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Abstract
The algorithm of building up a model for the biological activity of peptides as a mathematical function of a sequence of 
amino acids is suggested. The general scheme is the following: The total set of available data is distributed into the active 
training set, passive training set, calibration set, and validation set. The training (both active and passive) and calibration sets 
are a system of generation of a model of biological activity where each amino acid obtains special correlation weight. The 
numerical data on the correlation weights calculated by the Monte Carlo method using the CORAL software (http://www.
insil​ico.eu/coral​). The target function aimed to give the best result for the calibration set (not for the training set). The final 
checkup of the model is carried out with data on the validation set (peptides, which are not visible during the creation of the 
model). Described computational experiments confirm the ability of the approach to be a tool for the design of predictive 
models for the biological activity of peptides (expressed by pIC50).
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1  Introduction

History of mathematical chemistry contains contributions 
of many outstanding scientists, such as A.T. Balaban, M. 
Randić, I. Gutman, N.Trinajstić, S.C. Basak, R. Carbó-
Dorca, as well as many others [1–15]. Mathematical chem-
istry [1] is the area of research engaged in novel applications 
of mathematics to chemistry, biochemistry, and biology. It 
concerns itself principally with the mathematical modeling 
of complex molecular phenomena [2].

Most areas of research in mathematical chemistry include 
chemical graph theory, which deals with the development of 
topological descriptors which find application in quantitative 

structure–property relationships [3, 4], as well as chemical 
aspects of group theory, which finds applications in stereo-
chemistry and quantum chemistry [5, 6].

Chemoinformatics is a relatively young field of natu-
ral sciences. By analogy with "in viva" and "in vitro," the 
results of cheminformatics denominate as "in silico" [7].

It is to be noted, contributions of Prof. R. Carbó-Dorca, 
related to the development of cheminformatics tools applied 
to quantum mechanical theoretical problems, which gave 
the possibility to solve chemical problems, like catalysis 
and reactivity, by simple computational schemes [8–12]. 
Chemoinformatic gradually extends to solve tasks in fields 
of theoretical chemistry, computational chemistry, and mod-
eling [13–15].

Apply mathematical methods to solve the tasks of chem-
istry and biochemistry can be effective [16, 17]. Peptides 
are important objects of chemistry, biochemistry, and medi-
cine. Most interest in using proteins and peptides is caused 
by their application in drug design [18]. The amino acid 
residues of epitope-peptide substrate and SARS corona-
virus main protease are interacting. Hence, the affinity of 
epitope-peptides with class I MHC (major histocompatibility 
complex) molecules can be used to development of antiviral 
agents, e.g., toward coronaviruses [18].
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A fundamentally widely accepted science principle to 
understand complex systems is “Everything should be made 
as simple as possible, but no simpler” [19]. Perhaps, the 
approach used here cannot be adequately evaluated using 
the above principle, since a simpler method is not possible, 
or at least a simpler approach has not yet been described in 
the literature [20–23]. To state the approach “simpler” than 
“simple” is not correct, since the approach gives quite good 
models [20–23]. The model of biological activity of peptides 
described here is based on sequences of amino acids, repre-
sented by 1-letter codes (Table 1).

The aim of the present study is the estimation of the 
CORAL software to provide a satisfactory model for the 
bioactivity of peptides. Representation of peptides via a 
sequence of amino acids is like a well-known simplified 
molecular input-line entry system (SMILES) [24]. Conse-
quently, the CORAL software (www.insil​ico.eu/coral​) that 
is oriented to build up quantitative structure–activity rela-
tionships (QSARs) using the SMILES representation can 
be a tool to build up a predictive model for the activity of 
peptides as a function of sequences of the 1-letter codes of 
corresponding amino acids [25]. Factually, the sequences of 
amino acids represented by 1-letter codes are quasi-SMILES 
[20, 21].

2 � Method

2.1 � Data

The numerical data on the biological activity of epitope-
peptides with class I MHC (major histocompatibility com-
plex) molecules taken from the literature [18]. The endpoint 
expressed via a negative logarithm of half-maximal inhibi-
tory concentration IC50 (pIC50). Table 1 contains sequences 
of amino acids represent epitope-peptides studied here.

The available epitope-peptides were randomly distrib-
uted into the active training set (25%), passive training set 
(25%), calibration set (25%), and validation set (25%). Each 
above set has a defined task. The task for the active train-
ing set is to build up optimal correlation weights for the 
optimal descriptor. The task for the passive training set is to 
checkup whether current correlation weights (and the opti-
mal descriptor) are satisfactory for peptides, which are not 
involved in the calculation of the correlation weights. The 
task for the calibration set is to detect the moment of the 
begin overtraining. The task of peptides from the validation 
set is the final estimation of the predictive potential of the 
model.

Table 1   Structures and 1-letter codes for Amino acids

Amino acid 1-letter code Structure

Alanine A

Arginine R

Asparagine N

Aspartic Acid D

Cysteine C

Glutamic acid E

Glutamine Q

Glycine G

Histidine H

Isoleucine I

Leucine L

Lysine K

Methionine M

Phenylalanine F

Proline P

Serine S

Threonine T

Tryptophan W

Tyrosine Y

http://www.insilico.eu/coral
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2.2 � Quantitative structure–activity relationships 
(QSARs)

The CORAL software provides models, which are linear 
one-variable correlations obtained by the Monte Carlo 
method (http://www.insil​ico.eu/coral​). The generalized 
representation of the model for the biological activity of 
peptides is the following one-variable correlation:

The DCW(T,N) is the descriptor of correlation weights 
(DCW). The C0 and C1 are regression coefficients. The T and N 
are parameters of the Monte Carlo optimization discussed below.

2.3 � The descriptor of correlation weights (DCW)

The descriptors applied to QSAR analysis are calculated as 
the following:

The Ak is a 1-letter code of amino acid; CW(Ak) is the cor-
relation weights for the Ak.

The T is an integer to define two classes (i) the rare and (ii) 
non-rare. If the frequency of Ak in the active training set is less 
than T, the Ak is rare, and the CW(Ak) = 0 (i.e., the Ak is removed 
from the modeling process). Thus, the model is based on cor-
relation weights solely non-rare in the active training set amino 
acids. The N is the number of iterations for the Monte Carlo 
optimization. The T = T* and N = N* are values which provide 
the best statistical quality of the model for the calibration set.

2.4 � Monte Carlo optimization

The scheme of the Monte Carlo optimization is described 
in [23, 25]. The essence of this version of the optimization 
procedure is the application of the Index of ideality of cor-
relation (IIC). Models for the inhibitory activity of peptides 
built up here are build up to apply two different target func-
tions TF1 and TF2:

(1)pIC50 = C0 + C1 × DCW(T ,N)

(2)DCW(T∗,N∗) =
∑

CW
(
Ak

)

(3)TF1 = RAT + RPT − ||RAT − RPT
|| ∗ 0.1

(4)TF2 = TF1 + IICCLB ∗ 0.5

The RAT and RPT are the correlation coefficient between 
observed and predicted endpoints for the active training set 
and passive training set, respectively.

The IICCLB is calculated with data on the calibration set 
as the following:

The observed and calculated are the corresponding values 
of pIC50.

Figure 1 contains the comparison of histories of the 
Monte Carlo optimizations with target functions TF1 and 
TF2. One can see, the TF2 seems preferable because factually 
the decrease in the statistical quality for calibration set and 
validation set is not observed, whereas in the case of TF1 the 
decrease in the statistical quality for the calibration set and 
validation set is observed.

2.5 � Domain of applicability

The domain of applicability for the CORAL model is defined 
according to the distribution of SMILES attributes in the 
active training set and calibration set as two steps:

Step 1: the definition of the statistical defect (dk) for each 
SMILES attribute involved in building up of a model:

where P(Ak) and P’(Ak) are the probability of Ak in the train-
ing and calibration sets, respectively.

N(Ak) and N’(Ak) are frequencies of Ak in the training and 
calibration sets, respectively.

Step 2: the calculation for all substances the statistical 
SMILES-defect (Dj):

where NA is the number of non-blocked SMILES attributes 
in the SMILES.

A substance falls in the domain of applicability if

(5)IICCLB = rCLB
min(−MAECLB,

+MAECLB)

max(−MAECLB,
+MAECLB)

(6)

−MAECLB =
1

−N

−N∑

k=1

|
|Δk

|
|,Δk ≤ 0; −N is the number of Δk ≤ 0

(7)

+MAECLB =
1

+N

+N∑

k=1

|
|Δk

|
|, Δk ≤ 0; +N is the number ofΔk ≤ 0

(8)Δk = observedk − calculatedk

(9)dk =
||P(Ak) − P�(Ak)

||
N
(
Ak

)
+ N

(
Ak

)

(10)Dj =

NA∑

k=1

dk

Table 1   (continued)

Amino acid 1-letter code Structure

Valine V

http://www.insilico.eu/coral


	 Theoretical Chemistry Accounts (2021) 140:15

1 3

15  Page 4 of 8

where D is the average of the statistical SMILES-defect for 
the training set.

The same operation can be carried out with the sequences 
of 1-letter codes of amino acids, if instead of Ak defined as 
a SMILES attribute, one examined Ak defined as a 1-letter 
code of corresponding amino acids.

3 � Results and discussion

The models obtained for three random splits into the training 
set (which is association of the active and passive training 
sets together with the calibration set) and validation set are 
the following:

Target Function TF1

Target Function TF2

(11)Dj < 2 ∗ D

(12)pIC50 = 5.0637012 (± 0.3150527) + 0.9790357 (± 0.1064904) ∗ DCW(1, 3)

(13)pIC50 = 5.3015843(± 0.1783155) + 1.4109089(± 0.1001528) ∗ DCW(1, 3)

(14)pIC50 = 2.6879582(± 0.2459626) + 1.0011131(± 0.0482456) ∗ DCW(1, 3)

(15)pIC50 = 4.0179522(± 0.5296001) + 0.4553542(± 0.0634366) ∗ DCW(1, 15)

(16)pIC50 = 4.8689021(± 0.3087049) + 0.6850851(± 0.0712025) ∗ DCW(1, 15)

(17)pIC50 = 5.3828941(± 0.4250702) + 0.7649124(± 0.1215301) ∗ DCW(1, 15)

Table 2 contains the statistical characteristics of the mod-
els calculated with Eqs. 12–17.

One can see, the predictive potential of models calculated 
using the IIC is better.

Having numerical data on correlation weights of different 
amino acids obtained in several runs of the optimization, one 
can detect the amino acids of two classes: (1) amino acids 
with stable positive correlation weights, these are promoters 
of increase of pIC50; and (2) amino acids with stable nega-
tive correlation weights, these are promoters of decrease of 
pIC50. Thus, the approach gives the statistical mechanistic 
interpretation of the models. Table 3 contains a collection 
of amino acids which are promoters of increase/decrease 
for pIC50. It is to be noted, the prevalence of corresponding 
amino acids also should be considering.

Table 4 contains experimental and calculated with Eq. 17 
pIC50. Table 5 contains the numerical data on the correlation 

weights of amino acids to calculate the model with Eq. 17.

Fig. 1   Histories of the Monte 
Carlo optimization (Split 1) 
with target functions TF1 and 
TF2
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Table 6 contains an example of calculation DCW(1,15) 
for epitope-peptide “WLEPGPVTA” together with the cal-
culation of corresponding pIC50 using Eq. 17.

Thus, the described approach can be a tool to build up 
models for pIC50 for epitope-peptides.

Table 2   Statistical quality of 
models for three random splits

Each set contains ten peptides
The best model is indicated by bold

Split Set R2 Q2 IIC RMSE

Optimization with TF1

1 Active training 0.7625 0.5558 0.8732 0.360
Passive training 0.8250 0.7065 0.6739 0.395
Calibration 0.6012 0.4017 0.3695 0.506
Validation 0.6220 0.4816 0.490

2 Active training 0.8205 0.7052 0.9058 0.333
Passive training 0.9165 0.8301 0.4709 0.374
Calibration 0.5223 0.2836 0.4258 0.592
Validation 0.5481 0.3476 0.515

3 Active training 0.8846 0.8229 0.9406 0.265
Passive training 0.7283 0.5982 0.8264 0.599
Calibration 0.5053 0.2612 0.3745 0.927
Validation 0.5900 0.3277 0.700
Optimization with TF2

1 Active training 0.6416 0.3506 0.5340 0.442
Passive training 0.7231 0.5868 0.4120 0.507
Calibration 0.9486 0.9157 0.9679 0.142
Validation 0.7766 0.6298 0.306

2 Active training 0.6976 0.4905 0.5568 0.432
Passive training 0.9543 0.9192 0.8516 0.332
Calibration 0.7102 0.5447 0.8406 0.337
Validation 0.7856 0.6596 0.270

3 Active training 0.5326 0.1846 0.7298 0.533
Passive training 0.8128 0.6796 0.6251 0.562
Calibration 0.8743 0.8139 0.8827 0.214
Validation 0.7909 0.6721 0.248

Table 3   Amino acids which are 
promoters of increase / decrease 
for pIC50 for examined peptides

NAT, NPT, and NC are the frequencies of an amino acid in the active training set, passive training set, and 
the calibration set, respectively

Comment Ak CWsProbe 1 CWsProbe 2 CWsProbe 3 NAT NPT NC dk

Increase V………. 0.47695 0.30991 0.26611 10 10 10 0.0000
L………. 1.29542 0.73164 0.31587 8 5 7 0.0067
F………. 1.07326 0.70770 0.37614 6 6 7 0.0077
I………. 0.76211 0.16717 0.34684 6 3 4 0.0200
A………. 0.54686 0.01821 0.06304 4 3 2 0.0333
G………. 0.44966 0.52819 0.73395 4 5 4 0.0000
Y………. 1.46411 0.65332 0.40546 4 5 5 0.0111
M………. 1.29967 0.55126 0.39601 2 0 3 0.0200

Decrease T………. − 0.26044 − 0.28480 − 0.34702 6 9 6 0.0000
E………. − 0.62472 − 0.62778 − 0.55954 1 3 1 0.0000
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4 � Conclusions

The described approach gives a robust model for the bio-
logical activity of peptides (Table 4). The results are quite 
acceptable for three random splits into the training set and 
validation set. The approach obeys the OECD principles 
[26]. Once again, the possibility to build up predictive 

models for endpoints related to complex molecular systems 
(peptides) is confirmed [5–8]. In addition, the described con-
firms once more that applying the IIC improves the predic-
tive potential of models [20, 25].

Table 4   Experimental and calculated with Eq. 17 pIC50 for model obtained with split 3 (the best model): “ + ” is the indicator for the active train-
ing set; “– ” is the indicator for the passive training set; “#” is the indicator of calibration set; and “*” is the indicator for validation set

Set ID Sequence of amino acids DCW(1,15) pIC50 Expr pIC50 Calc DJ(D = 0.08757) Applicability

– P01 WLEPGPVTA 1.98966 6.0820 6.9048 0.0754 YES
– P02 ITSQVPFSV 1.62921 6.1960 6.6291 0.1259 YES
# P03 FLEPGPVTA 2.17966 6.8980 7.0501 0.0485 YES
# P04 ITAQVPFSV 2.21389 7.0200 7.0763 0.1029 YES
 +  P05 YLEPGPVTL 2.98174 7.0580 7.6637 0.0421 YES
# P06 YTDQVPFSV 2.39417 7.0660 7.2142 0.0862 YES
– P07 YLEPGPVTI 2.21031 7.1870 7.0736 0.0754 YES
* P08 YLEPGPVTV 2.20698 7.3420 7.0710 0.0421 YES
# P09 YLSPGPVTA 3.06834 7.3830 7.7299 0.0651 YES
# P10 IIDQVPFSV 3.11987 7.3980 7.7693 0.1219 YES
 +  P11 ITWQVPFSV 1.93195 7.4630 6.8607 0.1529 YES
 +  P12 ITYQVPFSV 2.14528 7.4800 7.0238 0.1195 YES
# P13 ILSQVPFSV 3.05039 7.6990 7.7162 0.1117 YES
– P14 IMDQVPFSV 2.69191 7.7190 7.4420 0.0886 YES
* P15 YLMPGPVTV 3.23638 7.9320 7.8584 0.0421 YES
# P16 WLDQVPFSV 3.60203 7.9390 8.1381 0.1052 YES
* P17 YLAPGPVTA 3.65302 8.0320 8.1771 0.0421 YES
 +  P18 YLYPGPVTV 3.58840 8.0510 8.1277 0.0587 YES
* P19 YLWPGPVTV 3.37507 8.1250 7.9645 0.0921 YES
# P20 ILYQVPFSV 3.56646 8.3100 8.1109 0.1052 YES
– P21 ILDQVPFSV 3.89130 8.4810 8.3594 0.0886 YES
– P22 YLFPGPVTA 3.56108 8.4950 8.1068 0.0651 YES
 +  P23 YLDQVPFSV 3.81535 8.6380 8.3013 0.0719 YES
– P24 ILFQVPFSV 3.54314 8.6990 8.0931 0.1117 YES
– P25 ILWQVPFSV 3.35313 8.7700 7.9477 0.1386 YES
 +  P26 WTDQVPFSV 2.18084 6.1450 7.0510 0.1195 YES
* P27 YLEPGPVTA 2.20298 6.6680 7.0680 0.0421 YES
* P28 ITDQVPFSV 2.47011 6.9470 7.2723 0.1029 YES
* P29 ITFQVPFSV 2.12196 7.1790 7.0060 0.1259 YES
* P30 FTDQVPFSV 2.37085 7.2120 7.1964 0.0926 YES
– P31 ITMQVPFSV 1.79326 7.3980 6.7546 0.1029 YES
# P32 YLSPGPVTV 3.07233 7.6420 7.7330 0.0651 YES
 +  P33 YLYPGPVTA 3.58440 7.7720 8.1246 0.0587 YES
 +  P34 YLAPGPVTV 3.65702 7.8180 8.1802 0.0421 YES
* P35 ILAQVPFSV 3.63508 7.9390 8.1634 0.0886 YES
* P36 ILMQVPFSV 3.21445 8.1250 7.8417 0.0886 YES
# P37 YLFPGPVTV 3.56508 8.2370 8.1099 0.0651 YES
– P38 YLMPGPVTA 3.23239 8.3670 7.8554 0.0421 YES
 +  P39 YLWPGPVTA 3.37107 8.4950 7.9615 0.0921 YES
 +  P40 FLDQVPFSV 3.79203 8.6580 8.2835 0.0783 YES
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