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Fluctuations of cytosolic Ca2+ concentration in astrocytes are regarded as a critical
non-neuronal signal to regulate neuronal functions. Although such fluctuations can be
evoked by neuronal activity, rhythmic astrocytic Ca2+ oscillations may also spontaneously
arise. Experimental studies hint that these spontaneous astrocytic Ca2+ oscillations may
lie behind different kinds of emerging neuronal synchronized activities, like epileptogenic
bursts or slow-wave rhythms. Despite the potential importance of spontaneous Ca2+

oscillations in astrocytes, the mechanism by which they develop is poorly understood.
Using simple 3D synapse models and kinetic data of astrocytic Glu transporters (EAATs)
and the Na+/Ca2+ exchanger (NCX), we have previously shown that NCX activity
alone can generate markedly stable, spontaneous Ca2+ oscillation in the astrocytic
leaflet microdomain. Here, we extend that model by incorporating experimentally
determined real 3D geometries of 208 excitatory synapses reconstructed from publicly
available ultra-resolution electron microscopy datasets. Our simulations predict that the
surface/volume ratio (SVR) of peri-synaptic astrocytic processes prominently dictates
whether NCX-mediated spontaneous Ca2+ oscillations emerge. We also show that
increased levels of intracellular astrocytic Na+ concentration facilitate the appearance
of Ca2+ fluctuations. These results further support the principal role of the dynamical
reshaping of astrocyte processes in the generation of intrinsic Ca2+ oscillations and their
spreading over larger astrocytic compartments.

Keywords: astrocyte, Ca2+ oscillation, NCX (sodium–calcium exchanger), astrocyte morphology, real
geometry, simulation

INTRODUCTION

Over the past three decades, astrocytes have emerged as crucial regulators of synaptic function
(Zhang et al., 2016). On the cellular scale, many of these regulatory functions operate by controlling
the extracellular concentration of various substances pivotal to synaptic activity (Somogyi et al.,
1990; Harris et al., 1992; Rusakov et al., 1997, 1998, 1999; Rusakov and Kullmann, 1998a,b; Araque
et al., 1999; Bergles et al., 1999; Ventura and Harris, 1999; Newman, 2004; Matsui et al., 2005;
Savtchenko and Rusakov, 2007; Heller et al., 2020). One of such classical astrocyte-mediated
regulatory function is the uptake of synaptically released glutamate. Glial glutamate uptake by
the Na+/Glu symporter, Glu transporters (EAATs), in turn, alters astrocytic intracellular Na+

concentration, leading to the activation of diverse Na+-symporters, like GABA andGln transporters
or Na+/K+-ATPase (NKA) and Na+/K+/2Cl− (NKCC1; Lenart et al., 2004; Héja et al., 2009, 2012,
2019; Pál et al., 2013, 2015; Kirischuk et al., 2016; Gerkau et al., 2019; Henneberger et al., 2020;
Lerchundi et al., 2020).
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Another consequence of the altered astrocytic Na+

concentration is the triggering of coupled Ca2+ fluctuations
(Mergenthaler et al., 2019) mediated mainly by the Na+/Ca2+

exchanger (NCX; Brazhe et al., 2018). Since NCX operates close
to its equilibrium, it can be easily switched between forward
and reverse operations (Kirischuk et al., 2016). Moreover,
intracellular fluctuations of Na+ concentration in the synapse-
covering astrocytic microdomain can be intensified by local Na+

inhomogeneity due to surface retention of cations by the dipole
heads of negatively charged membrane lipids (Breslin et al.,
2018). Therefore, EAAT-mediated Glu/Na+ symport may easily
give rise to local Ca2+ fluctuations.

We and others conjectured different Ca2+ signaling
mechanisms at perisynaptic astrocytic processes (PAPs)
and their relevance for the regulation of the tripartite synapses
(Kékesi et al., 2015; Kovács et al., 2015; Savtchenko et al., 2015;
Kirischuk et al., 2016; Szabó et al., 2017; De Pittà, 2020; Héja
and Kardos, 2020; Semyanov et al., 2020). Using a simplified
tripartite synapse model built up by geometric modules we have
previously shown that NCX alone can generate spontaneous
calcium fluctuations, enhanced by glutamate taken up through
EAATs (Héja and Kardos, 2020). However, local Na+ and
Ca2+ dynamics in these very thin processes heavily depend
on the actual geometry of PAPs. Moreover, this geometry is
known to be dynamically changing due to astrocyte activation
(Henneberger et al., 2020). Therefore, in the current work, we
explored whether NCX activity may introduce rhythmic Ca2+

dynamics in real excitatory tripartite synapses using a public
annotated database of 1,700 real synapses reconstructed from
serial electron microscopic sections (Kasthuri et al., 2015).

MATERIALS AND METHODS

Obtaining Real Geometry of Tripartite
Synapses
Real geometry of synapses and surrounding astrocytic processes
were obtained from the high-resolution (6 × 6 × 30 nm)
reconstruction of a 1,500 µm3 volume of mouse neocortex
(Kasthuri et al., 2015), containing 1,700 identified and
characterized synapses. In the first step, 208 ‘‘single’’ excitatory
synapses with individual glutamatergic axon terminal synapsed
to single postsynaptic dendritic spines were selected for
simulation. Geometry of segmented cells in 1.2 × 1.2 × 1.2 µm
volumes (201 × 201 × 41 pixels) around each post-synaptic
density centroid were imported from the database to Matlab
using the VAST Lite 1.2.1 software and custom-written
Matlab scripts.

To correct geometry for fixation-induced swelling, we shrunk
the segmented cells by 6 nm and extended the extracellular
space (ECS) to this volume. This way, a fraction of the ECS in
the synaptic environment was increased from 11.2 ± 3.0% to
18.2± 3.3% that is closer to physiological values (Van Harreveld
and Khattab, 1968; Harreveld and Fifkova, 1975; Korogod et al.,
2015; Pallotto et al., 2015).

Astrocytic coverage of the presynaptic axon terminal (bouton)
and the postsynaptic dendritic spine was calculated by counting

the number of surface pixels of boutons and spines having close
contact with astrocytes. The surface/volume ratio (SVR) was
determined by dividing the number of surface pixels counted
according to the above method by the number of all pixels
belonging to astrocyte processes.

Simulation of Astrocytic [Ca2+] and
Synaptic Glu Release
Extracellular concentrations of relevant ions ([Na+]e = 140 mM;
[K+]e = 3 mM; [Ca2+]e = 2 mM) as well as astrocytic [K+]i
(130 mM) and [Glu]i (3 mM) were kept constant during
the simulation, while [Glu]e (0.3 µM), [Na+]i (15 mM) and
[Ca2+]i (100 nM) were allowed to change due to Glu release,
intracellular Ca2+ diffusion and activation of EAATs and NCX
(Héja and Kardos, 2020). It is to note that [Glu]e is difficult
to measure and rather different estimates are reported in the
literature. Electrophysiological measurements suggest tens of
nanomolar concentrations (Herman et al., 2011) based on
receptor activation, while microdialysis studies measure tens
of micromolar for [Glu]e (Baker et al., 2002). Furthermore,
EC50 values of postsynaptic glutamate receptor (382 µM; Jonas
and Sakmann, 1992; Li et al., 2002) and astrocytic glutamate
transporter (14.8 µM; Levy et al., 1998; Herman and Jahr,
2007) indicate effective activation of postsynaptic receptors
and extrasynaptic transporters at above 100 µM and 3 µM
glutamate, respectively. These glutamate concentration ranges
are far beyond the [Glu]e of 0.4 ± 0.1 µM (Kékesi et al.,
2000) allowing for receptor/transporter activation. Our in vivo
microdialysis data also validates the mean of these values as being
0.4± 0.1µM(Kékesi et al., 2000). Therefore, 0.3µM[Glu]e, used
in this study seems a reliable estimate.

Markovian kinetic models of astrocytic EAATs and NCX
were constructed according to published rate constants based on
experimental data. Glutamate uptake by EAATs was modeled by
a 13-step cycle comprised of separate bindings and unbindings
of 3 Na+, 1H+, 1 K+, and 1 Glu molecules (Bergles et al., 2002).
NCX activity was modeled by a 6-step cycle according to Chu
et al. (2016). 10,800/µm2 EAAT (Lehre and Danbolt, 1998) and
500/µm2 NCX (Chu et al., 2016) molecules were distributed
randomly on the astrocytic surface.

Before starting the simulation, EAAT and NCX randomly
populated the available states and we allowed them to reach
steady-state distribution for 30 ms at the above concentrations.
Simulations began with a further 10 ms baseline activity before
initiating single synaptic glutamate release (5,000 Glu molecules)
at the synapse centroid as determined by Kasthuri et al. (2015).
The diffusion of independent glutamate molecules in the 3D
ECS was estimated by random walks at 1 µs intervals. The
diffusion coefficient of glutamate was set to 0.33 µm2/ms
(Gavrilov et al., 2018).

Each time steps (1 µs) was comprised of the following
functions: (1) position of extracellular glutamate molecules and
intracellular Ca2+ ions were updated by moving them with
normally distributed randomdistances around theirmean square
displacement values. If a particle moved outside of the sample
volume, it was removed from the available pool, except if
[Glu]e, [Na+]i or [Ca2+]i dropped below the baseline level, in
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SCHEME 1 | Kinetic schemes and rates of astrocytic Glu transporters (EAAT) and Na+/Ca2+ exchanger (NCX).

which case it was moved back to its previous position. Particles
moving out of their compartment (astrocyte, dendrite, axon
terminal, or ECS) were also placed back to their previous
position. (2) Transition states of EAAT and NCX molecules
were determined according to their rate constants and dynamic
rate constants based on the current intra- and extracellular
concentrations of relevant ions (Scheme 1). In the case of EAAT
kinetics, local [Glu]e in the surrounding 50 × 50 × 50 nm3

extracellular microdomain of each EAAT molecule was used
instead of the average extracellular glutamate concentration.

Local [Glu]e was determined by counting the freely diffusing
Glu molecules in the 50 × 50 × 50 nm3 ECS around each
EAATs in each time frame. Transition rates were corrected
for Q10 = 3 to account for temperature dependence. Astrocyte
membrane potential was set to−70mV. (3) Glutamatemolecules
bound to the extracellularly faced EAAT were removed from the
available pool until they were released back by reverse operation
of the transporter. Ca2+ ions bound to the intracellularly faced
NCX were removed from the available pool until they were
released back by reverse operation of the transporter.
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FIGURE 1 | Astrocyte related geometric parameters of the 208 investigated synapses. (A) Distribution of pre-and postsynaptic coverage of synapses by astrocyte
processes. (B) Correlation of pre-and postsynaptic coverage of synapses by astrocyte processes. (C) Distribution of the astrocytic surface/volume ratio (SVR) in the
1.2 × 1.2 × 1.2 µm volume surrounding each synapse.

All simulations were done in Matlab using custom-written
scripts1. Reconstructed and segmented EM stacks of real
synapses were downloaded and handled by the VAST Lite
1.2.1 software2 (Kasthuri et al., 2015) and the VastTools Matlab
package. Processed data of synapses containing 3D geometries
and calculated surfaces and volumes in Matlab file format as
well as tools to reproduce the simulations can be downloaded
at http://downloadables.ttk.hu/heja/Front_CellNeurosci2021.
Synapses were visualized using Cinema4D.

Data are shown as mean ± SEM and were analyzed with
one-way analysis of variances (ANOVAs, OriginPro 2018).
Statistical significance was considered at p < 0.05.

RESULTS

To simulate Ca2+ oscillations in real astrocyte processes, we
used the saturated reconstruction of a 1,500 µm3 volume of
mouse neocortex (Kasthuri et al., 2015). The dataset contains

1https://github.com/hejalaszlo/Astrocyte-leaflet-simulation
2https://lichtman.rc.fas.harvard.edu/vast/

1,700 identified and morphologically characterized synapses. We
explored volumes of 1.2 × 1.2 × 1.2 µm around these synapses
to investigate the potential of astrocytic processes to readout
synaptic activity.

Due to the applied glutaraldehyde and paraformaldehyde
fixative, the ECS of the sample was found to occupy only 6%
of the total volume around the synapses (Kasthuri et al., 2015).
Since ECS fraction was found to be between 15% and 25% in
frozen tissues (Van Harreveld and Khattab, 1968; Harreveld and
Fifkova, 1975; Korogod et al., 2015; Pallotto et al., 2015) where
fixation-issued swelling is not present, we modified the original
segmentation by replacing the outer 6 nm surface of each cellular
segment with ECS. This modification also allowed free diffusion
of the released glutamate in the ECS, which would otherwise be
hindered due to the direct connection of segmented cells.

To simulate spontaneous and glutamate-release associated,
NCX activity-linked Ca2+ changes in real glutamatergic tripartite
synapses, we selected 208 ‘‘classical’’ synapses out of the
1,700 identified synapses (Kasthuri et al., 2015) based on the
following criteria: (1) axon type is excitatory; (2) axon terminal
is present, i.e., it is not an en-passant synapse; (3) axon bouton
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FIGURE 2 | Heterogeneity of astrocytic intracellular Ca2+ oscillations ([Ca2+]i)
during the control period (1–10 ms) and following glutamate release
(10–30 ms) in four selected real tripartite synapses showing different levels of
astrocytic coverage and astrocyte SVR. The dynamics of astrocytic Ca2+

concentration is shown in red, extracellular [Glu] ([Glu]e) is shown in the black
trace. Astrocytes are colored yellow, presynaptic terminals are green and
postsynaptic spines are red in images showing real 3D geometry of each
synapse. Green marks indicate release events.

is not multi-synaptic; (4) the postsynaptic element is a spine,
not a shaft; and (5) astrocytic volume fraction is at least 2% in
the 1.2 × 1.2 × 1.2 µm volume. Astrocytic Ca2+, extracellular
glutamate concentrations following synaptic Glu release, as well
as dynamics of astrocytic Glu transporters (EAAT) and NCX
were simulated as previously described (Héja and Kardos, 2020).

By calculating the ratio of the axon terminal and spine
surfaces that are in contact with astrocytic processes, we
found many presynaptic axon terminals and postsynaptic spines
with little or no astrocytic coverage at all (Figure 1A). Also,
astrocytic coverage of pre- and postsynaptic elements showed
a high degree of heterogeneity (Figure 1B). Although many
of the synapses were equally covered by astrocytes at the
axon terminal and the dendritic spine, highly asymmetric
astrocytic coverage was also abundant. Besides, we also
determined the surface to volume ratio (SVR) of astrocytic
processes in the surrounding of the 208 selected synapses.
Following previous observations (Gavrilov et al., 2018), the
distribution of SVR followed normal distributions with a mean
between 20 and 25 µm−1, corresponding to astrocytic leaflets
that are known to cover synapses (Gavrilov et al., 2018;
Figure 1C).

In agreement with previous findings (Héja and Kardos,
2020), we found that astrocytic oscillatory Ca2+ dynamics
spontaneously emerged in different kinds of realistic astrocytic
leaflets characterized by various pre- or postsynaptic contacts
(Figure 2). The incidence of Ca2+ fluctuations strongly depends
on the astrocytic SVR and also correlates with pre- and
postsynaptic astrocytic coverage (Figure 2). High astrocytic
SVR frequently correlated with large amplitude fluctuations of
astrocytic Ca2+ concentration both spontaneously and following
glutamate release (Figure 2). Medium SVR in conjunction
with high coverage of both presynaptic axon terminal and
postsynaptic dendritic spine is characterized by the medium
intensity of Ca2+ fluctuations that is unaffected by glutamate
release (Figure 2). On the other hand, no astrocytic Ca2+

fluctuations emerge at low SVR (Figure 2).
To quantify the extent of NCX-mediated astrocytic Ca2+

oscillations, we calculated the power spectral density of the
Ca2+ signal and summed its power in a wide range between
100 and 500 Hz. The power of these high-frequency Ca2+

oscillations showed a direct correlation with increasing SVR,
i.e., it is more apparent in thin astrocytic processes (Figure 3A).
By contrast, the power of high-frequency Ca2+ fluctuations does
not depend on either pre- or postsynaptic astrocytic coverage
(Figures 3B,C).

Furthermore, we also investigated whether synaptic glutamate
release alters the spontaneous NCX-mediated Ca2+ fluctuations.
To this end, we compared the oscillatory powers of the
Ca2+ concentration signals in the 100–500 Hz range in two
different conditions: (1) simulating baseline Ca2+ fluctuations
when only NCX was allowed to operate and no synaptic
glutamate release occurred; and (2) simulating Ca2+ fluctuations
according to our original conditions, releasing 5,000 glutamate
molecule after 10 ms of baseline activity and letting EAATs
function. The powers of the 100–500 Hz range of the Ca2+

concentration signals were compared in the 12–21 ms period.
In some synapses, glutamate release significantly increased the
100–500 Hz power. As an example, 100–500 Hz power increased
from −23.85 ± 0.20 dB to −22.72 ± 0.27 dB due to synaptic
glutamate release (n = 5 simulation runs, p = 0.01) in a
synapse with high SVR (22.4 µm−1; Figure 4A). However,
although a slight increase was also observed on the population

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 March 2021 | Volume 15 | Article 617989

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Héja et al. Ca2+ Fluctuations in Astrocyte Leaflets

FIGURE 3 | Correlation of the power of astrocytic Ca2+ oscillations (100–500 Hz) with geometric characteristics of the astrocyte processes. (A) Ca2+ oscillation is
more pronounced in thin astrocytic processes characterized by a high SVR. The black line shows linear regression fitted to the data (R2 = 0.38). (B,C) Astrocytic
Ca2+ oscillation shows no correlation with the extent of pre-or postsynaptic coverage by astrocytes.

level, this increase was not significant (−29.73 ± 0.29 dB vs.
−29.61 ± 0.29 dB, n = 208 synapses, p = 0.09). Therefore, we
investigated whether synapses characterized by different SVR
of the surrounding astrocytes may respond differently to Glu
release. Resolution of Glu release-induced changes in the power
of astrocytic Ca2+ fluctuations by astrocyte SVRs, however, still
did not reveal a significant effect of Glu release (Figure 4B). Since
single Glu release events only slightly increase astrocytic Na+

concentration, we investigated whether more pronounced (but
still physiological) changes in astrocytic Na+ concentration may
significantly affect NCX-mediated Ca2+ fluctuations. Changing
astrocytic Na+ concentration from the original 15 mM to
10 or 20 mM, indeed, markedly altered Ca2+ oscillatory power
(Figure 4C). Increasing astrocytic Na+ concentration enhances
Ca2+ fluctuations in general, and consequently allows the
emergence of such oscillations in thicker processes characterized
by smaller SVR.

DISCUSSION

Spontaneous astroglial Ca2+ fluctuations, mediated by NCX
in real excitatory tripartite synapses appear to be primarily
dependent on astrocytic SVR. In our simulations, more
pronounced NCX-operated Ca2+ fluctuations are associated
with high SVR, suggesting that thin astrocytic processes are
capable to spontaneously generate astrocytic Ca2+ signals.
Although, we found that NCX mediated spontaneous Ca2+

fluctuations are not significantly modulated by single Glu
release events and corresponding Na+ entry through plasma
membrane glutamate transporters, we showed that increasing
astrocytic Na+ concentration in the physiological rangemarkedly
enhances Ca2+ fluctuations in real tripartite synapses, especially
in those, characterized by high SVR. Therefore, we hypothesize

that bursting synaptic activity or simultaneous activation of
multiple synapses in the domain of a single astrocyte may
significantly contribute to the emergence and enhancement of
Ca2+ fluctuations by increasing astrocytic Na+ concentration.
The scenario with Na+ threshold and mechanistic explanation,
however, remains to be clarified. Importantly, astrocytic Ca2+

concentration can also be directly increased by the activation
of astrocytic NMDA receptors (Ziemens et al., 2019) that are
currently not included in our model.

It is evident from our simulations that the appearance
of fast Ca2+ fluctuations is correlated to the high surface-
to-volume ratio of PAPs. Unfortunately, neither spatial nor
temporal resolution of current experimental techniques allows
the direct observation of such fast (>100 Hz) Ca2+ signals in
tiny processes (d < 2–300 nm, SVR > 10; Rusakov, 2015).
Therefore, we can only speculate about how these spontaneous
Ca2+ events, triggered by Ca2+ entry through NCX can propagate
into astrocytic branchlets and can be amplified and propagated
as a result of various downstream mechanisms, including
Ca2+-dependent Ca2+ release in association with activation of
inositol 1,4,5-trisphosphate receptors (IP3R) or mitochondrial
permeability transition pores (Semyanov et al., 2020). It was
experimentally observed, however, that the appearance and
frequency of slower spontaneous Ca2+ events in somewhat larger
astrocytic processes (characterized by SVR < 3) depend on
SVR (Wu et al., 2019). Also, compartmentalized Ca2+ waves
as predicted by the dynamically rich repertoire of distinct
Ca2+-dependent Ca2+ release dynamics (Matrosov et al., 2019)
may travel and act by modulating local spontaneous Ca2+

fluctuations. Indeed, the shape of the slow Ca2+ wave with
fast Ca2+ fluctuations (Savtchenko et al., 2018; SI Figure 12)
may indicate the superimposition of slow waves and fast Ca2+

fluctuations locally. It is to mention, that fast astrocytic Ca2+
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FIGURE 4 | Increased astrocytic Na+ concentration enhances astrocytic Ca2+ oscillations. (A) Representative traces of astrocytic Ca2+ concentration in the
astrocytic processes surrounding a synapse with high SVR (22.4 µm−1). Dark traces represent the analyzed period during which 100–500 Hz power was calculated
when no glutamate release occurred and only NCX activity was allowed (top) or when 5,000 molecules of glutamate were released at 10 ms. The green mark
indicates the release event (middle). Power of the 100–500 Hz range increased from −23.85 ± 0.20 dB to −22.72 ± 0.27 dB due to synaptic glutamate release in
this synapse (n = 5 simulation runs, p = 0.01; asterisk means significant difference, bottom). (B) Correlation of 100–500 Hz powers with astrocytic SVR with (green)
and without (red) synaptic glutamate release in the 12–21 ms period in all the investigated 208 synapses. Green and red lines show linear regression fitted to the data
(R2 = 0.38 for both lines). (C) Correlation of 100–500 Hz powers with astrocytic SVR at different astrocytic Na+ concentrations in the 12–21 ms period in all the
investigated 208 synapses. No glutamate release was initiated, only NCX activity was considered. Black, green and blue lines show linear regression fitted to the
data (R2 = 0.20, R2 = 0.38 and R2 = 0.39 respectively; top). Grouping of power vs. astrocyte SVR data shows that increasing astrocytic Na+ concentration enables
the emergence of Ca2+ oscillations in thicker processes (bottom).

signaling with mean onset time as rapid as that of neurons is
not unprecedented (Kékesi et al., 2015; Pál et al., 2015; Lind
et al., 2018; Stobart et al., 2018; Semyanov et al., 2020). Assessing
the true impact of spontaneously emerging, local high-frequency

Ca2+ fluctuations on the evolution of cellular- and network-
scale Ca2+ oscillations necessitates further studies, that include
models describing downstream Ca2+ stores and Ca2+ buffers
(Savtchenko et al., 2018;Matrosov et al., 2019), as well as simulate
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Ca2+ dynamics in multiple, neighboring synapses contacted by
the same astrocyte. We may also conjecture that the structural
plasticity of astrocytic processes may serve as a de novo signal
generator, independently of its role in regulating glutamate
spillover, K+ buffering, or other indirect forms of modulation
of neuronal activity (Henneberger et al., 2020). These findings
suggest a prominent role for dynamically changing PAPs in
neuro-glial coupling.
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