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Clinical Trial Simulations From a Model-Based
Meta-Analysis of Studies in Patients With
Advanced Hepatocellular Carcinoma Receiving
Antiangiogenic Therapy

ML Zierhut1*†, Y Chen2, YK Pithavala2, DJ Nickens1, O Valota3 and MA Amantea1

A mixed effect model describing median overall survival (mOS) in patients with advanced hepatocellular carcinoma (aHCC)
treated with antiangiogenic therapy (AAT) was developed from literature data. Data were extracted from 59 studies,
representing 4,813 patients. The final model included estimates of mOS after AAT (8.5 months) or placebo (7.1 months)
administration. The mOS increased 21% when the AAT was sorafenib (SOR) or 42% when locoregional therapy was
coadministered. The mOS decreased when patients received prior systemic therapy (#7%) or concomitant chemotherapy
(#4%) or the percentage of patients with hepatitis B increased (#�0.4%/%). Clinical trial simulations of a phase II comparative
trial predicted an mOS ratio (placebo:AAT) of 0.687 or 0.831, with a 65% or 22% probability of demonstrating superiority, for
SOR or other AATs, respectively. Additionally, the 95% confidence interval (CI) of the simulated median mOS ratio for non-
SOR AATs was similar to the 95% CI of the hazard ratio (HR) observed in the trial.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 274–282; doi:10.1002/psp4.12078; published online 15 May 2016.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? � Systematic reviews have been published for sorafenib
and other AATs in HCC, but no rigorous MBMA of mOS in a population receiving AAT was found in the literature.
• WHAT QUESTION DID THIS STUDY ADDRESS? � This analysis was conducted to develop a model describing the
range of mOS values reported in aHCC studies with systemic AATs. Clinical trial simulations were performed to help
interpret the results of a phase II trial and to guide future study designs. • WHAT THIS STUDY ADDS TO OUR KNOWL-
EDGE � This analysis utilized 59 clinical studies, representing 4,813 patients with aHCC, to identify seven predictors of
mOS and to quantify within and between trial variability. This analysis also highlighted the ability to perform MBMA-
based clinical trial simulations. • HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY AND THERAPEUTICS �
The approach used here could be adapted to improve the efficiency of any drug development program. It adds to the
growing body of work demonstrating the utility of MBMA in real time clinical development of investigational agents.

Hepatocellular carcinoma (HCC) is a highly vascular tumor

in which vascular recruitment and invasion greatly contrib-

ute to pathogenesis. The vascular endothelial growth factor

(VEGF) is thought to have an important role in HCC angio-

genesis; its expression has been confirmed in this disease

and has been associated with a poor prognosis.1 Agents

that inhibit angiogenesis pathways may increase the thera-

peutic options for patients with HCC with altered liver func-

tion, and may offer a potentially better safety profile in

comparison with chemotherapy agents. Systemic antiangio-

genic agents, including sorafenib (SOR) and bevacizumab,

have shown antitumor activity in HCC.2,3 Sorafenib is cur-

rently the only antiangiogenic therapy (AAT) approved to

treat advanced HCC (aHCC).
Axitinib (AG 013736; Inlyta) is an oral, potent, and selec-

tive inhibitor of VEGF receptors 1, 2, and 3. Axitinib has

been approved as second-line therapy for advanced renal

cell carcinoma in more than 70 countries (actual indication

varies). Based on the activity of several other VEGF inhibi-

tory agents in phase II HCC studies, and the nonclinical

activity of axitinib in HCC animal models,4 there was a

rationale for testing the safety and efficacy of axitinib in

patients with aHCC. Consequently, a phase II clinical trial

was conducted to compare the efficacy of axitinib plus best

supportive care (BSC) to placebo plus BSC in patients with

aHCC who had failed one prior AAT (NCT01210495).5 The

primary end point was overall survival (OS).
The model-based meta-analysis (MBMA) described here

was based on previously published information about trials

in patients with aHCC treated with systemic antiangiogenic

agents (not axitinib) that reported median overall survival

(mOS). Systematic reviews of antiangiogenic agents in

aHCC trials have been published;6,7 however, the current

MBMA was intended to be a more inclusive and thorough

analysis using clinical data available through late 2012, with

the additional incorporation of fixed and random effects.
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This MBMA was performed to help gain insight on the over-
all benefit of AAT in aHCC and to inform development deci-
sions for axitinib as a therapeutic option for aHCC.
Specifically, the primary objectives of this analysis were:
(1) to quantify the range of mOS values observed in stud-
ies with systemic AAT treatment in patients with aHCC;
(2) to identify significant predictors as sources of variabili-
ty of mOS; and (3) to better understand the probability of
demonstrating axitinib superiority in a phase II trial
(NCT01210495).

RESULTS
Data summary
The initial literature search identified 350 publications. Sup-
plementary Figure S1 summarizes how sources were sub-
sequently filtered during the literature review and data
extraction process. The resulting final dataset contained
data from 59 studies with 68 total treatment arms, repre-
senting a total of 4,813 patients.

Table 1 summarizes the indicator variables in the analy-
sis dataset by treatment arm and trial, whereas Table 2
summarizes the continuous variables in the analysis
dataset.

Final model
The initial fixed effect model structure for this analysis
incorporated only a single parameter (the intercept). An
additional parameter was added to distinguish between
arms receiving AAT and placebo (PBO), as AAT and PBO
are mutually exclusive and collectively exhaustive indicator
variables. All patients were assumed to have received BSC
in addition to any listed treatment, thus, BSC is implicitly
built into the model.

Forward covariate selection resulted in three variables
selected in the following order: SOR treatment indicator,
concomitant locoregional (LOC) therapy indicator, and per-
cent of population with the hepatitis B virus (HBV). LOC
therapy consisted of transarterial chemoembolization, SIR-
spheres, or cryoablation. Prior systemic therapy (PTx) and
concomitant chemotherapy (CTx) were considered to be
clinically relevant variables in this target population, and,
thus, indicators for these characteristics were included in

the model as additive covariates, even though they did not
meet the significance criteria. No covariates were removed
from the model during the backward elimination step.

The final model had the form:

ln mOSij
� �

5 hAAT � AAT1hPBO � PBO1gj

� �
1hSOR � SOR

1hLOC � LOC1hHBV � HBV1hPTx � PTx1hCTx � CTx1eij � SEij ;

where ln(mOSij) is the response in the i th treatment arm of
the j th trial; g is a random effect on study, having a normal
distribution with mean 0 and variance x2; SE is the
reported standard error of the response; and e is the resid-
ual error component, having a normal distribution with
mean 0 and variance r2. The subscript on the fixed effect
parameter (h) indicates the covariate associated with that
estimated effect; for example, hSOR represents the shift in
ln(mOS) associated with SOR treatment.

Table 1 Summary of indicator variables

Treatment

characteristic

No. of

arms

Study

characteristic

No. of

trials

PBO 6 Blinded 10

SOR 26 Phase II or III 43

Other AAT agenta 36 Single arm 49

Concomitant LOC 7 Randomized 9

Concomitant CTx 13 Asian study site 22

Combination therapyb 24

All second line patients 7

All first line patients 43

All 68 All 59

AAT, antiangiogenic therapy; CTx, chemotherapy; LOC, locoregional; PBO,

placebo; SOR, sorafenib.
aFourteen other AATs (ranging from 1–9 arms per AAT).
bOne triple therapy arm.

Table 2 Summary of continuous variables

Variables Value

Mean age (y) 60.2 (6.8)

Reported in 83% of arms 60 [47, 75]

Percent male 78.6 (9.7)

Reported in 79% of arms 80.1 [55, 94.7]

Publication year 2010.6 (1.70)

Reported in 100% of arms 2011 [2005, 2012]

Percent with Child-Pugh A disease 82.7 (16.1)

Reported in 80% of arms 83.9 [7.4, 100]

Percent with Child-Pugh B disease 13.7 (15.5)

Reported in 79% of arms 8.5 [0, 92.6]

Percent with aHCC 98.1 (6.0)

Reported in 99% of arms 100 [69, 100]

Percent with HBV 38.2 (26.1)

Reported in 70% of arms 34.0 [4.8, 100]

Percent with prior vascular invasion 35.2 (16.7)

Reported in 43% of arms 31.9 [0, 100]

Percent with ECOG 5 0 43.1 (17.4)

Reported in 58% of arms 36.3 [0, 100]

Percent with ECOG <2 90.8 (9.5)

Reported in 73% of arms 94.4 [76.8, 100]

Percent with prior CTx 20.5 (31.6)

Reported in 63% of arms 14.1 [0, 100]

Percent with prior systemic tx 16.6 (32.0)

Reported in 90% of arms 0 [0, 100]

No. of patients 70.8 (100.1)

Reported in 100% of arms 42 [10, 544]

mOS (months) 6.6 (3.3)

Reported in 100% of arms 9.4 [4.2, 20.8]

ln(mOS)a 2.18 (0.36)

Reported in 100% of arms 2.24 [1.44, 3.04]

SE of ln(mOS)b 0.186 (0.11)

Reported in 82% of arms 0.183 [0.045, 0.61]

Mean (SD).

Median [min, max].

aHCC, advanced hepatocellular carcinoma; CTx, chemotherapy; ECOG,

Eastern Cooperative Oncology Group; HBV, hepatitis B virus; mOS, median

overall survival; tx, treatment.
aResponse variable used in model (dependent variable).
bUsed for weighting of residual error term, e.
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Table 3 shows the final MBMA parameter estimates.
These parameters show that, for a typical population (no

prior therapy, 34% of patients with HBV), monotherapy with
a non-SOR AAT leads to an average 1.43-month benefit in

mOS compared to PBO (8.49 vs. 7.06 months). This bene-
fit is increased by 21% if the AAT is SOR and by 42% if the

population receives concomitant LOC therapy. The mOS
decreases by �0.4% for every 1% increase in HBV-positive
patients. Additionally, mOS decreases if the population has

received prior therapy (6.7% decrease) or if the population
receives concomitant CTx (4% decrease); however, these

parameters were not significant, and the 95% confidence
intervals (CIs) of their estimates spanned both beneficial

and detrimental effects. Additionally, with r fixed to one, no
other fixed effect parameter estimate changed by >10%

(range, 29.7 to 5.8%) and x decreased by �20%, com-
pared to estimating r at 0.568.

Model evaluation
Selected residual-based diagnostics are shown in Figure 1.

The individual predictions and observed values seem to fall
close to the line of unity, the magnitudes of the population
weighted residual (WRES) values are all less than three,

with no apparent structure relative to population predicted
values and the quantile-quantile plots suggest that the

residual variability and between-study variability terms are
well approximated using a normal distribution.

Simulation-based diagnostics are shown in Figure 2.

Figure 2a summarizes the observed OS for each trial arm
(median and 95% CI) compared to the distribution of

respective mOS derived from the simulations (median and
95% prediction interval). Figure 2b shows the results from

deterministic meta-analyses using the observed dataset
compared to the distribution of results from the simulated

datasets. Similar to the residual-based diagnostics, these
plots suggest that the model is adequately describing the

observed data.
All pairwise correlations between parameter estimates

were <0.8 and the condition number (ratio of largest to

smallest eigenvalues) was <20, suggesting model structure
was adequate to describe the observed data. Publication

bias was assessed via funnel plots of model residual values

(not shown), as well as with the metabias() function within

the “meta” library of the R programming language. These

were assessed for all data (P value 5 0.22), as well as sep-

arately for SOR-containing treatment arms (P value 5 0.22)

and single arm trials (P value 5 0.70). No significant publi-

cation bias was found.

Clinical trial simulations
Because it was not known if SOR or other AATs would be

more appropriate to predict how the target patient popula-

tion would respond to axitinib, two sets of simulations were

performed. One simulation applied the effects of a non-

SOR AAT, whereas the other incorporated effects of SOR.

All other model parameters were identical between the two

sets of simulations. Figure 3 shows the resulting distribu-

tions for non-SOR therapy (Figure 3a,c,e) and SOR ther-

apy (Figure 3b,d,f).
Based on these simulations, in a population similar to

this phase II trial, mOS (95% CI) is expected to be 6.16

(3.58–10.6), 7.40 (4.48–12.3), and 8.95 (5.38–14.9) months

after treatment with BSC plus PBO, non-SOR AAT, and

SOR, respectively. Additionally, the ratio of mOS values

may be used to approximate the expected OS hazard ratio

(HR), assuming the survival curve for each treatment arm

follows an exponential distribution. This assumption results

in HRs (95% CI) of 0.831 (0.606–1.14) and 0.687 (0.502–

0.943) for PBO compared to non-SOR AAT and SOR,

respectively. Furthermore, these simulations suggest that if

axitinib were found to be similar to other non-SOR AATs,

this phase II trial would have approximately a 22% probabil-

ity of demonstrating axitinib’s superiority to PBO. If axitinib

were similar to SOR, the trial would have approximately a

65% chance of demonstrating superiority. The “true” mOS

ratio (95% CI) of PBO compared to AAT was simulated to

be 0.831 (0.774–0.891) and 0.687 (0.640–0.738) for non-

SOR therapy and SOR therapy, respectively, suggesting

any AAT (SOR or not) is superior to PBO. In order for this

trial to have an 80% probability of significantly demonstrat-

ing superiority, simulations suggest that at least 1,221

patients (814 active, 407 PBO) or 282 patients (188 active,

94 PBO) would be needed if axitinib were similar to a non-

SOR AAT or SOR, respectively.
Actual OS results from this phase II trial were available

after this MBMA was performed and were presented at the

European Society for Medical Oncology annual meeting in

2014.8 In this trial, patients in the axitinib arm had an mOS

(95% CI) of 12.7 (10.2–14.9) months, whereas patients

receiving PBO had an mOS (95% CI) of 9.7 (5.9–11.8)

months. This difference was not statistically significant, with

a HR of 0.870 (95% CI 5 0.620–1.22; P 5 0.211). Although

the observed mOS values do not seem to be similar to the

simulations, the mOS ratio of the non-SOR simulation is

similar to the HR observed in the trial. Specifically, the

median 2.5th and 97.5th percentiles of the simulated trial

mOS ratio (0.609 and 1.13, respectively) were similar to

the observed 95% CI of the HR (0.620–1.22) and the

observed HR (0.870) is contained within the 95% CI of the

“true” mOS ratio (0.774–0.891).

Table 3 Summary of final model parameter estimates

Parameter Estimate 95% CIa

exp(hAAT) [mo] 8.49 (7.72–9.36)

exp(hPBO) [mo] 7.06 (6.28–7.86)

exp(hSOR) [%] 121 (114–128)

exp(hLOC) [%] 142 (122–165)

hHBV [d.u./%]b 20.00418 (27.02, 21.34) 3 1023

exp(hPTx)
c [%] 93.3 (74.0–118)

exp(hCTx)
c [%] 96.0 (80.7–114)

xd [shrinkage, %] 0.216 [21.2%] (0.166–0.266)

rd [shrinkage, %] 1 (fixed) [41.5%] –

AAT, antiangiogenic therapy; CI, confidence interval; CTx, chemotherapy;

HBV, median-centered percent of hepatitis B-positive patients; LOC, locore-

gional therapy; PBO, placebo; PTx, prior systemic therapy; SOR, sorafenib.
a95% CI calculated as parameter estimate 6 1.96�SE.
bParameter in log-domain, thus unitless (d.u. 5 dimensionless unit).
cParameter forced into model.
dx and r are reported as SDs of random variables g and e, respectively.
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DISCUSSION

The purpose of this analysis was to gain a deeper under-
standing of the benefit of systemic AAT in patients with
aHCC, based on aggregate data in published literature. A
mixed effects model was developed to describe the variabil-
ity of mOS reported in various literature sources. This
model was found to adequately describe the literature data
and was subsequently used to simulate mOS in a phase II
trial in order to better understand the probability of demon-
strating axitinib superiority to PBO.

The final model consisted of seven fixed effect parame-
ters (hAAT, hPBO, hSOR, hLOC, hHBV, hPTx, and hCTx) and two

random effect parameters (g and e). Both residual- and
simulation-based diagnostics indicated that this model
adequately described the observed data. Five of the fixed
effect parameters were indicator variables for current treat-
ment characteristics (PBO, AAT, SOR, LOC, and CTx), and
two parameters described the differences in mOS based on
baseline population characteristics (HBV and PTx). Addi-
tionally, five of the seven fixed effect parameters were
shown to be statistically significant based on the threshold
defined in the backward covariate elimination step. The
remaining two parameters (PTx and CTx) were forced into
the model based on historical clinical relevance in the target
patient population. These forced-in parameters were not

Figure 1 Residual-based diagnostic plots for the final model showing (a) observed response vs. predicted individual (treatment arm)
response, (b) population weighted residual (WRES) vs. population predicted response and quantile-quantile plots of (c) between-
subject variability random effects (g), and (d) population WRES. Symbol size represents the weighting by reported SE. Red dashed
lines in (c) and (d) represent the 95% confidence interval for the pointwise confidence envelope.
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Figure 2 Simulation-based diagnostic plots for the final model showing (a) distributions of simulated data compared to observed data
and (b) distributions of deterministic meta-analyses from simulated data and observed data. For (a), each datapoint is labeled by the
source author, publication year, and treatment administered; symbol size represents the weighting by reported SE; red symbols repre-
sent simulated data, black symbols represent observed data. For (b), dashed lines represent deterministic meta-analysis results based
on observed data, whereas solid lines and distributions represent results based on simulated data; black color represents the median
result of the deterministic meta-analysis, with simulated distribution in gray; blue color represents the resulting 2.5th and 97.5th percen-
tiles, with simulated distributions in light blue. CI, confidence interval; OS, overall survival; PI, prediction intervals.
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Figure 3 Results from phase II clinical trial simulations. Distributions are shown for both non-sorafenib (SOR) therapy (antiangiogenic
therapy (AAT); (a, c, and e) and SOR therapy (b, d, and f), summarized as the distributions of median overall survival (mOS) in each
treatment arm within the trial (a and b), the upper bound on the 95% confidence interval (CI) of the ratio of mOS values between treat-
ment arms (placebo [PBO]:active) (c and d) and the expected ratio of mOS values for a trial with infinite patients (“true” mOS ratio; e
and f). For (a) and (b), red represents placebo arm and blue represents active arm. For (c) and (d), the dashed vertical line represents
the median upper limit of the 95% CI, the red vertical line represents the significance threshold and the probability of success is calcu-
lated as the relative area of the distribution to the left of the significance threshold. For (e) and (f), the dashed vertical line represents
the “true” mOS ratio between the two arms, where the influence of number of patients in the trial has been removed.
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highly influential, but they were retained to account for any
potential difference in the clinical trial simulations. Because
these two parameters were not significant, one should be
cautious when drawing conclusions from their apparent
effects, particularly when interpreting the apparent negative
impact of concomitant CTx. It is also important to remem-
ber, however, that the apparent negative impact of CTx is
in addition to the benefit of AAT. That is, it may be possible
that CTx removes some benefit of AAT when administered
concomitantly.

The five parameters that describe a patient’s current treat-
ment (PBO, AAT, SOR, LOC, and CTx) may suggest what
an optimal treatment plan may look like. It seems that AAT
added to BSC is more beneficial than BSC alone (or
BSC 1 PBO). Specifically, SOR seems to have the most
benefit of the antiangiogenic agents explored here. Addition-
ally, concomitant locoregional therapy seems to be highly
beneficial, whereas CTx may not have any benefit when
administered with AAT. The two parameters that describe
the baseline status of patients in a trial (HBV and PTx) may
be used to aid in prognoses. Trials that have more patients
with HBV tend to have a worse mOS, suggesting that a
patient with HBV may be less likely to respond to AAT com-
pared to a patient without HBV. Finally, whether patients in a
trial had received prior systemic therapy or not does not
seem to be a predictive factor for mOS.

Clinical trial simulations suggested that, for a patient pop-
ulation with aHCC, axitinib may have a similar efficacy
(mOS benefit) to non-SOR AATs, with a low probability of
demonstrating superiority to PBO in this phase II trial. Sim-
ulations also suggested that the trial would need 1,221
patients to have an 80% probability of demonstrating supe-
riority. If axitinib were similar to SOR, 282 patients would
be sufficient to achieve 80% probability of demonstrating
superiority, highlighting the 21% increase in mOS compared
to non-SOR AATs. However, after removing the influence of
patient number, the “true” probability that a non-SOR AAT
was superior to PBO approaches 100%.

There are some important limitations to the MBMA meth-
odology as applied to clinical trial simulations. First, the data-
set was comprised of summaries of observed data,
aggregated to the level of the trial arm; thus, each data
record represented an entire trial arm. Covariate relationships
at this aggregate level may not be the same as at a patient
level, and important relationships may have not been
included in the final model. Second, there were not many
treatment arms in which the population received PBO (n 5 6)
or the entire population had received prior therapy (n 5 7).
These were important factors for the clinical trial simulations,
and their true impact may not have been fully accounted for.
Third, most of the studies included in this dataset were single
arm trials (49/59); thus, simulations of comparative trials
based on this model may have limited inferential value.
Despite these limitations, MBMA does demonstrate the ability
to gain insight into a development program prior to obtaining
any direct clinical results. Results from MBMA-based clinical
trial simulations may be beneficial to guide trial design, but
may be most informative in interpreting clinical trial results.

The observed results from the phase II trial of interest did not
seem to be representative of prior clinical trials of AATs in simi-

lar populations when comparing mOS values in the trial arms.
One possible explanation for this perceived discrepancy was
that BSC has been improving over time, leading to an improve-
ment in mOS of placebo arms as well as active treatment arms
(with a constant relative benefit). This may help explain why the
clinical trial simulation results showed an mOS ratio (and 95%
CI) similar to the HR observed in this trial, but lower mOS val-
ues. Publication year was prospectively investigated as a poten-
tial predictor of mOS and was not found to be significant
(change in minimum objective function [DMOF] 5 20.449).
This does not necessarily mean that BSC has not been improv-
ing over time, just that the dataset used to develop this model
does not show evidence of this relationship. Nevertheless, this
model can be continuously updated as new data become avail-
able to improve predictive capabilities.

Observed results from this phase II trial suggested that
patients at Asian sites may benefit more from axitinib than
patients at non-Asian sites.8 Asian geography was prospec-
tively investigated as a potential covariate in this MBMA, but
was not found to be significant. After the trial showed a posi-
tive trend in OS due to Asian geography, most notably in the
PBO arm, trial location was investigated further as a covariate
unique to PBO treatment. The trial reported mOS for active
vs. placebo arms as 13.5 vs. 6.3 months (HR 5 0.809) and
12.3 vs. 11.2 months (HR 5 0.971) for patients in Asian and
non-Asian sites, respectively. Although Asian geography was
not found to be a significant covariate on PBO treatment in
the MBMA, a positive trend did exist (DMOF 5 22.63). This
relationship indicated a similar trend to that observed in the
trial, with the model-predicted mOS ratio for Asian and non-
Asian geographies at 0.821 and 0.902, respectively.

The MBMA performed here was able to adequately
describe observed mOS values in 59 published clinical stud-
ies. Simulations based on this model were used to estimate
the probability of a phase II trial’s success and to help put
observed trial results in context of previously published trials.
MBMA-based simulations could further enhance drug devel-
opment in multiple ways. Specifically, this approach could be
utilized to more efficiently design prospective clinical trials
when clinical data are not yet available or prevalent. This
approach could also be used to create a virtual comparator
arm, or a hybrid comparator arm, incorporating the MBMA as
a Bayesian prior, and thus reducing the number of patients
needed to achieve the necessary statistical power. Finally,
outputs from this approach could be integrated into other,
non-clinically focused models, such as cost-effectiveness
models or financial forecasting models, potentially leading to
improved commercial and financial strategies.

METHODS
Literature search and review
The following databases were included during the literature
search: OVID Medline, Embase, Embase Alerts, and Med-
line in Process. Studies with patients with aHCC were
included regardless of randomization, blinding, or line of
treatment, provided that AAT was administered (both single
agent and combination regimens included). PBO arms were
included only if the active arm within that trial received AAT.
Treatments of interest were inhibitors of VEGF receptors or
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ligands and inhibitors of epidermal growth factor receptor.

The primary end point of interest was mOS.
Retrospective analyses, study protocols, reviews, case

studies, trials without AAT, duplicate trials, inaccessible pub-

lications, and study arms not reporting mOS were removed

from the initial list of sources. Treatment arms were also

excluded from the analysis dataset if they had population

characteristics that were deemed to be potentially con-

founding to a model used to simulate the phase II trial of

interest.5 Additional relevant publications not found in the

original search were subsequently added. The resulting list

of publications was sent to an external vendor (GVK Bio-

sciences Private Limited, Hyderabad, India) for data extrac-

tion of prospectively identified variables.

Data processing
After data extraction, a quality control review was per-

formed to ensure the accuracy of data (e.g., numeric end

points used in the analysis were compared for accuracy

against the literature sources).
Data manipulations and creation of derived variables were

performed using the R programming language, with “gdata”

and “reshape” libraries (version 2.15.2; R Foundation for Sta-

tistical Computing, Vienna, Austria). Variables were removed

from the analysis dataset if values were not reported for at

least 65% of the patients represented in the dataset. A 65%

threshold was empirically chosen to include the most data with

a minimal potential impact to model development. Variables

were imputed, when missing, as the average among the treat-

ment arms reporting values, weighted by patient number.
The mOS was assumed to have a log-normal distribution;

thus, the modeled response variable was ln(mOS). Resid-

ual variability in the model was weighted by the SE of

ln(mOS) in each treatment arm; however, SE was not

directly reported in the literature. Data sources reported

variability in OS as 95% CI or ranges, or they did not report

any OS variability. The SE was derived for each (ith) treat-

ment arm according to the following computations:

• If 95% CI was reported : SEln ðmOSÞ;i5
p97:5;i 2p2:5;i

3:92

where px represents the natural log (ln) of the reported

xth confidence limit and 3.92 represents the number of

SEs spanned by the 95% CI.
• If range min; maxð Þ was reported : SEln ðmOSÞ; i 5

ln ðmax iÞ2ln ðmin iÞ
X �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Npatients;i

p ;

where X 5 3, 4, 5, or 6 if Npatients was <10, between 11

and 25, between 26 and 100, or >100, respectively.9

• If no variability was reported : SEln ðmOSÞ;j 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
medianDðSD2

ln ðmOSÞÞ
Npatients;j

s
;

where SDln ðmOSÞ5SEln ðmOSÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Npatients

p
, medianD repre-

sents the median of only the treatment arms with calcu-

lable SE and j indexes all treatment arms where no OS

variability was reported.

Model building
A model with fixed and random effects was used to

describe the range of mOS values. This analysis used pub-

lished aggregate data (at the study arm level) to identify
significant predictors of mOS. These predictors, or covari-
ates, were added as fixed effects (hn) to reduce the random
variability in the range of responses. Model building was
performed using the R programming language with “nlme”
library and final model parameters were estimated using
NONMEM software, first order conditional estimation
method with interaction (version 7.2; Icon Development Sol-
utions, Ellicott City, MD).

Initial model structure utilized a single fixed effect param-
eter representing the typical value of all responses (the
intercept; h1). Additive residual variability was weighted by
the SE reported in each study arm. An additional additive
random effect was incorporated into the base model to
account for between-study variability on the intercept.

Covariate effects were necessary to describe any differ-
ence in responses between treatment arms in the same
study. Because the response variable was log-transformed,
the additive covariates were interpreted as proportional to
mOS. All continuous covariates were centered to the
median value to simplify interpretation of parameter esti-
mates. The following equation demonstrates how the fixed
and random effects were incorporated:

ln mOSij
� �

5 h11gj

� �
1
X

k

hCcov ;k � Ccovijk 2Ccovmed;k
� �

1
X

l

hBcov ;l � Bcovijl 1eij � SEij ;

where hCcov,k represents the rate of change in response rel-
ative to the kth median-centered continuous covariate
(Ccov); Ccovmed,k is the median of Ccovk and hBcov,l repre-
sents the shift in response for populations where the lth

binary covariate (Bcov) has a value of one.
Covariates were introduced using a stepwise forward

selection algorithm with a likelihood ratio test based on
DMOF. The significance level (a) chosen for covariate entry
into the model was 0.05 (DMOF of 3.84). All available cova-
riates were tested in the forward selection process, including
but not limited to, indicators for treatment characteristics
(e.g., antiangiogenic agent, class of agent, concomitant
LOC therapy, and CTx) and trial characteristics (e.g.,
blinded, randomized, and phase II or later); percent of popu-
lation with a specific characteristic (e.g., Child-Pugh B
score, HBV, and male), and other characteristics (e.g., publi-
cation year or median age). Antiangiogenic agents tested
were: brivanib, vandetanib, bevacizumab, erlotinib, lapatinib,
sunitinib, sorafenib, and eight agents grouped as “other”
(cabozantinib, cetuximab, cediranib, PTK787/ZK222584,
imatinib, linifanib, tivantinib, and TSU-68).

After the forward selection procedure, the resulting model
was subjected to a backward elimination algorithm using a
significance level of a 5 0.01 (DMOF 5 6.63). This process
was repeated until all the remaining covariates, when
excluded one at a time, resulted in significant likelihood ratio
tests (P< 0.01). This model was considered the final model.

Because the residual error term was scaled by the
observed SE of the response (e�SE), a value of one was
considered the lower limit for the estimated variance of e
(r2). An estimated value of r less than one would indicate
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that the model exhibited a lower variability in OS compared
to what was observed in the actual study arms. In this sit-
uation, the r term was fixed to one, and the final parame-
ters were re-estimated using NONMEM.

Model evaluation
The final model was assessed for adequacy using both
residual- and simulation-based techniques. Residual-based
model diagnostics consisted of graphs of parameters
derived from model fitting and empirical Bayesian esti-
mates. Simulation-based diagnostics included assessments
of parameter distributions derived from multiple simulations
of the original dataset.

Residual-based diagnostics consisted of the following:
observed response vs. predicted treatment arm (individual)
response and observed response vs. the predicted central
tendency (population) response; individual WRES vs. pre-
dicted individual response; population WRES vs. population
predicted response; and histograms and quantile-quantile
plots of individual WRES, population WRES, and random
effects (g). Publication bias was assessed via funnel plots
of model residual values and with the metabias() function
within the “meta” library of the R programming language.

The final model was used to simulate the original analy-
sis dataset 10,000 times, including uncertainty in parame-
ter estimates (calculated from the Hessian matrix).
Simulation-based diagnostics were derived from these
simulated datasets. The median and 2.5th and 97.5th per-
centiles of each simulated mOS value were compared to
the observed mOS and 95% CI for each treatment arm.
Additionally, a deterministic meta-analysis was performed
on each of the 10,000 simulated datasets (rma() function
in metafor R-library). This meta-analysis yielded three
parameters (median and 2.5th and 97.5th percentiles) per
simulated dataset for comparison with the observed deter-
ministic meta-analysis result. Density plots were used to
compare the simulated distributions of these three parame-
ters to the respective parameters obtained using the
observed data.

Clinical trial simulations
The final model was used to simulate results from a phase
II trial in patients with aHCC (NCT01210495).5 In these
simulations, it was assumed that axitinib would perform at
least as well as other tested AATs, as measured by mOS.
This assumption was based on prior knowledge that the
VEGF receptor inhibition potency for axitinib is at least
equivalent to other AATs. Relevant trial characteristics in
the simulations included the following: 132 patients received
active therapy, 66 patients received PBO, 50% of patients
were HBV-positive, all patients had received prior systemic
therapy, and no patient received concomitant LOC therapy
or CTx. Results were simulated for 1,000,000 trials and the
distribution of mOS in each treatment arm (active and
PBO) was assessed, along with the ratio of mOS values
(PBO:active). The distribution of the upper 97.5th percentile

(upper bound of 95% CI) of the mOS ratio was used to

determine the probability that the active arm would demon-

strate an improved response with statistical significance.
All simulations were repeated after removing residual vari-

ability, while retaining between-study variability and uncer-

tainty, producing results independent of trial arm size. The

distribution of mOS from these simulations was assumed to

represent the “truth,” or what is known based on the final

model. The distribution of the “true” mOS ratio was used to

assess the probability that a patient population would truly

benefit from active treatment compared to PBO. In order to

determine the minimum number of patients needed to

achieve an 80% probability of trial, all trial simulations were

repeated using various patient numbers per treatment arm.
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