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Introduction: The resting ECG is the most commonly used tool to assess cardiac

electrophysiology. Previous studies have estimated heritability of ECG parameters based

on these snapshots of the cardiac electrical activity. In this study we set out to determine

whether analysis of heart rate specific data from Holter ECGs allows more complete

assessment of the heritability of ECG parameters.

Methods and Results: Holter ECGs were recorded from 221 twin pairs and analyzed

using a multi-parameter beat binning approach. Heart rate dependent estimates of

heritability for QRS duration, QT interval, Tpeak–Tend and Theight were calculated using

structural equation modeling. QRS duration is largely determined by environmental

factors whereas repolarization is primarily genetically determined. Heritability estimates

of both QT interval and Theight were significantly higher when measured from Holter

compared to resting ECGs and the heritability estimate of eachwas heart rate dependent.

Analysis of the genetic contribution to correlation between repolarization parameters

demonstrated that covariance of individual ECG parameters at different heart rates

overlap but at each specific heart rate there was relatively little overlap in the genetic

determinants of the different repolarization parameters.

Conclusions: Here we present the first study of heritability of repolarization parameters

measured from Holter ECGs. Our data demonstrate that higher heritability can be

estimated from the Holter than the resting ECG and reveals rate dependence in the

genetic—environmental determinants of the ECG that has not previously been tractable.

Future applications include deeper dissection of the ECG of participants with inherited

cardiac electrical disease.

Keywords: ECG, heritability, human genetics, twins, Holter electrocardiogram

Abbreviations: ECG, Electrocardiogram; MZ, Monozygotic; DZ, Dizygotic; SCD, Sudden Cardiac Death; LQTS, Long QT

Syndrome.
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INTRODUCTION

The electrocardiogram (ECG) is an extraordinarily useful
non-invasive diagnostic tool that has been used in clinical
electrophysiology for over a century (Fye, 1994). Understanding
the genetic contribution to defining the waveforms on the ECG
is critical in understanding heritability of disease as well as
population variance in disease presentation. As a result many
studies have addressed this question using twin studies (Russell
et al., 1998; Carter et al., 2000; Mutikainen et al., 2009; Haarmark
et al., 2011). All of these studies, however, used measures from
resting ECGs. Typically, a resting ECG is recorded over ∼10 s
and gives a “snapshot” of the electrical activity of the heart, so
precluding the analysis of any rate-dependence to heritability of
ECG parameters.

As an alternative, recording cardiac electrical activity over
a 24-h period using continuous ambulatory ECG (Holter) is a
richer source of information with the potential to provide a
more complete phenotypic picture (Coumel et al., 1994), and a
more accurate estimate of heritability. No studies to date have
evaluated heritability of ECG parameters related to repolarization
from Holter ECGs. This is largely the result of the difficulties
associated with significant inter-beat variability, signal noise, and
manipulating and analyzing large data sets. Indeed, the usefulness
of Holter recording in diseases of repolarization has been
questioned (Mauriello et al., 2011). In this study we have negated
these issues by using an extended selective beat binning approach
(Badilini et al., 1999) based around features of the R wave—the
most unambiguous feature of the ECG waveform—to generate
averaged signals. By doing so we have been able to extract rate
specific data from the Holter ECG and measure heritability of
ECG parameters. Specifically, we tested: (1) whether heritability
estimated from Holter ECGs is larger than heritability measured
from resting ECGs, (2) the extent to which genetic determinates
of depolarization and repolarization parameters are heart rate-
dependent, and (3) Whether different genetic determinants are
involved in the heritability of individual ECG parameters related
to repolarization. Taken together, we test the hypothesis that
analysis of rate dependent data from Holter ECGs allow for a
more complete genetic dissection of cardiac electrophysiology
than a resting ECG.

MATERIALS AND METHODS

Participants
Holter recordings were carried out on 442 participants—123
monozygotic (MZ) complete pairs and 98 dizygotic (DZ)
complete twin pairs from the Netherlands Twins Registry (Neijts
et al., 2014). Seventy nine participants were taking medication
with the potential to alter the ECG (Supplemental Table 1) and
were excluded from the main analysis. For comparison, twin
correlations including participants on cardioactive medications
are shown in Supplemental Table 2. The study was approved
by the medical Ethics Committee of the VU University Medical
Center Amsterdam and the Human Research Ethics Committee
of the New South Wales Ministry of Health (Australia). All
participants gave written consent before entering the study.

Holter ECG Recording Procedure
Participants were visited in the morning at home or at the
work location when this was deemed more convenient. They
were fitted with the VU University Ambulatory Monitoring
System (VU-AMS) device to record the electrocardiogram
(ECG) continuously over a 24-h period; recording duration was
1440 ± 110 min (mean ± SD, n = 442), using seven disposable,
pregelled Ag/AgCl electrodes. After visually establishing proper
signal quality the recording was started. Participants were then
interviewed on health, medication, lifestyle and socioeconomic
and demographic information after which they filled out a
questionnaire on psychological wellbeing. The questionnaire
lasted on average 10 min and was completed while quietly sitting
in a secluded part of the house/work area. The last 4 min of
this quiet sitting period functioned as a baseline. Participants
were asked to refrain from exercise during the recording day.
The recordings were taken in an unstructured real life setting
meaning that no experimental control over the environment was
intended or achieved. Twins were not measured on a specific day
but with a few exceptions where recordings were rescheduled or
collided with holidays, recording was done in the same month
(with 46.8% of the pairs acquired within the same week). The
median interval betweenmeasurements for twin pairs was 9 days,
with a range between 0 and 280 days. Of particular relevance to
this study, participants were asked to refrain from exercise during
the recording day.

Electrodes were placed in modified CS5 lead positions—right
subclavicular region 4 cm to the right of the sternum (negative
electrode), under the left breast, 4 cm under the nipple (positive
electrode) and the lower right thorax (ground electrode)—to
obtain a derived Lead II. A typical averaged ECG obtained using
the modified CS5 lead positions is shown in Figure 1. The raw
ECG signal was imported into the VU-DAMS software (version
3.2, VUUniversity Amsterdam, www.vu-ams.nl) and exported to
an ASCII file sampled at 1 kHz for further processing.

In all cases, the T-P interval was used to define the isoelectric
line according to standard practice (Goldenberg et al., 2006). Five
landmarks were identified on each averaged ECG waveform. (i)
Q: first deflection from the isoelectric line after the P-wave, (ii) R:
peak of the QRS complex, (iii) S: intersection of S wave upstroke
and T-P isoelectric line, (iv) Tpeak: peak of the T-wave, (v) Toffset:
the point 95% of the distance from T-peak to the minimum of
the T wave. Since the modified CS5 lead positioning can result
in biphasic T-waves (where the end of the T wave overshoots
the isoelectric line; Figure 1), the minimum point is typically
taken as the end of the T wave (Van Lien et al., 2015). However,
since this minimum was sometimes very shallow, the time of the
absolute minimum was difficult to precisely identify. Therefore,
the time of 95% return from T-peak to the minimum of the T
wave was used as the end of repolarization as this could always be
accurately determined.

From these landmarks we measured the QRS duration (time
from Q to S), a measure of ventricular depolarization. We then
measured the QT interval (time from Q to Toffset), Tp–Te (time
from Tpeak to Toffset) and Th (amplitude from Tpeak to Toffset),
all measures of ventricular repolarization (Figure 1). Since P
waves could not be consistently measured, due to a combination
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FIGURE 1 | ECG acquisition. Three electrodes (positive, negative, and

ground) were placed in modified CS5 lead positions to obtain a derived Lead

II. The example waveform shows ECG landmarks (*) and the measured

intervals (QRS, QT, Tp–Te) and amplitudes (Th). For all intervals, the time of

95% return from T-peak to the minimum of the T wave was used as the end of

repolarization.

of signal noise (see for example Figure 2A), lead position and
the beat averaging approach, PR interval (a measure of atrial-
ventricular conduction) was not included in this study.

Extraction of Averaged ECGs from Holter
Recording
To obtain ECG signals representative of specific heart rates, we
used a beat binning approach. R wave peaks were picked using
a modified version of R-wave detection software available from
the open source PhysioNet resource (www.physionet.org). Every
beat of each recording was then binned in a 3-step process based
on characteristics of the R wave (Figure 2A) as follows:

Step 1: Beats classified by heart rate (RRn—The interval from
the previous R wave to that of the selected beat) (Figure 2B,
Panel 1).
Step 2: Each heart rate bin was then filtered by the amplitude
of the R wave (Ramp), to exclude abnormal and/or ectopic
beats. Only beats with an Ramp within 1 standard deviation
(SD) of the mean Ramp at that frequency were retained
(Figure 2B, Panel 2).
Step 3: Beats with an abnormally short or long coupling
interval to the subsequent beat (RRn+1), defined as > 2SD
from the mean, were also excluded (Figure 2B, Panel 3).

Beats within each bin were aligned using the R peak, and
the voltage at each timepoint averaged to give an ensemble
waveform representative of a particular heart rate (Figure 2C).
The relationship between intervals measured from the averaged
beat compared to the individual beats in a bin is shown in
Supplemental Figure 1. For subsequent analysis of heritability,
three heart rates were considered—Low (RR interval 1000 ms/60

FIGURE 2 | Beat binning approach. (A) 3 beats from a typical Holter trace.

For the beat highlighted in red, three measured parameters are shown: the

interval from the peak of the R wave to the previous R peak (RRn), the interval

from the R peak to the next R peak (RRn+1) and the R-amplitude (Ramp). (B)

Beats representative of different heart rates were selectively binned according

to a 3-step process. The example shown relates to a heart rate bin of 1000 ms

RR interval or 60 bpm. Step1: RRn ± 50 ms, Step 2: Ramp ± 1 SD, Step 3:

RRn+1 ± 2SD. (C) Family of waveforms extracted according to the binning

process illustrated in (B). Individual beats are represented in gray while the

averaged waveform is superimposed in red.

bpm), Medium (RR interval 770 ms/78 bpm) and High (RR
interval 625/96 bpm). These heart rate bins were chosen purely
to give the maximum amount of usable data over as wide a range
of heart rates possible. The number of usable averaged waveforms
extracted for each heart rate bin for the entire dataset is illustrated
in Supplemental Figure 2.

To permit comparison with previous estimates of heritability
for ECG parameters, a “resting ECG” was generated for
each participant (Supplemental Figure 3). In addition to QRS
duration, QT interval, Tp–Te and Th, we also calculated
corrected QT intervals for the resting ECGs, using both Bazett’s
and Fridericia’s formulae (Bazett, 1997). Rate corrected QT
has consistently been shown to have lower heritability than
uncorrected QT (Carter et al., 2000; Haarmark et al., 2011),
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a trend that was confirmed in our first pass twin correlation
calculations (see Supplemental Table 3). Therefore, all further
analysis was carried out using uncorrected QT for the resting
ECG, as the most stringent comparison to our Holter derived
heritability estimates.

All data went through a two-step process of quality
control. First, data were deemed unusable if there was an
insufficient number of beats at the specified frequency or
if there was too much noise. This left 323, 365, and 346
participants for low, medium and high heart rate respectively.
Usable data was extracted to derive “resting ECGs” for
427 participants. In stage two, two blinded independent
investigators checked the computer-detected points for the Q,
R, S, Tpeak, and Toffset for every tracing. If the computer-
generated data were deemed inaccurate, all measurements for
that participant at that particular heart rate were discarded.
After quality control, we had data for 322 participants at
low heart rate, 357 participants at medium heart rate and
313 participants at high heart rate (this corresponds to
90–99% of traces deemed usable). For the resting ECGs,
data from 385 participants were suitable for heritability
analysis.

Genetic Analysis Based on Twin Data
Genetic models were fitted to the data using structural equation
modeling in the software package Mx (Neale et al., 2003). When
data from twins are available, variance in an observed trait
is typically decomposed into variance due to latent additive
genetic factors (A), non-additive genetic factors (D), common
environment (C) shared by family members, and non-shared
or unique environment (E). In the classical twin design, which
includes monozygotic (MZ) and dizygotic (DZ) twins, estimates
of C and D are confounded as the total phenotypic variance, the
MZ covariance, and the DZ covariance only provide sufficient
information to estimate three out of four parameters (Boomsma
et al., 2002). Based on the pattern of twin correlations, we
chose to model either an ACE or an ADE model. After
establishing the most parsimonious variance components model
(ACE or ADE, AE, CE, or E) for each ECG parameter at
each frequency two separate analyses were conducted. First, to
test if heritability of the resting ECG differs from the Holter
ECG and to examine whether the heritability of the different
variables extracted from the Holter ECG was rate dependent,
quadrivariate genetic models were fitted to the ECG parameters
for the three rate groups (1.0, 1.3, and 1.6 Hz) and the resting
ECG group (Supplemental Figure 4). A full breakdown of
the statistical analysis used to determine which genetic model
best as well as to compare equality of heritability estimates is
presented in Supplemental Table 5. Second, to examine whether
the repolarization parameters were influenced by common or
different genetic factors, trivariate genetic models were fitted
to the rate specific Holter data (Supplemental Figure 5). From
these models we computed the genetic correlations between the
three parameters and the contribution of the common genetic
factor to the phenotypic correlation as previously described
(Neijts et al., 2014). Furthermore, an explicit description of
how genetic correlations were calculated in this context is

presented in Supplemental Figure 6. The comparison of the
fit of restricted models to the full model was performed by
means of likelihood-ratio (χ2) tests in which the difference
in twice the log likelihood (−2LL) between the two models
is calculated. When the likelihood-ratio test is significant,
the restricted model is considered to fit significantly worse
to the data than the fuller model it is tested against. All
models regressed the effects of age and sex on the phenotype.
A priori, we assumed no quantitative or qualitative sex
differences in the variance decomposition to be present so
only one MZ and one DZ correlation was estimated for each
variable.

RESULTS

Rate Dependence of ECG Characteristics
Measurement of ECG parameters from low, medium and high
heart rate averaged beats demonstrated that all measures of
repolarization were rate dependent (Figure 3 and Supplemental
Table 4). Specifically, both QT interval and Tp–Te (Figures 3A,B)
shortened with faster heart rates, while Th reduced in amplitude
(Figure 3C). In contrast, the QRS duration, a measure of
depolarization of the myocardium, was not rate dependent
Figure 3D).

Heritability of ECG parameters
Scatterplots of the MZ vs. DZ pairwise correlations for QT
intervals obtained from the low heart rate ECGs (Figure 4A) and
from the resting ECG (Figure 4B) are shown in Figure 4. From
these plots it is clear that there is a greater correlation in the

FIGURE 3 | Heart rate dependence of ECG parameters. (A) QT interval,

(B) Tp–Te, (C) Th and (D) QRS duration. For each box plot, the center line

marks the mean value, the outer box edges the 25th and 75th percentile and

the “whiskers” denote the 5th and 95th percentile.
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FIGURE 4 | QT interval correlations in twin pairs. Scatter plots and linear

regression of QT interval for monozygotic (MZ) and dizygotic (DZ) twin pairs

measured from low rate Holter ECG (A) or resting ECG (B).

monozygotic (MZ) twins compared to the dizygotic (DZ) twins,
consistent with there being a significant genetic contribution
to QT interval. The twin correlations for each of the 4 ECG
parameters at different heart rates are summarized in Table 1.
MZ pair correlations were higher than the DZ correlation in
all cases indicating that there is a genetic component for all
parameters.

Having established that there is a genetic component to each
of the ECG parameters, we performed formal twin modeling
to estimate heritability. Univariate analysis showed that all
estimation models could be reduced to combinations of additive
genetic and unique environmental factors, or an AE model
without significant loss of fit.

A quadrivariate AE model including low, medium and high
rate Holters and the resting ECG (see Supplemental Figure
4) was fitted to the data to estimate heritability. On the
whole, repolarization parameters (QT, Tp–Te, and Th) showed
a larger heritability estimate (ranging from 56 to 72% at low
heart rates) than QRS, the depolarization parameter (41%
at low heart rate) (Table 2). Significantly higher heritability
estimates could be obtained when measured from Holter data
compared to the resting ECG for QT interval (p < 0.01) and
Th (P < 0.05). Likewise, significant rate dependence of the
heritability estimate from Holter recordings was observed for
QT interval (p < 0.01) and Th (P < 0.05). A formal statistical
analysis of these relationships is presented in Supplemental
Table 5.

TABLE 1 | Monozygotic and dizygotic twin correlations from the saturated

model.

ECG parameter Rate MZ correlation DZ correlation

TpTe Low 0.62 (0.36–0.77) 0.12 (−0.27–0.46)

Medium 0.69 (0.49–0.81) 0.07 (−0.40–0.49)

High 0.55 (0.23–0.73) −0.39 (−0.71–0.34)

Resting 0.55 (0.29–0.71) 0.00 (−0.35–0.36)

Th Low 0.65 (0.34–0.80) 0.34 (−0.05–0.61)

Medium 0.66 (0.43–0.79) 0.46 (0.10–0.69)

High 0.53 (0.22–0.72) 0.42 (0.02–0.67)

Resting 0.54 (0.26–0.71) 0.06 (−0.25–0.36)

QT Low 0.71 (0.49–0.82) 0.07 (−0.33–0.45)

Medium 0.62 (0.38–0.76) 0.15 (−0.20–0.50)

High 0.50 (0.18–0.69) 0.25 (−0.17–0.57)

Resting 0.51 (0.23–0.69) 0.14 (−0.16–0.41)

QRS Low 0.52 (0.19–0.72) −0.10 (−0.46–0.30)

Medium 0.52 (0.23–0.71) −0.10 (−0.43–0.27)

High 0.42 (0.12–0.62) 0.07 (−0.47–0.55)

Resting 0.34 (0.06–0.56) −0.14 (−0.44–0.21)

99% CIs are shown in parentheses.

TABLE 2 | Heritability of ECG parameters for Low, Medium, and High heart

rate Holter and resting ECG.

Parameter Best Model ECG type Heritability (99% CI)

TpTe AE Low 56% (32–73)

Medium 63% (36–79)

High 52% (21–73)

Resting 56% (30–72)

Th AE Low 72% (53–83)

Medium 68% (49–80)

High 58% (36–73)*

Resting 55% (31–71)*

QT AE Low 69% (48–82)

Medium 58% (33–75)

High 34% (14–53)**

Resting 40% (18–58)**

QRS AE Low 41% (10–64)

Medium 41% (13–63)

High 42% (14–62)

Resting 32% (7–55)

Asterisks denote statistical difference compared to low rate Holter where **p < 0.01 and

*p < 0.05. Full statistical analysis is presented in Supplemental Table 5.

Rate Dependence of Genetic Factors
Influencing Holter ECG parameters
To further investigate the rate dependence observed above, we
tested the extent of the correlation among ECG parameters
measured at different heart rates and to what extent genetic
or environmental factors explained this phenotypic correlation
(see Table 3). Phenotypic correlations across heart rates ranged
from 0.47 to 0.94 and were highest for Th and QRS. The
genetic contributions to these phenotypic correlations were
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TABLE 3 | Phenotypic and genetic correlation between different heart

rates for individual ECG parameters.

Parameter/

Frequency

comparison

Phenotypic

correlation

Genetic

correlation

between rates

Contribution of genetic

factors to phenotypic

co-variance

Tp-Te

Low-medium 0.76 (0.67–0.83) 0.88 (0.73–0.97) 68% (39–86%)

Low-high 0.56 (0.41–0.67) 0.56 (0.20–0.80) 54% (14–82%)

Medium-high 0.76 (0.68–0.83) 0.89 (0.72–0.97) 66% (32–87%)

Th

Low-medium 0.93 (0.90–0.95) 0.98 (0.94–1.00) 74% (55–85%)

Low-high 0.82 (0.75–0.87) 0.91 (0.79–1.00) 72% (51–85%)

Medium-high 0.93 (0.90–0.95) 0.97 (0.93–1.00) 66% (45–79%)

QT

Low-medium 0.70 (0.61–0.78) 0.77 (0.57–0.92) 69% (42–86%)

Low-high 0.47 (0.32–0.59) 0.52 (0.15–0.78) 54% (14–81%)

Medium-high 0.72 (0.64–0.79) 0.84 (0.62–0.95) 52% (24–72%)

QRS

Low-medium 0.94 (0.92–0.96) 0.97 (0.84–1.00) 42% (12–65%)

Low-high 0.86 (0.81–0.90) 0.95 (0.79–1.00) 46% (13–69%)

Medium-high 0.90 (0.87–0.93) 1.00 (0.95–1.00) 46% (15–68%)

99% CIs are shown in parentheses.

higher for the repolarization parameters than for QRS (the
depolarization parameter). The 3rd column of Table 3 lists the
genetic correlation between rates for individual ECG parameters.
With the exception of the comparisons between Tp and Te at
low and high heart rates and QT at low and high heart rates, all
the other genetic correlations are very high, up to 1.0 for QRS
between medium and high heart rates. This indicates that largely
the same genetic factors influence the different ECG parameters
irrespective of the heart rate at which they are being measured.

Genetic Correlations between the
Repolarization Parameters
We next investigated whether the repolarization parameters (QT,
Th, and Tp–Te) were influenced by similar or different genetic
factors. At low and medium heart rates, phenotypic correlation
between the repolarization parameters were significant, but of
modest size, and the phenotypic covariance observed was almost
entirely caused by genetic factors (Table 4, last column). Despite
this, the genetic correlation between parameters was low. For
example, at low heart rates, genetic correlations were 0.38 for
QT/Tp–Te, −0.42 for QT/Th and −0.58 for Tp–Te/Th. At high
heart rates, there were no significant phenotypic or genetic
correlations between repolarization parameters.

DISCUSSION

In this study we present the first measurement of the heritability
of repolarization parameters from Holter ECGs. To achieve this
we used an extended selective beat binning approach to extract
data from Holter recordings that is representative of specific
heart rates. Twin modeling based on this approach resulted in
higher estimates of heritability for Th and QT interval compared

to the resting ECG. Furthermore, our approach allowed us to
interrogate the overlap between the genetic factors influencing
individual ECG parameters at different heart rates as well
as between the genetic factors that determine the different
repolarization parameters at each heart rate separately. Our data
therefore demonstrates the potential for analysis of Holter ECGs
to give a more complete insight into the genetic underpinnings
of the cardiac electrical system compares to what can be obtained
from the resting ECG.

Beat Binning Approach
The beat binning approach used here, binned by heart rate
followed by an efficient removal of outliers based on R-amplitude
and the RR interval of the subsequent beat, permits extraction
of low noise, averaged beats, representative of different heart
rates. Not only does this approach allow for genuine like-for-
like analysis between participants, i.e., we can directly compare
a 60 bpm waveform from each subject, it also allows us to
perform analysis of rate dependent trends in phenotype and
heritability that is not possible considering the resting ECG
alone. Another approach to examining rate dependent trends
in ambulatory Holter ECG data would be to use beat-to-
beat analysis. However, beat-to-beat analysis is complicated by
significant inter-beat variability and signal noise. Rather than
analysing the data on such a per-beat basis, our approach
selectively classifies beats, based on unambiguous properties of
the R-wave, meaning the complexities of beat-to-beat analysis
are avoided. Furthermore, most Holter analysis packages in
clinical use routinely annotate R-waves (e.g., GEMars, Spacelabs,
Philips) while many open source databases of Holter data
are preannotated (e.g., THEW, Physionet). As a result the
preprocessing of signals required for binning of data is already
available in most cases. By way of validation of our beat binning
approach, analysis of rate dependent trends in the characteristics
of the idealized waveforms were consistent with previously
published data. Specifically, QT interval and Tp–Te shortened,
and Th amplitude decreased with faster rates (Lehmann and
Yang, 2001; Batchvarov et al., 2002; Couderc et al., 2007; Malik
et al., 2008). Conversely, the QRS interval was rate-independent
in our data, also consistent with previous observations (Simoons
and Hugenholtz, 1975).

It should be noted that any averaging process represents
a compromise between getting a more representative overall
response vs. losing sensitivity to detect more subtle changes that
can occur on a beat-to-beat basis, such as QT hysteresis effects
and differences in autonomic tone between night and day. For
example, the potential confounding effect of QT hysteresis, is
that multiple QT intervals may be binned together with a single
RR interval after rapid changes in heart rate, when the QT
interval change is delayed relative to the heart rate acceleration
or deceleration (Malik, 2005). One way to tackle this is to bin
beats according to stability of the RR interval over the previous
30 beats for example rather than just the immediately preceding
beat (Badilini et al., 1999; Malik, 2005). Unfortunately, unless
the participant is kept in very controlled conditions (as might be
possible in the context of a clinical trial), the dataset is decimated
by this approach, and much of the Holter record needs to be
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TABLE 4 | Phenotypic and genetic correlation between repolarization ECG parameters at each heart rate.

Frequency/Parameter

comparison

Phenotypic correlation Genetic correlation between

parameters

Contribution of genetic factors to phenotypic

co-variance

LOW

QT-TpTe 0.38 (0.22–0.51) 0.38 (0.05–0.63) 65% (9–97%)

QT-Th −0.28 (−0.43 to −0.12) −0.42 (−0.70 to −0.12) 100% (39–00%)

TpTe-Th −0.39 (−0.52 to −0.24) −0.58 (−0.93 to −0.26) 92% (47–100%)

MEDIUM

QT-TpTe 0.32 (0.16–0.45) ns ns

QT-Th −0.25 (−0.40 to −0.09) −0.46 (−0.82 to −0.15) 100% (58–100%)

TpTe-Th −0.18 (−0.33 to −0.02) −0.36 (−0.75 to −0.06) 100% (58–100%)

HIGH

QT-TpTe 0.31 (0.15–0.46) ns ns

QT-Th ns ns –

TpTe-Th ns ns –

99% CIs are shown in parentheses.

eliminated. In our case, where Holter recordings were acquired
in a true unstructured real life setting, with no experimental
control over the environment, this was certainly the case. We
analyzed our data to quantify the number of useable individual
beats in each record based on the RR interval stability of a period
of 30 beats preceding the index beat. The criteria applied were
that the index beat was excluded from the binning process if
any of the preceding 30 beats fell outside of a threshold level of
variability from the mean RR interval of that 30 beat window.
The thresholds considered were±5 and±10%. This corresponds,
for example, to RR interval windows of 100 and 200 ms at 60
bpm. This approach excluded 91.8 ±7% and 61 ± 16% of our
data (SD; n = 163) at the variability thresholds of 5 and 10%
respectively. We were therefore unable to apply this additional
level of selection to our binning approach.While we acknowledge
this limitation, this was a necessary compromise to preserve the
dataset such that we had the statistical power to tackle the main
aims of our project—i.e., to improve heritability measures of
ECG parameters related to repolarization and to demonstrate
rate dependence to these heritabilities. We achieved both of these
aims despite these potentially confounding factors, and suggest
that in the context of a “perfect” dataset, the reported differences
might be even greater than we are able to resolve.

Heritability of ECG Parameters
Heritability of parameters related to depolarization (QRS
duration) was lower than for repolarization-related parameters
(QT interval, Tp–Te, and Th), with a maximum heritability of
42% for QRS duration, compared to between 63 and 72% for
repolarization parameters. Previous studies have not been able to
demonstrate a significant contribution of additive genetic factors
to QRS duration, possibly related to sample size (Mathers et al.,
1961; Havlik et al., 1980; Russell et al., 1998; Mutikainen et al.,
2009). Our study is therefore the first to present a formal measure
of the role of additive genetics in determination of this parameter.

For parameters related to repolarization, heritabilitymeasured
from our rate specific Holter data was at least comparable, or
higher, than our measures based on resting ECGs. In particular,
significantly higher heritabilities of QT (69% for low rate Holter

compared to 40% for the resting ECG, P < 0.01) and Th (72%
from low rate Holter compared to 55% for the resting ECG,
P < 0.05) were measured from the Holter data. The same trend
(of increased heritability measured from the Holter ECG) was
also evident when our estimates were compared to previously
published data based on resting ECGs. For example, the most
comprehensive twin study of repolarization parameters in resting
ECGs to date reported heritability of 67% for QT interval, 46%
for Tp–Te and between 34 and 47% for Th, after correction
for confounding factors such as age and sex (Haarmark et al.,
2011), in comparison to our measures of 69, 63, and 72%
respectively. More broadly, other studies have reported genetic
contributions of zero (Mutikainen et al., 2009), 25% (Carter
et al., 2000), 36% (Russell et al., 1998), and 60% (Dalageorgou
et al., 2008) to QT interval, and between zero and 72% for
Th (Haarmark et al., 2011). The estimates for Th however, are
heavily dependent on the lead selected from the resting ECG.
Of most direct comparison to our data, Mutikainen reported
heritability of 61% when measured from lead II (Mutikainen
et al., 2009). These results show that by considering data extracted
from Holter ECGs, higher heritability can be measured for most
ECG parameters and that rate specific ECG waveforms extracted
from Holter recordings give a more precise measure of the effect
of the underlying genotype than the resting ECG. It should
be noted however, that particularly at low rates, the binning
approach used in this study does not discriminate between day
and night periods meaning nocturnal intervals associated with
low autonomic tone will be mixed with diurnal intervals at
the same heart rate. It is therefore likely that our heritability
estimates are still underestimates of the true contribution of
additive genetics to ECG parameters at lower heart rates.

Rate Dependence of Genetic Factors
Influencing the ECG
A major advantage of our approach to analysing Holter data
is that we are able to measure the rate dependence of genetic
factors influencing the ECG—something that is not tractable
using the resting ECG. This is an important consideration in
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understanding the rate dependent changes that occur in T wave
morphology in both physiological (Smetana et al., 2003; Sadrieh
et al., 2013) and pathophysiological states (Couderc et al., 2007).
Our data showed that for QT interval and Th, heritability was
dependent on the heart rate. Possible explanations for these
observations included non-genetically determined adrenergic
responses, such as the conditioning effect of exercise. In contrast,
no significant effect of heart rate could be determined for QRS
and Tp–Te.

Additional analysis showed that the genetic contribution
to phenotypic covariance between rates varied for different
parameters (but was higher for all repolarization parameters
compared to QRS duration). Furthermore, this genetic
contribution was in general greatest at low heart rates, while at
faster heart rates, environmental factors played an increasing
role in defining ECG characteristics (Table 3, column 4). In
considering the genetic correlation between rates, our analysis
showed that the overall genetic factors that influenced each of
the ECG parameters between heart rates largely overlapped,
as indicated by the very high genetic correlation between rates
for individual parameters (see Table 3 column 3). These data
therefore support the concept that the same components of the
rhythmonome define individual ECG parameters regardless of
the heart rate.

Genetic Overlap between Repolarization
Parameters
In addition to examining the genetic overlap between different
heart rates for individual ECG parameters, we also examined
the genetic overlap between pairs of repolarization parameters
at a given heart rate. This latter analysis demonstrated that
even though the genetic contribution to phenotypic covariance
between repolarization parameters is very high, the genetic
correlation between parameters is relatively low (between 0.38
for QT and Tp–Te and 0.58 for Tp–Te and Th at low heart rates)
suggesting there is relatively little overlap between the genetic
factors that define these parameters. This is consistent with our
previous studies that showed that individual ECG parameters
had very different sensitivities to variability in cardiac ion
channel genes (Sadrieh et al., 2013, 2014). This is an important
observation as it establishes that in order to fully describe the
effect of an individual’s genotype, multiple parameters describing
the ECG waveform must be measured.

Clinical Perspective
The QT interval is a commonly used diagnostic parameter that
reflects the duration of cardiac repolarization. In the clinical
setting, either shortening or prolongation of QT has long
been associated with risk of sudden death, while drugs that
prolong the QT interval increase risk of ventricular arrhythmias.
More recently, characterization of T-wave morphology has
been explored in characterizing repolarization, improving the
discrimination between subtypes of LQTS. Our work expands on
this by showing that Tp-Te and Th, as well as QT, have significant
heritable components and more importantly that the genetic
basis of this heritability differs for the different repolarization
parameters. A consequence of this observation is that one
must measure multiple ECG parameters from a patient to fully

reflect the individual’s genotype, since measuring one individual
parameter, the QT interval for example, only represents a fraction
of the whole cardiac ion channel gene complement.

Limitations
The biphasic T wave produced by the electrode configuration
in this study precluded measurement of the end of the T wave
using the intersection of a tangent to the downslope of the T
wave with the isoelectric line. Instead, Toffset was used as the end
of the T wave in this study as previously published (Van Lien
et al., 2015) and described here (see Materials and Methods).
The major limitation of our approach is that in binning beats
based on RR interval we are unable to take into account effects
related to changes in autonomic tone, circadian variability in
QT interval or QT hysteresis. However, this was a necessary
compromise imposed by the need to maintain the volume of data
for individual heart rates that gives us the statistical power to
measure rate dependent changes in heritability for example. We
would suggest the differences we report might be greater in the
context of a “perfect” dataset.

CONCLUSION

In conclusion, our novel beat binning approach to analysis of
the Holter ECG has allowed the first rate specific estimate of
the heritability of ECG parameters from the Holter ECG. Our
data demonstrates that higher measures of heritability can be
estimated from the Holter than the resting ECG, suggesting that
this approach allows a more complete assessment of the genetic
contribution to cardiac electrical activity. Furthermore, we show
rate dependence in the genetic—environmental determinants of
the ECG that has not previously been tractable. Future potential
uses of this type of analysis include deeper dissection of the ECG
of participants with inherited cardiac electrical disease.
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