranberry
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extract (200mg kg−1, for 8 weeks) exhibited improved insulin
resistance and ameliorated obesity through elevating the relative
richness of Akkermansia, a mucin-degrading bacterium (184).
Additionally, Nitzschia laevis extract supplementation (10 and
50 mg/kg/day, respectively) for 8 weeks to HFD-fed mice could
inhibit lipid accumulation and body weight gain, and the effects
were associated with the alteration of gut microbial richness and
diversity (185).

CONCLUSIONS

Obesity is one of the most serious public health problems
and has increased at an alarming rate worldwide. Currently,
various plant extracts, such as mulberry leaf extracts, policosanol,
CM, GTE, RES, GSPE, HON, CAP, KGM, and chlorophyll,
are demonstrated to regulate serum lipid profile, inflammatory
response, browning of WAT, insulin resistance, lipid and glucose
metabolism, and other metabolic processes, thus improving
obesity and related metabolic disorders (Table 1). A number
of experimental studies have elucidated the potential regulatory
mechanisms of beneficial effects of plant extracts on obesity and
related diseases are closely associated with alterations in host gut
microbiota. Hence, plant extracts seem to be promising agents
to treat obesity and even other related metabolic syndrome.
However, there are still many questions that need to be
elucidated: the regulatory efficiency of plant extracts from
different origins and conditions; the specific mechanisms of plant
extracts targeting gut microbiota; and the anti-obesity effects of

plant extracts in different animals and humans under different
metabolic conditions. In the near future, more efforts should
be made to fully understand the role of plant extracts in host
lipid dysmetabolism, thus providing better nutritional strategies
to control obesity and to maintain healthy life.
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