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The relationship between aberrant metabolism and the initiation and progression of
diseases has gained considerable attention in recent years. To gain insights into the
global relationship between diseases and metabolites, here we constructed a human
diseases-metabolites network (HDMN). Through analyses based on network biology,
the metabolites associated with the same disorder tend to participate in the same
metabolic pathway or cascade. In addition, the shortest distance between disease-
related metabolites was shorter than that of all metabolites in the Kyoto Encyclopedia
of Genes and Genomes (KEGG) metabolic network. Both disease and metabolite
nodes in the HDMN displayed slight clustering phenomenon, resulting in functional
modules. Furthermore, a significant positive correlation was observed between the
degree of metabolites and the proportion of disease-related metabolites in the KEGG
metabolic network. We also found that the average degree of disease metabolites is
larger than that of all metabolites. Depicting a comprehensive characteristic of HDMN
could provide great insights into understanding the global relationship between disease
and metabolites.

Keywords: disease, metabolite, network random, correlation, functional modules

INTRODUCTION

The relationship between the environmental and genetic factors underlying various diseases is an
important question in modern medicine (Autrup, 2005; Korbsrisate et al., 2007; Chanda et al.,
2009; Pereyra et al., 2016). In recent years, genomics, proteomics, and metabolomics have provided
new insights into monitoring disease progression, nutritional interventions and drug toxicities, and
elucidated the causes of various diseases, and discovered potential links between seemingly different
diseases (Eriksson et al., 2004; Pognan, 2004). Multiple-omics studies now indicate that pathological
conditions are closely related to metabolic abnormalities (Griffin et al., 2002; Jarvela and Glueck,
2002; Gille et al., 2005; Chen and Hofestadt, 2006; Mombach et al., 2006). Complex diseases like
cancer, diabetes, Alzheimer’s disease (AD), cardiovascular disease, schizophrenia, etc., are caused
by the interactions between multiple genes and environmental factors. Consequently, exploring
the metabolomes or metabolite profiles of these diseases have gained considerable attention in the
post-genomic era (Yang et al., 2004; Mishur and Rea, 2012; Yu and Liang, 2012; Yu et al., 2017).
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Metabonomics is increasingly used in cancer biology to
identify potential novel therapeutic targets. However, systematic
metabonomic studies of cancer and other complex diseases are
lacking. The systematic study of metabolites will help us to
break the bottleneck of clinical treatment of complex diseases
(Kim et al., 2009, 2011).

The metabolome of an organism or population reflects the
genes, diet, lifestyle, and intestinal microbiota in that entity.
In addition, the metabolic phenotype of an individual can be
indicative of an abnormal biochemical or physiological state
(Burgdorf et al., 2010; Reed et al., 2014; Colombo et al., 2018; Gar
et al., 2018). Metabolic dysregulation is a major cause of various
diseases, including diabetes, cardiovascular diseases, neuronal
diseases, and cancers (Akinyemiju et al., 2017; Chong et al., 2017;
Herholz et al., 2018). A pathological state can significantly alter
metabolic pathways, resulting in aberrant levels of intermediates
or end-products that can be viewed as potential diagnostic
biomarkers or even therapeutic targets. However, few studies
have analyzed metabolite levels and their functional relevance
in diseases, which limits their potential in diagnosis or therapy
(Krumsiek et al., 2012). Furthermore, the recent studies that
have explored the dysregulated metabolic pathways in various
diseases (Li et al., 2011) have also not analyzed the role of specific
metabolites. Many complex diseases are accompanied by multiple
metabolic processes and a metabolic process may be related to
a variety of diseases. Therefore, it is essential to explore the
global relationship between diseases and metabolomes in order
to determine the role of metabolism in disease development
and progression. The Human Metabolome Database (HMDB),
which contains information of 625 human diseases and 110,000
metabolites (Wishart et al., 2018), is a helpful tool for studying
the relationship between diseases and metabolomes.

To supplement the Kyoto Encyclopedia of Genes and
Genomes (KEGG) program that identifies drug targets in
metabolic pathways (Li et al., 2009). In this study, we constructed
a human disease-metabolites network (HDMN) in which nodes
represent diseases and metabolites and they were connected if
there is association between disease and metabolites. By analyzing
the topological properties of the network and mining functional
modules, we investigated the internal mechanism of metabolite
disorder in human body and provided an effective way for clinical
research. Our results showed that the HDMN may not only offer
insights into understanding underlying mechanisms of metabolic
process but also provides a rational way to improve the interplay
between metabolites and human diseases.

MATERIALS AND METHODS

Human Metabolome Database
To construct the HDMN, the disease-metabolite correlations
were first downloaded from the HMDB database. The HMDB is a
up-to-date online metabolic database containing comprehensive
information about human metabolites and their biological roles,
physiological concentrations, pathological associations, chemical
reactions, metabolic pathways, and reference spectra (Wishart
et al., 2018). Next, we merged redundant terms and removed

entries of predicted ones. In addition, the metabolites-pathway
associations were obtained from the KEGG Pathway Database.
The metabolites in each disease category was divided into 12
metabolic pathways, and each disease was grouped under a
disease class. Finally, we obtained 28 disease classes for the 625
diseases in HMDB, along with 5475 unique disease-metabolites
terms. Furthermore, in order to evaluate the role of disease
metabolites in the global metabolic pathway, we reconstructed
the KEGG metabolic network, in which 3617 metabolites and
4771 edges were obtained from the KEGG PATHWAY database.

Distribution of Metabolites in Metabolic
Pathways According to Disease
Classification
The disease-related metabolites were first classified into 28
categories according to the disease class. After obtaining the
relationship between disease classes and metabolic pathway
categories based on shared metabolites, the distribution of
metabolites of each metabolic pathway across the 28 diseases
classes was calculated using the Hypergeometric test (P-
value < 0.01).

Disease-Metabolites Associations of
HDMN
The shortest distance between any two metabolites in the
KEGG metabolic network was calculated in reconstructing the
metabolite-metabolite network using the metabolites-enzyme
correlations (Yao et al., 2015). If two metabolites were in the same
reaction, they were connected by one side. The shortest distance
of node i and j was defined as:

short distance[i][j] = min
{
[i], [j]

}
(0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1)

where i and j are any two metabolites in the network.

Definition of Disease Score
To determine whether the metabolites associated with the same
disease are more likely to participate in the same metabolic
reaction or pathway, we introduced a “disease score” (DS)
defined as the maximum fraction of metabolites associated with
a common disorder that are involved in a specific pathway.
A metabolites-pathway matrix was first established for the
metabolites in each disease, with rows for metabolites and
columns for the metabolic pathways. If a metabolite belonged to a
certain metabolic pathway, the corresponding cell was filled with
1, otherwise 0. The DS was calculated as follows:

DSk = max

{∑n
i=1 M

Pj
i

nM

}
, if

{
Mi = 1, Mi ∈ Pj
Mi = 0, Mi /∈ Pj

where DSk is disease k (625 diseases), nM is the total number
of metabolites in the disease, M

Pj
i is the value of i metabolite

in the Pj pathway (0 or 1). The diseases associated with only
one metabolite were removed since the DS value of 1 for these
diseases would affect the results. The significance is obtained by
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comparing the true distribution of DS with the randomized one
in 103 randomized networks generated by randomly shuffling the
associations between metabolites and diseases while keeping the
number of links per metabolite and disease unchanged.

Degree Comparison of Disease
Metabolites and All Metabolites
The average degree of disease metabolite and total metabolite
nodes was calculated and

the average degree of nodes (Dav) was defined as follows:

Dav =
2L
N

The degree of nodes (Nd) was defined as follows:

Nd = ENi

where N is the number of nodes in the network, L is the number
of edges in the network, and ENi is the number of edges directly
connected to the i node in the network.

RESULTS

Construction of the HDMN
To build the HDMN, we downloaded the diseases and
metabolites data from the HMDB database, and merged
redundant terms and removed entries of predicted ones. We
obtained a total of 5475 unique disease-metabolites interactions
consisting of 625 diseases and 1714 metabolites (Figure 1 and
Supplementary Table S1). The diseases were grouped into 28
disease classes, and the metabolites into 12 metabolic categories.
The metabolites of 408 diseases showed at least one link with
the metabolites of another disease, indicating common genetic
origins of most diseases.

The Basic Network Features of the
HDMN
Furthermore, the degrees of all disease nodes ranged from 1 to
762, while that of metabolites ranged from 1 to 66 (Figures 2A,B),
indicating that few diseases are caused by aberrations in multiple
metabolites. The degree of distribution of the node followed
power law distributions (R2 = ∼0.781), thus confirming that the
HDMN was scale-free (Xu et al., 2011). Disperse distribution
of metabolite nodes suggest that some metabolites may play an
important role to cause multiple disease; while some metabolites
may serve as specific markers for few diseases.

We analyzed the distribution of nodes in the different
disease and metabolic pathway categories in the HDMN,
and found that diseases were concentrated in the metabolic
diseases, gastrointestinal, Hematological, neurological and cancer
categories (Figures 2C,D). We also found that lots of metabolites
are belonging to lipid metabolism, amino acid metabolism
and metabolism of other amino acids. To further investigate
the relationships between disease and metabolite nodes of the
HDMN, we next screened for the significantly overlapping
metabolites between the 12 metabolic pathways and each disease

class (Figure 2E), and found that the metabolites in five
disease classes – hematological, anatomical entity, neurological,
psychiatric, cancer – belong to the amino acid metabolism
metabolic pathway. This is not surprising since any nutritional
imbalance can affect development and hormonal functions
(Guest and Guest, 2018). Furthermore, the metabolites of mental
health, nervous system disease, cardiovascular and respiratory
disease classes were linked to the lipid metabolism pathway.
Metabolic myopathies cause exercise intolerance, myalgia,
increased muscle breakdown products during exercise, as well as
respiratory failure and obstructive sleep apnea (Bingol et al., 2018;
Koo and Sethi, 2018).

Cluster Analyses of the HDMN
We then clustering hub nodes (degree > 5) and identified the
functional modules in the HDMN (Figure 3A). Hierarchical
clustering of the HDMN indicated some closely related functional
modules in the network, of which four modules were selected
for further research (Figures 3B–E). For example, recent
studies showed that the choline trimethylamine-lyase gene
is overexpressed in colorectal cancer (CRC), indicating a
relationship between microbiome choline metabolism and CRC
(Thomas et al., 2019). Interestingly, three of these four functional
modules include colorectal cancer, eosinophilic esophagitis,
Crohn’s disease, and ulcerative colitis, although the metabolites
were different among these modules.

Global Propensity and Shortest Distance
of Network
To determine whether metabolites associated with the same
disorder also participated in the same metabolic pathway or
cascade, we generated a DS for each disease (see “Materials
and Methods”) and based on their distribution. To evaluate
its significance, we made 1000 randomly generated network of
identical node and degree distribution for the disease-metabolite
interaction association and carried out the same calculation steps
for each disease to get the score of the disease. Concluded
that metabolites linked to a disease tend to participate in
one metabolic pathway (P-value = 2.2e-16, two sided Wilcox.
Test, Figure 4A). Furthermore, the shortest distance between
disease metabolites was shorter than that of all metabolites (P-
value = 2.2e-16, two sided Wilcox. Test, Figure 4B), These results
indicate that the metabolites are largely involved in the same
metabolic reaction or adjacent reaction, and thus participate in
cascade reactions. Taken together, metabolites that contribute to
a common disorder have a tendency to interact with each other.

Disease Metabolites Topological
Analysis in Metabolic Network
To determine the role of these disease metabolites in metabolic
networks, we calculated the average degree of metabolites in
a reconstructed KEGG metabolic network (see “Materials and
Methods”). The average degree of the disease metabolites was
larger than that of all metabolites (Figure 5A), indicating that the
former participates in more reactions. This raised the possibility
that the more diseases a metabolite was related to, the higher
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FIGURE 1 | The HDMN network. The circles and rectangles in the network correspond to diseases and metabolites, respectively. The edges represent connections
between a disease and a metabolite. The node size is proportional to its degree. The nodes are colored according to 28 disease classes and 12 KEGG pathway
categories. The network has a total of 2339 nodes (625 disease nodes,1714 metabolite nodes) with 5475 edges.
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FIGURE 2 | The basic network features of the HDMN. (A) Distribution of the number of mapped metabolites. (B) Distribution of the number of mapped diseases.
(C,D) The distribution of nodes in the different disease and metabolic pathway categories. (E) The distribution of metabolites in each disease class in 12 metabolic
pathways was calculated according to the hypergeometric test (P-value < 0.01).
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FIGURE 3 | Hierarchical clustering on the HDMN and functional modules. (A) Hierarchical clustering of network hub nodes. The corresponding cell was colored red
if there was an edge between the disease and metabolite in the HDMN. (B–E) Zoom-in plot showing some closely related functional modules.
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FIGURE 4 | The relationship between diseases and metabolites in the HDMN. (A) Comparison of true DS score with random disturbance DS score
(P-value = 2.2e-16, two sided Wilcox. Test). (B) The shortest distances between any two nodes in the metabolic network, and the shortest distance between
disease metabolites (P-value = 2.2e-16, two sided Wilcox. Test).

degree it had in a metabolic network. Therefore, we calculated
the proportion of disease metabolites in all metabolites under
the same degree, and detected a positive correlation between the
metabolite degree and the proportion of disease metabolites (P-
value = 0.008, F-test, Figure 5B). Thus, metabolites associated
with more diseases tend to participate in more reactions in
metabolic networks. Finally, we calculated the average degree
of each disease class and found that anatomical entity disease,
connective tissue disease and neurological disease had higher
average degree (degree > 5, Figure 5C).

DISCUSSION

Till date, studies conducted on the role of metabolites in
diseases have mainly focused on the drugs and metabolic
pathways (Li et al., 2011), the diseases and metabolic pathways
(Li et al., 2012), or the metabolome in a single disease
(Gonzalez et al., 2018; Xu et al., 2018; Che et al., 2019). The
research on the relationship between diseases and metabolites
is still limited, despite the fact that metabolic diseases have
become highly frequent. To this end, we constructed a
disease-metabolites network (HDMN) consisting of 2339 nodes
(625 disease nodes and 1714 metabolite nodes) and 5475
edges, and reconstructed the metabolic network by extracting
the relationship between metabolites and pathways from
the KEGG database.

The distribution of the disease nodes was significantly broader
than that of metabolite nodes in the newly constructed network,
and the degree distribution of both obeyed the power law
distribution. Disperse distribution of metabolite nodes suggest
that some metabolites may play an important role to caused
multiple disease, while some metabolites may serve as specific

markers for few diseases (Figure 2A). Similarly, some metabolites
were significantly linked to many diseases, indicating a common
metabolic basis of these diseases (Figure 2B). However, there
were only a few metabolites that specifically induced a certain
disease. In recent years, studies have increasingly identified
aberrant metabolites in complex metabolic diseases and cancers,
which offers new possibilities of diagnosing and treating
these disorders. The disease node with the greatest degree
(degree = 762) was that of CRC, a major cause of morbidity
and mortality worldwide. The feces of CRC patients show
high levels of branched chain fatty acid (BCFA), isovalerate,
isobutyrate, valerate, and phenylacetate, and low levels of amino
acids, sugar, methanol, and bile acids (deoxycholate, stone
deoxycholate, and cholate) (Le Gall et al., 2018; Shiao et al.,
2018), indicating that dysregulated metabolites can increase the
risk of intestinal cancer in humans. In addition, the degree
of L-Lactic acid was the largest (degree = 66; Figure 2D)
among the metabolite nodes, and thus likely dysregulated in
multiple diseases. It participates in the xylose assimilation
pathway. We found that most disease-related metabolites were
mainly concentrated in some metabolic pathways, including lipid
metabolism, amino acid metabolism and metabolism of other
amino acids (Figure 2E). For example, amino acid metabolism
was correlated with various diseases, including colorectal cancer,
AD, and Crohn’s disease, etc. These relationships have been
proved previously (Nakano et al., 2017; Le et al., 2018; Li
et al., 2018). Some metabolites were highly disease-specific and
associated with only one disease, such as arsenite, phenylalanine
and lactulose. Arsenite exposure during development augments
the severity of diet-induced fatty liver disease (Ditzel et al.,
2016), patients with severe depression have different levels of
phenylethylamine after overeating (Davis et al., 1994), and
lactulose stimulates bowel movements as a disaccharide laxative
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FIGURE 5 | Degree of nodes association in HDMN. (A) The average degree of all metabolite and disease nodes. (B) The correlation between proportion of
disease-related metabolites and degree (P-value = 0.008, F-test). (C) The average degree of metabolite in each disease class. The color of the disease corresponds
to that of Figure 1.

and a prebiotic. It also modifies gut microbiota and ameliorates
chronic kidney disease progression by suppressing uremic toxin
production (Tayebi Khosroshahi et al., 2014; Tayebi-Khosroshahi
et al., 2016; Sueyoshi et al., 2019). Taken together, these findings
suggest that the occurrence of a disease is accompanied by local
metabolic disorders.

Hierarchical clustering of network hub node further
revealed several closely related functional modules, each with
large degree interconnected nodes. To further explore the
disease-metabolite associations, we classified the metabolites
in each pathway according to the disease classes, and found
that the metabolites significantly associated with a disease
were more likely to participate in one metabolic pathway. To

validate this conclusion, we built a 103 randomly generated
network of disease-metabolite interactions with identical
node and degree distribution (Figure 4A, P-value = 2.2e-
16, two sided Wilcox. Test), and found that the metabolites
involved in each disease are closely related, or at least
participate in the same reaction or cascade. Interestingly,
the shortest distances between disease metabolites nodes
were shorter and the average degree of disease metabolites
was greater than that of all metabolites (Figure 4B,
P-value = 2.2e-16, two sided Wilcox. Test), which further
illustrates the close relationship between nodes in the
HDMN. In addition, the proportion of disease-related
metabolites in all metabolites increased significantly with the
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increasing degree (P-value = 0.008, F-test, Figure 5B), indicating
that the greater the degree of nodes, the more complex the
interaction between metabolites. Finally, the average degree
of metabolites was higher in cancer, metabolic diseases, and
neurological diseases (Figure 5C). Taken together, these results
provided strong support for the functional importance of the
HDMN. The HDMN also has clinical application significance
in management of complex diseases. The clinical treatment
of severe complex diseases was still a conundrum. Taken
AD as an example, none of the current medication for AD
has been shown to effectively reverse or even slow down its
progression. Unfortunately, the approval rate of new AD drugs
was significantly lower than in cancer and cardiovascular drugs.
Whereas, HDMN could provide new ideas in the investigation
and clinical treatment of this kind of diseases. In the HDMN, we
observed a significant correlation between metabolic dysfunction
and neurological diseases. Alzheimer’s disease and obesity
are significantly correlated for they share many metabolites,
including L-Asparagine, L-Aspartic acid, L-Isoleucine, and L-
Serine. These metabolites belong to cyanoamino acid metabolism
pathway. It has been proved that obesity significantly increase
risk for AD (Profenno et al., 2010). The information in HDMN
indicated that the restoration and maintenance of metabolic
balance may be helpful in treating AD. The above findings
indicated a promising prognostic and drug repurpose strategy for
AD, as well as other complex diseases.

To summarize, we have effectively identified the intrinsic
link between diseases and metabolites. The HDMN can
identify key disease metabolites and provide new insights
into the metabolic basis of complex disorders. Our future
studies will focus on the closely linked functional modules
and the metabolite nodes with greater impact and clinical
relevance, as well as improving the quality of raw data to
obtain a more accurate and robust network. The incompleteness
of metabolite data, disease-metabolite associations and the
false positive results greatly limited the completeness of
the HDMN. With the development of clinical data and
bioinformatics databases, this work will incorporate more

data types. Although our data and methodology are far
from completeness, our analysis of the HDMN, based on
the network characteristics, still offers a comprehensive
picture of global and significant associations between diseases
and metabolites.
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