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Introduction: A decrease of detection of outbreaks by multidrug-resistant bacteria in critical areas has been
reduced due to COVID-19 pandemic. Therefore, molecular epidemiological surveillance should be a primary
tool to reveal associations not evident by classical epidemiology. The aim of this work was to demonstrate
the presence of hidden outbreaks in the first wave of the COVID-19 pandemic and to associate their possible
origin.
Methods: A population of 96 COVID-19 patients was included in the study (April to June 2020) from Hospital
Ju�arez de M�exico. Genetic identification and antimicrobial susceptibility testing of VAP causative agents iso-
lated from COVID-19 patients was performed. Resistance phenotypes were confirmed by PCR. Clonal associa-
tion of isolates was performed by analysis of intergenic regions obtained. Finally, the association of clonal
cases of VAP patients was performed by timelines.
Results: ESKAPE and non-ESKAPE bacteria were identified as causative agents of VAP. ESKAPE bacteria were
classified as MDR and XDR. Only A. baumannii and P. aeruginosa were identified as clonally distributed in 13
COVID-19/VAP patients. Time analysis showed that cross-transmission existed between patients and care
areas.
Conclusions: Acinetobacter baumannii and Pseudomonas aeruginosa were involved in outbreaks non-detected
in COVID-19/VAP patients in the first wave of COVID-19 pandemic.
© 2022 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All

rights reserved.
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The COVID-19 pandemic has accumulated a high number of
deaths,1 where it has been estimated that approximately 80% of
patients admitted to intensive care units (ICU) require mechanical
ventilation, which is a risk factor for the development of ventilator-
associated pneumonia (VAP).2,3 Patient-associated comorbidities are
another risk factor that increases the likelihood of acquiring VAP,
complicating the clinical condition of COVID-19 patients and directly
impacting the mortality.2,4-6 Among the causative agents of VAP in
COVID-19 patients are those belonging to the ESKAPE group.7-9 This
acronym is composed of bacteria such as Enterococcus faecium, Staph-
ylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, Enterobacter spp., among others.10,11 These
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bacteria have been recognised as pathogens in critically ill and immu-
nocompromised individuals, and may be associated with resistance
to multiple antibiotics.5,12,13 The hospital environment play an
important role in the development of Healthcare-Associated Infec-
tions (HAI) including VAP.14,15 This is because these microorganisms
have been isolated from inert surfaces, medical devices, and health-
care personnel, suggesting that the nosocomial environment is an
important reservoir of pathogens.16 The spread of bacteria in ICUs
often occurs through cross-transmission events mediated by health-
care personnel.17,18 This phenomenon has been demonstrated in
previous studies by using molecular Biology assays and case associa-
tions, where it was observed that 20%-40% of pathogens identified in
patients and medical devices were genetically related.19,20 These
results allowed speculation that the common source of contamina-
tion could be the hands of healthcare personnel who previously han-
dled medical devices or patients with active infections. The use of
other molecular tools, which have advantages over other techniques,
have allowed the identification of cross-transmission in ICUs of
COVID-19 patients. The analysis of intergenic regions, demonstrated
the clonal dispersion of A. baumannii on inert surfaces, healthcare
personnel, and on the skin of COVID-19 patients.16 In contrast, the
application of ERIC-PCR identified that mechanical ventilators of
COVID-19 patients play an important role as reservoirs of pathogens
and could be involved in the occurrence of undetected outbreaks.21,22

This is why it has been suggested that a molecular approach in the
COVID-19 pandemic is necessary for the containment of outbreaks
associated by antibiotic-resistant bacteria.16 Since A. baumannii has
been recognised as the main causative agent of VAP in Hospital Juarez
de M�exico (HJM), it is necessary to implement epidemiological sur-
veillance at this pathogen. This will be done through genetic identifi-
cation of VAP causative agents and identification of clones by analysis
of intergenic regions of A. baumannii and other pathogens circulating
in ICUs of COVID-19 patients. Implications on the identification of
ESKAPE pathogen clones causing VAP in COVID-19 patients and the
use of adequate disinfection process are analysed and discussed.

MATERIAL ANDMETHODS

Ethical considerations

The institutional Committee of Research, Ethics, and Biosafety
from HJM approved the protocol under the registration number HJM
002/211 in accordance with the Regulation of the General Health
Law on Research for Health (http://www.conbioetica.mexico.salud.
gob.mx/descargas/pdf/normatividad/normatinacional/10._NAL.
_Reglamento_de_Investigacion.pdf).

Description of the Hospital Ju�arez de M�exico in the COVID-19 era

Derived from the pandemic by the SARS-CoV-2 virus, the HJMwas
converted to care COVID-19 patients. For this purpose, a total of 160
beds were distributed in seven areas, and multidisciplinary 15 health
workers medical staff (morning, evening and night shifts), was
involved in the care of each critical COVID-19 patient. Empirical treat-
ments for VAP were ceftriaxone (1-2 g per 24 h) and due to the
national shortage of colistin, the final treatments were meropenem
(1 g per 24 h), imipenem (500 mg per 6-8 h), and piperacillin/tazo-
bactam (4 g per 6 h). Finally, as an HAI control measures, towels
impregnated with H2O2 (Oxivir Tb, CA) were used as disinfection
method.

Study population of COVID-19 patients with VAP

A population consisting of 96 COVID-19 patients was included in
the study during the period between April to June 2020 (first wave).
These patients met the inclusion criteria for suspected VAP (fever
acquired after 48 h of intubation, purulent pulmonary secretions, leu-
kocytosis, and infiltrates on chest X-ray).23-25 In aseptic conditions,
COVID-19 patients were sampled through tracheal aspirates and
were transported at 4°C to the research laboratory for their microbio-
logical culture. Additionally, demographic data was obtained from
medical records in order to describe COVID-19 patient population.

Isolation of ESKAPE bacteria from COVID-19 patients with VAP

Prior to bacteriological isolations, tracheal aspirates were handled
under a biosafety level 2 cabinet according to laboratoryiosafety with
the operator wearing a coverall protective gown. Tracheal aspirates
were cultured on selective MacConkey and Mannitol Salt agar (Bec-
ton Dickinson & Co., Franklin Lakes, NJ) and were incubated aerobi-
cally at 37°C for 24-48 h. Subsequently, bacterial strains were
purified in LB agar, were growth in LB-broth, then frozen in glycerol
(50%) and stored at �70°C for future experiments.

DNA extraction

For molecular biology assays, total DNA from strains was isolated
and purified by using the DNeasy Blood & Tissue Kit (QIAGEN, Venlo,
The Netherlands). Integrity of genomic and DNA was visualized on
horizontal 0.8% agarose gels and were used as templates in PCR
assays.

Genetic identification of ESKAPE bacteria

Amplification reactions were performed in a T100 Thermal cycler
(Bio-Rad, Germany) Polymerase chain reactions of the 16S rRNA gene
were performed with universal primers 27F and 1492R by using the
conditions recommended by DeSantis et al., (2007)26 (Table 1).
Amplicons were analysed on horizontal 1.5% agarose gels by using
1 £ Tris-Borate-EDTA buffer (TBE). PCR products were purified and
sequenced by the Biology Institute of Universidad Nacional Aut�onoma
de M�exico (UNAM) by using a DNA Analyzer 3730xL (Applied Biosys-
tems, Forrest City, CA). Nucleotide sequences were compared with
the nucleotide sequence database (GenBank) by means of the Blast
algorithm (http://blast.ncbi.nlm.nih.gov), using parameters of cover-
age (>80%) and identity (90%).

MDR, XDR, and PDR classification of ESKAPE bacteria isolated from
COVID-19 patients

The classification of MDR (multidrug-resistant), XDR (extensively
drug-resistant) and PDR (pandrug-resistant) of ESKAPE bacteria iso-
lated from COVID-19 patients, were through of susceptibility/resis-
tance assays, according to “Consenso latinoamericano para definir,
categorizar y notificar pat�ogenos multirresistentes, con resistencia
extendida o panresistentes27” and CLSI (2021),28 respectively. Pseudo-
monas aeruginosa ATCC 27853, E. coli ATCC 25922, and S. aureus ATCC
25923 were used as controls. Results were inferred as susceptible,
intermediate, or resistant by measuring the diameter of the inhibition
zone. The frequency of antibiotic resistance was calculated and repre-
sented in percentages (%) and MDR, XDR, and PDR classification was
done.

Carbapenemase production and their relationship with their genotype in
ESKAPE bacteria

Carbapenemases detection by mCIM assay
ESKAPE bacteria were subjected to the modified carbapenem

inactivation method (mCIM) according to the method recommended
by Pierce et al., (2017)29 In brief, two 1-mL loopfuls of ESKAPE bacteria
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Table 1
Primers used in this study

Primer Molecular target Sequence (5�!3�) Size (bp) Referencce

27F 16S rRNA AGAGTTTGATCMTGGCTCAG 1492 26

1492R TACGGYTACCTTGTTACGACTT
oxa-23-F oxa23 GATGTGTCATAGTATTCGTCG 1065 34

oxa-23-R TCACAACAACTAAAAGCACTG
adeA-F adeA TCTGCAATATGCAACAGTTC 236 16

adeA-R GGCTATTGGTAATACGAACG
adeB-F adeB TTAACGATAGCGTTGTAACC 541
adeB-R TGAGCAGACAATGGAATAGT
adeC-F adeC AGCCTGCAATTACATCTCAT 560
adeC-R TGGCACTTCACTATCAATAC
AdeR-F adeR GCGTCAGATTAAGCAAG 447
AdeR-F ACTACGATATTGGCGACATT
AdeS-F adeS AGTGGAAGTTAGGTCAAGTT 544
AdeS-R TTGGTTAGCCACTGTTATCT
ERIC1R Intergenic consensus ATGTAAGCTCCTGGGGATTCA Variable 35

ERIC2 AAGTAAGTGACTGGGGTGAGC
MultiIMP_for blaIMP TTGACACTCCATTTACDG 139 31

MultiIMP_rev GATYGAGAATTAAGCCACYCT
MultiVIM_for blaVIM GATGGTGTTTGGTCGCATA 390
MultiVIM_rev CGAATGCGCAGCACCAG
NDM-Fm blaNDM GGTTTGGCGAT CTGGTTTTC 621 32

NDM-Rm CGG AATGGCTCATCACGATC
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from an overnight blood agar plate were emulsified in 2 mL trypti-
case soy broth. Subsequently, a 10-mg MEM disk (BD, Brea, CA) was
immersed in each suspension and incubated at 37°C for 4 h. Further-
more, a Mueller-Hinton (MH) was massive plated with E. coli ATCC
25922 (MEMS) suspension adjusted to 0.5 McFarland nephelometer.
Finally, MEM disks were removed from the bacterial suspension and
were deposited on MH plate with indicator MEMS strain. MH plates
were incubated at 37°C for 18-24 h and the zones of inhibition were
measured as for the routine disk diffusion method. Klebsiella pneumo-
niae blaNDM-1 was used as positive control.30

Molecular screening to confirm carbapenemase production in ESKAPE
bacteria

The genetic resistance background in ESKAPE bacteria (only carba-
penemase-producer) that confer resistance to b-lactams (previously
detected by mCIM assay), RT-PCR assays were performed to detect
metallo b-lactamases and serine b-lactamases genes, by using CRE
ELITe MGB (Torino, Italy) kit according to the manufacturer’s manual.
Isolates with positive PCR in first step were subjected to second PCR
assays in order to detect specific carbapenemase genes (blaNMD, blaVIM,
blaIMP).31,32

Resistance to b�lactams (blaOXA) in Acinetobacter baumannii
population

Once detected the phenotype of resistance to b�lactams in A. bau-
mannii strains, a member of blaOXA subfamily (blaOXA-23) in these pop-
ulation (n = 14) was detected by end-point PCR. Amplicons were
purified, sequenced, and analysed by nucleotide alignment by using
UGENE (42.0). Primers used for this purpose are shown in Table 1.

Molecular screening to detect mcr gene in ESKAPE bacteria
To confirm the absence of colistin resistance in ESKAPE bacteria,

RT-PCR assays were performed to detect mcr-1 and mcr-2 genes,
using COLISTIN-R ELITe MGB (Torino, Italy) kit according to Girlich et
al. (2019).33

Assembly of AdeABC operon and regulators genes AdeRS in A. baumannii
Full operon AdeABC encoding efflux pumps and their regulator

genes AdeRSwere amplified by end-point PCR in A. baumannii strains.
Detection was performed under amplification strategy of conserved
genes as follows: a first PCR reaction was performed to amplify the
AdeA gene encoding a protein forming a dimeric complex that
anchors in the periplasmic region of the cell. Once a positive amplifi-
cation to first molecular target was performed, a second reaction to
amplify adeB gene (encoding an intermembrane protein) was carried
out. Finally, a third reaction was performed to amplify the AdeC gene
(encoding an extramembrane protein). Additionally, AdeR and AdeS
genes encoding a regulator protein and activating protein kinase
respectively were amplified.16 Sequences of primers used for
AdeABCRS operon amplification are shown in Table 1.
Relation of Efflux pump AdeABC and MDR in A. baumannii
The possible relation between the MDR phenotype and the pres-

ence of detected efflux pumps was analysed as follows. Strains were
tested for resistance before and after exposure to the efflux pump
inhibitor with Phe-Arg-b -naphthylamide (PAbN; Sigma, St. Louis,
MO). This inhibitor was supplemented in the culture medium at a
final concentration of 20 mg/mL. Significant inhibition was defined as
a 4-fold or greater increase to the halo of inhibition in the presence of
PAbN and the antibiotic tested.16
Molecular typing of ESKAPE members by ERIC-PCR
ESKAPE bacteria was subjected to molecular typing by ERIC-PCR,

by using the primers ERIC1R and ERIC235 (Table 1). The total reaction
volume was 50 mL and consisted of molecular Biology grade water,
1 £ PCR buffer, 20 nM MgCl2, 25 mM deoxyribonucleotides phos-
phate, 100 pM of each primer, 3 units of Taq DNA polymerase
(Thermo Scientific, Foster City, CA, USA) and 300 ng of template geno-
mic DNA. Cycling conditions were as follows: pre-denaturation at 95°
C for 7 s, denaturation at 90°C for 30 s, annealing at 58°C for 1 min,
and extension at 65°C for 8 min, with a final extension at 68°C for
16 min at the end for 30 cycles. Genetic profiles were run in 1 £ TBE
buffer, pH 8.3, and separated in horizontal electrophoresis in 1.5%
agarose gels, visualized, photographed under UV illumination, and
analysed by intra-gel pattern comparison by using ImageLab 5.2.1. To
confirm the reproducibility of ERIC-PCR assays three times was done.
Tenover criteria was used in order to established the clonal relation-
ship between isolates with the same genus and specie.36 Finally,
graphical relationship was performed through distance matrix by
using a linear semilogarithmic method. The dendrograms were con-
structed using the UPGMA algorithm, with the Dice similarity index.



Table 2
Distribution of COVID-19/VAP patients by sex, age groups admitted to Hospital Ju�arez
de M�exico

Patient clasification Gender (%/n)

Male Female

Pediatric* 0/0 2.9/1
Young adultsy 3.2/2 5.9/2
Adultsz 69.3/43 55.9/19
Elderly{ 27.5/17 35.3/12
Total 100/62 100/34

*0-18 years old.
y18-35 years old.
z36-64 years old.
{>64 years old.
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Genomic similarity were confirmed with a bootstrap test of 1,000
repetitions using the Past4 program (Version 4.09).

RESULTS

Description of population of COVID-19 patients with VAP

During the period from April to June 2020 (first wave), patients
with suspected COVID-19 were admitted to HJM. According to the
CO-RADS system, these patients were classified according to their
degree of severity as reported by Prokop et al., (2020).37 The study
population was categorised as critical and therefore underwent
mechanical endotracheal intubation. COVID-19/VAP patients were
Fig 1. Frequency of ESKAPE and non-ESKAPE bacteria isolated. A. Gram negative
cared for in 6 different areas named COVID-19 AREAS (A, B, C, D, E, F,
G). Table 2 shows the distribution of COVID-19/VAP patients by sex
and age.
ESKAPE and non-ESKAPE bacteria isolated from COVID-19/VAP patients

Bacteriological analysis by classical microbiology revealed that only
56.3% (n = 54) of the tracheal aspirates showed bacterial growth with
presumptive clinical value. Polymicrobial and monomicrobial cultures
were identified in 42.6% (n = 23) and 57.4% (n = 31), respectively. Patients
in the adult (36-64 years old) and elderly (>64 years old) age groups
were those who developed polymicrobial infections. Monomicrobial
infections were heterogeneously identified in all four age groups. A total
of 60 and 23 isolates taxonomically classified as Gram-negative and
Gram-positive were identified, respectively. Sequence analysis showed
that 63.85% (n = 53) were isolates belonging to the ESKAPE group (Fig 1).
Finally, other genera and species implicated in HAI, as well as bacteria
considered commensal and environmental, were identified.
High frequency of MDR and XDR ESKAPE bacteria

The results showed that A. baumannii (n = 14/26.4%), P. aeruginosa
(n = 5/9.4%) and K. pneumoniae (n = 5/9.4%) strains were classified as
MDR. XDR phenotype was identified in P. aeruginosa in 3 isolates
(5.6%). Resistant phenotypes for Enterobacterales group (except K.
pneumoniae) were classified according to Magiorakos et al., (2012)38

(Table 3).
population, B. Gram positive population and C. ESKAPE bacteria population.



Table 3
Frequency of antimicrobial resistant obtained by CLSI in ESKAPE bacteria isolated of COVID-19/VAP patients from Hospital Ju�arez de M�exico

Antibiotic Antimicrobial resistant frequency in ESKAPE and non-ESKAPE bacteria n (%)

Acinetobacter baumannii (n = 14) Pseudomonas aeruginosa (n = 19) Enterobacterales (n = 20)

S* Iy Rz S I R S I R

AMC ND{ ND ND ND ND ND 8 (40) 8 (40) 4 (20)
AN 0 (0) 0 (0) 14 (100) 13 (68.4) 1 (5.3) 5 (26.3) 17 (8) 2 (20) 1 (5)
CAZ 0 (0) 0 (0) 14 (100) 12 (63.1) 0 (0) 7 (36.8) 9 (45) 0 (0) 11 (55)
COL 14 (100) 0 (0) 0 (0) 14 (100) 0 (0) 0 (0) 14 (100) 0 (0) 0 (0)
CRO 0 (0) 0 (0) 14 (100) ND ND ND 5 (25) 0 (0) 15 (75)
CTX 0 (0) 0 (0) 14 (100) ND ND ND 2 (20) 1 (5) 15 (75)
CZA ND ND ND 12 (63.1) 0 (0) 7 (36.8) 18 (9) 0 (0) 1 (5)
ETP ND ND ND ND ND ND 18 (90) 0 (0) 2 (10)
FEP 0 (0) 3 (21.4) 11 (78.6) 12 (63.2) 2 (10.53) 5 (26.3) 13 (65) 3 (15) 4 (20)
GM 0 (0) 0 (0) 14 (100) 14 (73.7) 0 (0) 5 (26.3) 13 (65) 0 (0) 7 (35)
IPM 1 (7.1) 0 (0) 13 (92.9) 9 (47.4) 0 (0) 10 (52.6) 85 (90) 1 (5) 2 (10)
LVX 0 (0) 0 (0) 14 (100) 9 (47.37) 2 (10.53) 8 (42.1) ND ND ND
MEM 1 (7.2) 0 (0) 13 (92.9) 10 (52.6) 0 (0) 9 (47.4) 85 (90) 1 (5) 2 (10)
SAM 3 (21.4) 4 (28.6) 7 (50) ND ND ND 7 (35) 3 (15) 10 (50)
STX 0 (0) 0 (0) 14 (100) ND ND ND 11 (55) 0 (0) 9 (45)
TET 3 (21.4) 0 (0) 11 (78.6) ND ND ND ND ND ND
TGC 14 (100) 0 (0) 0 (0) ND ND ND ND ND ND
TZP 0 (0) 0 (0) 14 (100) (47.4) 0 (0) 10 (52.6) 12 (0) 7 (35) 1 (5)

*Sensitive.
yIntermediate.
zResistant.
{Nondeterminated.Abreviations: AMC, Amoxicillin/Ac. Clavulanic; AN, Amikacin; CAZ, Ceftazidime; COL, Colistin; CRO, Ceftriaxone; CTX, Cefotaxime; CZA, Ceftazidime/Avibactam;
ETP, Ertapenem; FEP, Cefepime; GM, Gentamicin; IPM, Imipenem; LVX, Levofloxacin; MEM, Meropenem; SAM, Ampicillin/Sulbactam; STX, Trimethopim/Sulfamethoxazole; TET,
Tetracycline; TGC, Tigecycline; TZP, Piperacillin/Tazobactam.
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MDR/XDR phenotype/genotype and their relationship in
carbapenemases production

ESKAPE bacteria (30.2%/n = 16) and non-ESKAPE bacteria (1.8%/
n = 1) were capable to hydrolyse carbapenems. Acinetobacter
Table 4
Genetic background of antimicrobial resistance in ESKAPE and non-ESKAPE bacteria isolated

Strain Carbapenem
resistancek

mCIMx Metallo b-lactamases

NDM,IMP,VIM

AB*-10 + - -
AB-20 + - -
AB-28 + - -
AB-66 + - -
AB-70 + + -
AB-73 + + -
AB-84 + + +**/blaVIMyy

AB-86 + + -
AB-97 + + -
AB-102 + + -
AB-104 + + +/blaVIM
AB-106 + + -
AB-108 + + -
AB-112 + - -
PAy-5(2) + + +/blaVIM
PA-9 + + +/blaVIM
PA-11 + + +/blaVIM
PA-27 + + +/blaVIM
PA-78 + + +/blaVIM
PA-81(2) + + +/blaVIM
ECLOz-77(2) + + +/blaVIM
EC{-23(2) + + +/blaNDM

*Acinetobacter baumannii.
yPseudomonas aeruginosa.
zEnterobacter cloacae.
{Escherichia coli.
kAccording to CLSI (2021).
xModified carbapenem inactivation method.
**Real time-PCR.
yyEnd point-PCR.
zzNon-determinated.
baumannii (n = 9) was the most prevalent carbapenemase-producer
and 6 strains of P. aeruginosa were also carbapenemase producers.
Finally, Escherichia coli (n = 1) and E. cloacae (n = 1), were capable to
hydrolyse meropenem. The results of antimicrobial resistance geno-
type are shown in Table 4.
from COVID-19/VAP patients from Hospital Ju�arez de M�exico

** Serine b-lactamases Colistin resistance**

KPC**/OXA-48** OXA-23yy mcr-1/2

- + -
- + -
- - -
- + -
- - -
- + -
- - -
- - -
- - -
- - -
- + -
- - -
- - -
- + -
- NDzz -
- ND -
- ND -
- ND -
- ND -
- - -
- ND -
- ND -
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Acinetobacter baumannii of COVID-19/VAP patients carrying full
AdeABC operon

Full operon AdeABC and their regulator genes AdeRS were ampli-
fied in all A. baumanniiMDR strains. Additionally, to genetic detection
of the efflux pump, assays of inhibition of this pump were performed
to confirm their functionality, through MDR phenotype reversion.
The results showed there was no association of efflux pump inhibi-
tion and antibiotic resistance.
Molecular typing of ESKAPE members by ERIC-PCR

Profiles of the intergenic products revealed sizes of amplicons
from ESKAPE ranged from slightly more than �100 bp to about
�3000 bp. Intergenic region diversity of A. baumannii showed that
the 14 isolates were grouped in seven unique clones, where 11 of
them identified 4 clonal groups. A broad genomic diversity of P. aeru-
ginosa strains was detected. This is due to the fact that out of the total
of 19 strains, 17 were not grouped, and one clonal group was
detected (Fig 2). Finally, Klebsiella pneumoniae and E. cloacae isolates,
a broad genomic diversity was observed (Fig 3).
Acinetobacter baumannii clonal dispersion investigation

Four clonal clusters of A. baumannii were detected in the last
month of the quarter analysed, according to the chronology of their
appearance, the origin of these clonal clusters started in the COVID-
19 “A and B” areas. No patients survived. Figure 4 shows the timeline
for A. baumannii clonal detection events by date and COVID-19 area
(A, B, and C). The Table 5 summarises the most relevant characteris-
tics of the COVID-19/VAP patients involved in the detection of the
four A. baumannii clonal groups.
Fig 2. Genomic diversity by dendrogram construction of Acinetobacter baumannii isol
DISCUSSION

Research on the new SARS-CoV-2 virus has focused on the study
of its pathogenesis, evolution, treatment, vaccines, among others.39-
41 However, the study of the bacterial agents that complicate the clin-
ical status of COVID-19 patients, as well as the genetic basis of antimi-
crobial resistance and its clonal dispersion in critical areas has been
poor explored. It is known that VAP-causing pathogens prolong and
complicate their hospital stay, so their identification and contain-
ment through prospective epidemiological surveillance should be a
priority. This study showed that the pathogens that cause VAP in
COVID-19 patients form part of the nosocomial reservoir in non-
COVID-19 and pandemic periods.12,16,22 This is because pathogens
found in ICU patients (ESKAPE and non-ESKAPE group) have also
been shown to be identified on inanimate surfaces, medical person-
nel and devices used in respiratory therapy, such as mechanical ven-
tilators. Statistics from this work showed that the male patient
population had the highest prevalence of COVID-19 (Table 2). It has
been shown that ACE2 receptor levels are significantly higher
in this sex, a factor of susceptibility to SARS-CoV-2 infection and
consequently fatal outcomes.42 Conversely, 88.54% of the population
studied was over 41 years, where age has been recognised as a
predisposing factor, mainly in those who presented the disease
during the first wave of the pandemic (Table 2).43-46 Other suscepti-
bility factors include impaired immune response, which leads to
impaired control of viral replication and prolonged inflammatory
response.45,47 All these complications together trigger acute respira-
tory distress syndrome (ARDS), where mechanical ventilation (MV)
plays an important role in supporting respiratory support for the
maintenance of these patients.48 ARDS is a well-known risk factor
for VAP and is related to the incidence in patients with MV.8,48 The
percentage of bacterial co-infections in our study was 56.25%, fre-
quencies of 17.2% to 89% have been reported elsewhere in the
ated from COVID-19/VAP patients of the Hospital Ju�arez de M�exico by ERIC-PCR.



Fig 3. Genomic diversity by dendrogram construction of ESKAPE bacteria isolated from COVID-19/VAP patients of the Hospital Ju�arez de M�exico by ERIC-PCR.
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world.8,9,13,49,50 We speculate that these frequencies may vary
depending on factors, such as adherence to correct clinical practices
in patient management, hand washing technique, and adequate dis-
infection methods.22 As a result of these problems, the need and
interest in epidemiological surveillance for the containment of both
SARS-CoV-2 and HAI-causing bacteria arose at the HJM. The ESKAPE
group was the microorganisms are mainly responsible for HAI,
including VAP.10,48,51 These bacteria have been previously reported
in patients with VAP and SARS-CoV-2 infection.7,9,13 In contrast, 44%
of the study population had clinical features suggestive of VAP but
failed to isolate the causative agent. We speculate that the microbio-
logical culture bias is due to the fact that only ESKAPE bacteria were
Fig 4. Timeline of detection of clonal groups of MDR Acinetobacter baumanni
targeted. This may have influenced the detection of other microor-
ganisms related to this nosocomial infection. Previous studies report
the presence of pathogens that can cause VAP in COVID-19 patients
that could be undetected by microbiological analysis. Co-infections of
COVID-19 patients with yeast Candida spp., and other bacteria not
investigated in this study have been reported.9,52,53 The COVID-19
pandemic has had several consequences, including a possible
increase in antimicrobial resistance (AMR), where the irrational use
of antibiotics has been described as the main cause.54 Antibiotic resis-
tance and its persistence are associated with the risk of therapeutic
failure and resilient infections.55 We detected isolates with resistance
to tested antimicrobials, mainly b�lactams and other agents used in
i isolated from COVID-19/VAP patients of the Hospital Ju�arez de Mexico.



Table 5
Characteristics of COVID-19/VAP patients involved in clonal dispersion groups of MDR Acinetobacter baumannii strains from Hospital Ju�arez de M�exico

Sex Age ICU admision reason Clonal group Date of first CR-AB isolate collection CR-ABy isolate source Hospital Stay (days) Patient outcomes

M 43 SDRA* 1 21/05/20 Tracheal aspirate 25 Deceased
M 55 SDRA 25/05/20 Tracheal aspirate 12 Deceased
M 57 SDRA 01/06/20 Tracheal aspirate 22 Deceased
F 55 SDRA 12/06/20 Tracheal aspirate 19 Deceased
F 33 SDRA 2 26/05/20 Tracheal aspirate 28 Deceased
M 38 SDRA 26/05/20 Tracheal aspirate 20 Deceased
M 35 SDRA 3 10/06/20 Tracheal aspirate 23 Deceased
M 74 SDRA 22/06/20 Tracheal aspirate 14 Deceased
F 65 SDRA 25/06/20 Tracheal aspirate 9 Deceased
F 63 SDRA 4 15/06/20 Tracheal aspirate 21 Deceased
F 46 SDRA 23/06/20 Tracheal aspirate 26 Deceased

*Acute respiratory distress syndrome.
yCarbapenem-resistant Acinetobacter baumannii.
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VAP patients, such as aminoglycosides and fluoroquinolones56

(Table 3). Resistance profiles similar to those of this work have been
observed in other studies.51,57,58 The background of the presence of
one of the main mechanisms of antimicrobial resistance in A.
baumannii,59,60 a genetic and phenotypic search for efflux pumps in
this pathogen was performed, although PCR tests demonstrated the
presence of the complete AdeABCRS operon, pump inhibition tests
did not demonstrate its activity. We speculate that the multidrug
resistance of the A. baumannii isolates in this work is not conferred
by the AdeABCRS efflux pump. Future works of resistome analysis of
A. baumannii will be aimed for searching possible mutations in the
AdeABCRS operon and antimicrobial resistance mechanisms in order
to relate phenotypes and genotypes in the isolates found. The high
multidrug resistance in A. baumannii isolates, compared to the other
members of the ESKAPE group, shows that this pathogen continues
to be a problem in our hospital and the main microorganism impli-
cated in cases of VAP caused by MDR bacteria. As reported by Sosa-
Hernandez et al., (2019), the incidence of A. baumannii as a causative
agent of VAP was higher compared to the other pathogens of the
ESKAPE group.12 Derived from this finding, the positive impact of
prospective epidemiological surveillance through implementation of
a comprehensive quality improvement plan (CQIP) during the follow-
ing year was demonstrated.61 The classical epidemiological approach
of case association limits the identification of outbreaks that might
go unnoticed. To our knowledge, the available literature is only lim-
ited to the reporting of isolates without an analysis of whether these
isolates have a common ancestor. Therefore, classical Epidemiology
must resort to alternative molecular tools to understand the origin of
adverse events in critical areas. Through the analysis of intergenic
regions, clonal dispersion of A. baumannii and P. aeruginosa was dem-
onstrated (Fig. 2 and 3). The timeline analysis of VAP cases in COVID-
19 patients showed a direct association between the dispersion of
clones detected and the area where patients were hospitalized (Fig 4
and Table 5). We supposed that healthcare workers may be the main
vehicle of transmission of these pathogens. Several reports support
that, poor clinical practices lead to the spread of microorganisms in
hospitals, and this has an impact on the incidence of HAI and in turn
on mortality, especially in critically ill patients.17-20,62,63 It is not
known exactly how the pandemic has affected antimicrobial resis-
tance as outbreak detection and control measures were suspended
due to the health emergency.54 However, some studies suggest that
there was an increase in AMR during the pandemic.64,65 This paper
demonstrates that molecular tools go beyond the traditional scheme
of analysis for enriching the causal chain by detecting hidden out-
breaks and revealing associations that are not so obvious to classical
Epidemiology. The current epidemiological transition positions
molecular Epidemiology as an indispensable tool in the pandemic
and post-pandemic era in the bacteriological field.
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