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ABSTRACT

Dysbioisis is an imbalance of an organ’s microbiome
and plays a role in colorectal cancer pathogenesis.
Characterizing the bacteria in the microenvironment
of a cancer through genome sequencing has advan-
tages compared to culture-based profiling. However,
there are notable technical and analytical challenges
in characterizing universal features of tumor micro-
biomes. Colorectal tumors demonstrate microbiome
variation among different studies and across indi-
vidual patients. To address these issues, we con-
ducted a computational study to determine a consen-
sus microbiome for colorectal cancer, analyzing 924
tumors from eight independent RNA-Seq data sets. A
standardized meta-transcriptomic analysis pipeline
was established with quality control metrics. Micro-
biome profiles across different cohorts were com-
pared and recurrently altered microbial shifts spe-
cific to colorectal cancer were determined. We iden-
tified cancer-specific set of 114 microbial species
associated with tumors that were found among all
investigated studies. Firmicutes, Bacteroidetes, Pro-
teobacteria and Actinobacteria were among the four
most abundant phyla for the colorectal cancer micro-
biome. Member species of Clostridia were depleted
and Fusobacterium nucleatum was one of the most
enriched bacterial species in tumors. Associations
between the consensus species and specific immune
cell types were noted. Our results are available as a
web data resource for other researchers to explore
(https://crc-microbiome.stanford.edu).

GRAPHICAL ABSTRACT

INTRODUCTION

Tumors such as colorectal cancer have specific biologi-
cal interactions with its surrounding commensal microbial
species. Humans coexist with a rich diversity of bacteria and
viruses living within the confines of specific tissue niches.
This collection of microbial organisms, referred to as the
microbiome, vastly outnumber the eukaryotic cells making
up our various tissues (1,2). The cellular interactions of spe-
cific organ tissue and the microbiome can be beneficial, neu-
tral or pathogenic in terms of non-infectious human dis-
eases. Beneficial microbes play critical roles in maintaining
immune function, metabolic homeostasis and overall health
(3). Neutral bacteria have no discernible consequences on
the host. Pathogenic microorganisms may increase the risk
and severity of conditions like inflammation (4), obesity (5),
fatty liver disease (6), type 2 diabetes (7) and carcinogenesis
(8). An indicator of a microbial influence in disease patho-
genesis, dysbiosis is an imbalanced state of the naturally
occurring microbiota where specific pathogenic microbes
overgrow other components. This phenomenon leads to a
fundamental shift in the contents of the microbiome. This
imbalance has the potential to lead to cancer (4). The mi-
crobiome properties of colorectal cancer (CRC) have been
of interest given that the colon and the rectum have the most
abundant and diverse microbiome for any human organ.
Many studies seek to identify specific microbiome proper-
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ties that are indicators of dysbiosis and influence colorectal
cancer development, phenotype and clinical outcomes.

We define two specific environmental niches for the anal-
ysis of the colorectal cancer microbiome. Generally, the
largest and most diverse niche involves the microbial and
viral contents of the fecal material within the colon. This is
a high biomass source for microbiomes. The smaller niche,
a subset of the fecal material, involves those microbes that
are in direct contact with the colorectal tumor. The colon
mucosa is composed of a thin layer of epithelial cells (the
epithelium), a layer of connective tissue (the lamina pro-
pria) and a thin layer of muscle (muscularis propriate). The
formal pathologic definition of colon carcinoma refers to
epithelial cells that have malignant properties and invaded
past multiple layers of the mucosa (9). Therefore, a clinical
diagnosis of colorectal cancer requires an adequate biopsy
of colon tissue which have all mucosal cell layers. Per the
universally accepted histopathologic criteria, colon adeno-
carcinoma arises from the mucosal epithelium. This col-
orectal mucosa-associated microbiome has an important
role in colorectal cancer biology given its direct contact to
the colon epithelial tumor cells and its interactions with the
local tumor microenvironment (TME). Because of its direct
contact with the colon cellular microenvironment, this mi-
crobiome niche is carried over after a biopsy or surgical re-
section of a tumor. Thus, the tumor extracted DNA or RNA
reflect the microbial contents adjacent to and intermingled
with the colon mucosa.

For genomic microbial characterization of CRCs, next-
generation sequencing (NGS) methods like RNA-Seq have
been used for determining the microbiomes of specific tis-
sues. For example, Simon et al investigated >17 000 samples
from publicly available human RNA-Seq data and found
that a significant proportion of unmapped reads were of
microbial origin (10). Sequencing the 16S rRNA gene is an-
other common method for determining microbiome char-
acteristics. The 16S gene contains nine hypervariable re-
gions (V1-V9) that provide a sequence barcode for identi-
fying microbial species and conducting phylogenetic anal-
ysis (11). Depending on the sequencing approach, micro-
bial abundance estimation is represented in operational
taxonomic units (OTUs) or amplicon sequence variants
(ASVs), which are usually mapped to the genus or species
level (12). Each molecular dataset captures different aspects
about the patient’s microbiota; comparative analysis of data
from these two methods may provide insights not possible
through a single data type alone.

There is substantive evidence that dysbiosis is associated
with the development and progression of CRC (11,13,14).
Studies have focused on either studying (1) the fecal con-
tents from CRC patients or (2) direct analysis of CRC tu-
mors with the microbiome that is in direct contact with
the tumor epithelium. Citing a study from the former, Sob-
hani et al. (13) performed one of the first studies to identify
cancer-related dysbiosis in CRC from the analysis of fecal
material from patients. They found that an elevated repre-
sentation of the Bacteroides/Prevotella genus was present
among the majority of CRCs in their sample set. Using a
similar approach, Yu et al. (14) did a metagenomic profiling
of CRC samples and showed that four microbial species, in-
cluding Parvimonas micra, Solobacterium moorei, Fusobac-

terium nucleatum and Peptostreptococcus stomatis were en-
riched in individuals with CRC compared to normal con-
trols. These studies were limited to fecal samples which rep-
resent a distinct niche from CRC tissue samples.

The direct sequencing analysis of CRC tumors and the
tumor associated mucosa provides insight into the micro-
biota that are directly associated with the TME. Given their
direct contact to the cellular milieu of the tumor, these mi-
crobes may play a potential role in the physiopathology
of CRC (15). Citing the most widely validated example of
mucosa-proximal microbiome of CRC, many studies have
demonstrated an enrichment of Fusobacterium nucleatum,
which we will refer to as F. nucleatum for short, in CRC
tumors. The initial discoveries were based on identifying
microbial sequence reads from genomics studies of CRCs
(16). Some studies have shown that F. nucleatum is associ-
ated with higher stage CRC and a lower density of T-cells in
the CRC TME. Some of these observations have been born
out experimentally (17). For example, this bacteria activates
the WNT signaling pathway in CRC cells and inhibits T-
cell-mediated immune responses against tumors (18).

Obtaining a high-quality characterization of cancer mi-
crobiomes has challenges. In the case of the mucosa-
associated microbiome of colorectal cancer, samples are ex-
posed to contamination across multiple steps as a clinical
biopsy is acquired, processed and sequenced. This includes
the presence of microbial DNA among the molecular bi-
ology reagents used sequencing and genetic characteriza-
tion. Complicating any analysis, the use of stringent qual-
ity controls has been inconsistent for cancer-based genomic
studies of the microbiome (19). These issues can dramati-
cally skew microbiome results. Different sequencing meth-
ods such as 16S and RNA-Seq reveal different microbiome
features. As an added challenge, microbiomes vary among
individuals living in different geographic regions and ethnic
backgrounds. This fundamental variation among individ-
ual microbiomes makes it more difficult to identify common
microbial species that may have a universal role in colorectal
cancer tumorigenesis.

Addressing these challenges, we developed a scheme to
analyze the colorectal cancer microbiome composition for
universally shared features and then determine their poten-
tial role in modulating cancer and the immune system. Im-
portantly, we sought to identify consensus bacterial species
that were consistently observed across multiple independent
CRC cohorts––most studies have been limited to evaluating
the genera level. We utilized different RNA-Seq datasets in-
cluding the Cancer Genome Atlas Colon Adenocarcinoma
(TCGA-COAD) and those available from the Gene Expres-
sion Omnibus (GEO) database. In total, 924 CRCs were in-
cluded in this study to investigate the different microbiome
profiles across different studies. Among the eight studies,
five used total RNA and three used mRNA selection. One
of our goals was to determine common bacterial species
that were detected and associated with colorectal cancers
regardless of this isolation RNA method (Table 1).

With this large number of samples, we processed all data
in the same fashion. This analysis pipeline included con-
ducted a rigorous quality control to eliminate potential con-
taminants and reduce the effect of batch bias. To evalu-
ate the quality of our mucosa-associated RNA-Seq data
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Table 1. RNA-Seq datasets included in the study

Study Type of tissue Sample origins Type of RNA for sequencing
Sample

size
Bacterial
species

IMS3 Tumor (N = 924) Western United States Total RNA 162 731
TCGA Multiple countries* mRNA and total RNA 564 4187
GSE107422 South Korea mRNA per poly-A selection 109 744
GSE146889 Midwest United States Total RNA 42 1293
GSE50760 South Korea mRNA per poly-A selection 18 951
GSE95132 Eastern United States Total RNA 10 1321
GSE104836 China Total RNA 10 1729
GSE137327** Eastern United States Total RNA 9 3378
IMS3 Matched normal colon

(N = 298)
Western United States Total RNA 162 635

TCGA Multiple countries* mRNA and total RNA 51 3763
GSE146889 Midwest United States mRNA per poly-A selection 38 1412
GSE50760 South Korea Total RNA 18 883
GSE95132 Eastern United States mRNA per poly-A selection 10 1395
GSE104836 China Total RNA 10 1673
GSE137327** Eastern United States Total RNA 9 3305

*Brazil, Germany, Israel, Poland, Russia, Ukraine, United States, Vietnam
**Sequenced on BGI system. All other studies used Illumina.

in evaluating microbiomes, we compared these results to a
16S analysis for a subset of overlapping samples. We used
the same tumor RNA-Seq to determine the cellular tumor
microenvironment features of each tumor. Finally, we de-
rived a consensus microbiome composition across differ-
ent CRC cohorts, determined dysbiosis features when ex-
amining normal tumor pairs and investigated several micro-
bial species’ association with CRC’s immune cellular char-
acteristics. To facilitate the sharing of this consensus micro-
biome, our results are available and can be queried through
a web data resource (https://crc-microbiome.stanford.edu).

MATERIALS AND METHODS

Colorectal tumor RNA-Seq data

Seven RNA-Seq CRC datasets were downloaded either
from NCI’s Genomic Data Commons (GDC) or the Se-
quence Read Archive (SRA) (Table 1). In addition, we had
an internal data set from an independent CRC set that
we refer to as IMS3. All participants signed a written in-
formed consent as part of a study protocol approved by
Stanford University. Tumor tissues were collected and pre-
served on formalin-fixed paraffin-embedded (FFPE) slides.
All tumor samples were determined to have >60% cellular-
ity in pathology review.

DNA and RNA sequencing of the IMS3 colorectal tumors

Tumor tissues from 2 mm punches or 5 �m scrolls from
FFPE blocks were recovered and processed for nucleic acid.
RNA was extracted from Maxwell 16 LEV RNA FFPE
Purification Kit (Promega, Wisconsin, USA) following the
manufacturer’s instructions. RNA-Seq libraries were pre-
pared using KAPA RNA HyperPrep Kit with RiboErase
(HMR) (Roche, California, USA) by 8 cycles of PCR. The
enriched libraries were quantified by qPCR using Kapa Li-
brary Quantification kit (Roche, California, USA) and sub-
jected to Illumina MiSeq sequencing (100 bp paired-end
reads).

DNA was extracted using the Promega AS1030 Maxwell
16 Tissue DNA Purification Kit (Promega, Wiscon-
sin, USA) following the manufacturer’s protocols. The
concentration of DNA was quantified with the Qubit
system (Thermo-Fisher Scientific, Massachusetts, USA),
and DNA integrity was evaluated using LabChip GX
(PerkinElmer, Waltham, Massachusetts, USA). Five hun-
dred nanograms DNA from each sample was sheared using
a Covaris E220 sonicator (Covaris, Massachusetts, USA)
(microTUBES AFA fibre, 10% duty cycle, 200 cbp, inten-
sity 5 and time 55 s) and purified by a 0.8× AMPure XP
(Beckman-Coulter, California, USA) bead cleanup. The hy-
pervariable regions (V3-4) of the 16S rRNA gene from each
sample were amplified using Forward primer (5′-TCG TCG
GCA GCG TCA GAT GTG TAT AAG AGA CAG CCT
ACG GGN GGC WGC AG-3′) and Reverse primer (5′-
GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG
ACA GGA CTA CHV GGG TAT CTA ATC C-3′) with
Illumina sequencing adaptors (Illumina, California, USA).
The purified PCR products were then subjected to a mul-
tiplexing process using Nextera XT Index kit (Illumina,
California, USA) in 50 �l reactions. After PCR product
cleanup, two batches of libraries were quantified and se-
quenced using an Illumina MiSeq platform.

Sequence data processing for microbiome characterization

Raw RNA-Seq data were preprocessed to remove adapter
sequences and low-quality bases with Cutadapt (v2.4) (20).
Trimmed data were then mapped to the human genome
(GRCh38) using STAR (v2.5) (21). Uniquely mapped reads
were used for subsequent immune cell infiltration analysis.
Quality controlled (by fastp software) unmapped reads were
used as input data for taxonomic assignment for each OTU.

Reverse reads from 16S amplicon sequencing were re-
moved from the analysis due to low sequence quality. The
sequence was processed with DADA2 using maxN = 0,
maxEE = 2, truncQ = 2 parameters to do reads filtering
and quality checks (22). Reads that passed the quality con-
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trol were used for taxonomy classification. ASV values were
determined for each sample.

Taxonomic microbiome classification

Kraken2 was used as the meta-transcriptome classification
tool in our study. It relies on exact k-mer matches to as-
sign microbial sequences to specific taxonomic labels (23).
Prior studies have used this program to define cancer micro-
biomes. The unmapped reads from RNA-Seq were queried
in a Kraken2 database we created on our server (18 Septem-
ber 2019), which contains taxonomic information (obtained
from NCBI Taxonomy database), complete genomes in
Refseq for the bacterial, archaeal, viral, plasmid and eu-
karyotic organisms. The microbial relative abundance was
calculated based on the percentages of the microbiome on
the selected top ranked phyla/genera. Taxonomy classifica-
tion results were posted to the CRC consensus microbiome
website (https://crc-microbiome.stanford.edu). We applied
a frequency filter of 1% and an established list to eliminate
potential contaminating species.

A portion of sequencing reads may originate from con-
taminating microbial DNA that are found in the general
environment or contaminants from the sequencing assay.
This includes contaminating microbes in the sample that
come from clinical processing were present in the sequenc-
ing reagents or grew in the fluidic systems of sequencers. To
minimize the bias introduced by microbial species not asso-
ciated with the original CRC, we conducted multiple steps
to reduce microbial filtering process. First, we eliminated
taxa that were not present in at least one read count in 1%
of the samples. Thus, rare contaminants that are underrep-
resented are eliminated. Second, we used a list of known mi-
crobial contaminants compiled by Eisenhofer et al., which
addresses many of the potential sources of artifacts in
genomic-based microbiome characterization (24), was also
filtered out from our study (Supplementary Table S1). This
list was compiled by Eisenhofer et al. based on a series of
negative controls across multiple studies and part of their
‘RIDE’ minimum standards criteria which addresses many
of the potential sources of artifacts in genomic-based mi-
crobiome characterization (24).

Gene expression quantification and immune cell infiltration
analysis

Gene counts table generated from RNA-Seq mapped reads
were normalized using TMM (weighted trimmed mean of
M-values) with the EdgeR package and converted to cpm
and log2 transformed (25). A filtering process was also per-
formed to exclude genes without at least 1 cpm in 20% of
the samples. We used the program Xcell to estimate 64 tu-
mor infiltrating immune and stromal cell types, together
with immune, stroma and tumor microenvironment (TME)
scores for each tumor’s or normal colon’s RNA-Seq data
(xcell.ucsf.edu) (26). Multiple testing correction was applied
using the p.adjust() function available in R, with the method
set as ‘FDR’. Kruskal–Wallis rank sum test was used to de-
termine differential immune cell infiltration among patient
groups using a threshold of multiple testing corrected P <
0.05.

Differential microbiome analysis

Microbial differential analysis was performed using DE-
seq2 and Phyloseq (27). Statistical tests such as the Chi-
Squared test and the Wilcoxon rank-sum test were per-
formed to examine the patient grouping information with
various clinical variables. Multiple testing correction was
applied as previously described. Results were considered
significant if the adjusted P-value was <0.05.

The CRC Microbiome Explorer website

We developed a web-based data resource for our study
(https://crc-microbiome.stanford.edu). The microbial
abundance data was uploaded to a MySQL (v5.5.62)
relational database from kraken2 output converted to
mpa format. The database server has 32 GB RAM and 16
processors running Ubuntu (v16.04). The web application
was written using Ruby on Rails (v5.1.7 with ruby v2.4.2),
a framework well suited for use with a backend relational
database. The application server uses Ubuntu (v16.04). The
application was deployed using Passenger and Apache2.
The user interface utilizes Bootstrap (v3.4.1) for responsive
sizing to different format clients and browsers. Jquery
dataTables provide standard formatting, search and fil-
tering capability for query tables, and Highcharts is used
to format and display plots. All queries and plots are
produced dynamically from the underlying database tables
based on user query parameters.

RESULTS

CRC microbiome composition estimation from unmapped
RNA-Seq

Overall, we analyzed eight primary CRC transcriptomic
datasets (28–34) from a variety of sources that included
the Cancer Genome Atlas (TCGA), the NIH Gene Expres-
sion Omnibus (GEO), the NIH’s Short Read Archive (SRA)
and an independent dataset (IMS3). The CRC RNA-Seq
studies included the TCGA COAD data set which had the
largest number of samples (n = 564) (35,36). In addition,
GEO had six different data sets with the highest number of
CRCs coming from GSE107422 (n = 109) and the small-
est set being GSE137327 (n = 9) (Table 1). The IMS3 data
set contained 162 tumor and matched normal tissues. The
total number of CRC samples were 924. An additional 298
matching normal colon samples were available for assessing
their microbiome characteristics. Except for GSE137327
which used the BGI sequencing technology, all samples
were sequenced with Illumina.

In terms of the type of RNA used for the sequencing,
five of the eight studies used total RNA for the RNA-seq
libraries (Table 1). Total RNA was used for the following
data sets: IMS3, GSE146889, GSE95132, GSE104836 and
GSE137327. Two of the data sets originated from formalin
fixed paraffin embedded samples for which total RNA ex-
traction is required. For the total RNA from flash frozen
tumors, a ribosomal RNA depletion method was used to
generate quality RNA-seq data that includes RNA from mi-
crobial organisms. The TCGA study and two others used
mRNA. We noted that prior studies of the TCGA samples
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have successfully identified microbiome features from this
source of RNA (19).

To process these CRC RNA-Seq cohorts, we removed hu-
man genome sequences, low quality reads and adapter se-
quences. Subsequently, we used the high quality microbial
(unmapped) reads from a given CRC sample for taxonomy
classification with Kraken2 (Figure 1). We also conducted
downstream processing and leveraged an updated database
that includes NCBI’s RefSeq sequence data for human, bac-
teria and viruses (Materials and Methods section). Across
this extended tumor cohort, we observed that an aver-
age of 83% of reads were uniquely mapped to the human
genome per sample. Quality controlled, unmapped RNA-
Seq reads averaged 4% per sample. The percentage of un-
mapped reads for each dataset varies from 0.05% (TCGA)
to 19.86% (GSE107422) (Supplementary Figure S1). Vari-
ations in the raw sequence data, unmapped reads and un-
mapped ratios were observed from each dataset. For ex-
ample, the TCGA and GSE146889 cohorts had the largest
number of total and unmapped sequences per a sample. The
GSE107422 as well as GSE104836 samples set had the high-
est percentages of unmapped reads (Supplementary Figure
S1). Thus, we normalized microbial abundances to the me-
dian sequencing depth within each cohort. Our results are
available for exploring and download at the following URL:
https://crc-microbiome.stanford.edu.

We identified the highest represented phyla from each co-
hort and made comparisons of relative percentage abun-
dance (Table 1, Figure 2A–G). Firmicutes, Proteobacteria,
Bacteroidetes and Actinobacteria were the four top ranked
bacterial phyla identified from various CRC cohorts. The
average relative abundance of Firmicutes (over 29.5%) had
the highest average abundance across the entire cohort. This
species was followed by Proteobacteria (22.4%), Actinobac-
teria (13.8%) and Bacteroidetes (11.5%). Variations of bac-
terial community composition were observed at the phy-
lum level, such as Proteobacteria accounts for more than
half of the major phyla abundance in GSE137327, whereas
this species only accounted for <10% in GSE104836 (Fig-
ure 2F,E). Other noticeable phyla include Fusobacteria and
Deinococcus-Thermus (5.46% and 1.17% relatively). These
phyla accounted for a small proportion of the total percent-
ages of relative abundance, respectively. Overall, the bacte-
rial community composition variations were observed at the
genus level (Supplementary Figure S2).

Comparing RNA-Seq versus 16S for identifying and charac-
terizing CRC microbiome

One of the CRC cohorts had overlapping RNA-Seq and 16S
data from the same tumors (IMS3, n = 162). We used this
data for a comparison study between the two sequencing
methods. The processing and analysis of microbial reads de-
rived from RNA-seq data were described above. The raw
16S sequencing data were processed using DADA2 and
phyloseq pipelines. Adapters, low quality bases and ampli-
fication primers were filtered out. Approximately 95% of
16S rRNA sequences passed our quality control measures,
bringing in an average of 47 000 reads per sample for tax-
onomy assignments using Silva v132 annotation. DADA2
detected 531 ASVs, after removal of ASVs that were not

present in at least one read count in 1% of the samples (Sup-
plementary Table S2). Fifteen and 172 bacterial taxons were
observed from ASV on the phylum- and genus-level, respec-
tively.

From this data set, we compared the RNA-Seq and 16S
methods as a way of evaluating the accuracy of RNA-seq-
based microbiome phylum and genus level characteriza-
tion. There were 12 common phyla identified from these
two platforms (Supplementary Figure S3). Actinobacteria,
Proteobacteria, Firmicutes and Bacteroidetes were the four
most prevalent (Supplementary Figure S3a) and abundant
phyla (Supplementary Figure S3b). High Pearson correla-
tion coefficients were observed for phylum-level prevalence
(0.977) and abundances (0.962) between 16S and RNA-Seq
data (Supplementary Figure S4a,b).

We determined that the microbial diversity via a Shan-
non index estimate from RNA-Seq data was significantly
higher compared to the results from the 16S data at the
phylum/genus levels (Supplementary Figure S3). Statisti-
cal significance was demonstrated using pairwise Wilcox
test (P < 2e-16). A total of 89 overlapped genera were evi-
dent when comparing these two different methods (Supple-
mentary Table S3). Bacteroides and Faecalibacterium were
the two most enriched genera identified both from 16S and
RNA-Seq data (Supplementary Figure S3a,b). The differ-
ences between the two were largely due to the viral genome
species that were present in the RNA-Seq data. Overall,
these results support that RNA-Seq analysis of CRC can
determine microbiome features that overlap with 16S se-
quencing. Thus, we opted to focus on using the RNA-Seq
data for the remainder of the study given the large number
of colorectal cancers which had this type of publically avail-
able data.

The CRC consensus microbiome

From the 924 CRCs and the tumor RNA-Seq data, the
high-quality unmapped reads underwent Kraken2 process-
ing and species classification. All tumors were used regard-
less of whether there was a matched normal or not. The
range of species identified prior to consensus filtering was
from 731 (IMS3) to 4187 (TCGA) (Table 1). To determine
the microbiome features that were generalizable across the
entire cohort, we created a union matrix representing all
samples and different species across the entire cohort. Sub-
sequently, we applied a 1% prevalence filter, retaining only
the bacterial and viral species above this frequency thresh-
old. Among the eight studies, 126 microbial species were
obtained from the 924 CRC tumors. We conducted an ad-
ditional level of filtering to determine if identify any species
typically associated with contaminant artifacts. There were
a few species that are known environmental contaminants,
such as microbe belonging to the the Cutibacterium and
Methylobacterium genera. These contaminants and others
were removed, which resulted in a final consensus list of 114
microbial species associated with CRCs (Table 1 and Sup-
plementary Table S4). All species were present for all sample
sets included in the study.

We compared the 114 consensus species with the 61 mi-
crobial biomarkers identified from meta-analysis of sev-
eral fecal cohorts (37). Fourteen species (F. nucleatum,

https://crc-microbiome.stanford.edu
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A

B

Figure 1. Pipeline for microbiome analysis using RNA-Seq data and analysis. (A) RNA-Seq data were processed and mapped to the Human genome.
Mapped data were employed to do immune cell infiltration profiling. Unmapped reads were quality controlled and used as the input to do taxonomy
classification. The downstream steps included in the pipeline are microbial abundance, differential analysis and microbe-trait correlation analysis. (B) A
heatmap representing the phyla determined among the eight different data sets. The phyla of the colorectal tumor and normal microbiome’s representation
is shown via a relative abundance percentage each phyla across each study. Red is indicative of a higher fraction and green indicates a lower fraction.
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Figure 2. CRC microbial composition varies across different studies. The top 12 most enriched phyla identified from each cohort: TCGA (A), GSE146889
(B), GSE50760 (C), GSE95132 (D), GSE104836 (E), GSE137327 (F) and GSE107422 (G). In the heatmap, columns correspond to microbes, and rows to
different dataset. Relative fractional abundances were represented by different colors.

F. prausnitzii, F. plautii, B. longum, G. morbillorum, S. ther-
mophiles, B. fragilis, P. intermedia, P. asaccharolytica, R. in-
testinalis, E. coli, S. sputigena, P. micra and E. hallii) were
commonly observed in both tissue and fecal microbiomes
and half of them belong to the Firmicutes phylum. All re-
maining species were distinct and specific to either tissue or
fecal microbiome, suggesting major differences in the mi-
crobial compositions between these two habitats.

To determine if this consensus list represented potential
contaminants, we used a blacklist of contaminating micro-
biome genera that was generated by Poore et al. (19). As pre-
viously noted, Poore et al. only examined the microbiome
at the level of genera which included their contamination
list. Using a combination of their computation and manual
annotated blacklist, we used a non-duplicated blacklist of
272 genera (Supplementary Table S5).

Our consensus list of CRC-associated bacteria had 64
non-overlapping genera. We compared the consensus CRC
microbiome list with the blacklist genera comparison and
over 95% (109/114) of the bacterial species were not on the
blacklist. This result shows that our consensus list was not
skewed by contaminating genera as described by Poore et
al. A total of five bacteria had genera that overlapped with
the blacklist. On reviewing the literature we determined
that four of these species had been previously identified in
the colon fecal microbiome including Alcanivorax sp. N3-
2A (38), Hungatella hathewayi (39), Janibacter indicus (40)
and Variovorax sp. PMC12 (38). The fifth was Pseudoxan-
thomonas suwonensis for which we did not identify a previ-
ous report.

Bacteroidetes and Firmicutes species account for a sig-
nificant proportion of the 114 microbial list (Figure 3).
From our consensus CRC microbiome, >33% of these
species belong to the class of Clostridia (Figure 3A). This
class was the most frequently occurring among our co-
hort. Species belonging to Bacteroidetes (23.5%), Pro-
teobacteria (16.5%) and Actinobacteria (10.4%) were the
second, third and fourth most predominant phyla among
the components of the consensus microbiome. Most mem-
bers of the Clostridia have a commensal relationship with
the host and are involved in the maintenance of intesti-
nal health (41). Other well-characterized fecal species in-
cluded Bacteroides megaterium, Bacteroides fragilis, Es-
cherichia coli, Bacillus cereus, Faecalibacterium prausnitzii,
Bacteroides vulgatus and Prevotella intermedia and were
among the most abundant species of all the CRC sam-
ples across the cohort (Supplementary Table S3). Validat-
ing our analysis results, F. nucleatum was common among
the tumors, has been previously associated with CRC
and has a mechanistic contribution towards colon cancer
growth.

A number of these microbiome species are pathogens
with the most prevalent being Clostridium difficile. Infec-
tion with this species leads to an infectious diarrhea and
is also associated with inflammatory bowel disease (IBD)
(42). Clostridium perfringens is one of the most common
causes of food poisoning in the United States (43). Besides
the pathogens such as Clostridium difficile and Clostridium
perfringens, other potentially pathogens such as Akkerman-
sia muciniphila is a mucin-degrading bacterium. Pasteurella
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Figure 3. Colorectal cancer’s consensus microbial species. (A) Balloon plot to summarize and compare the taxa distribution for the 114 species at the
phylum (x-axis) and class (y-axis) levels, where the area and color of the dots were proportional to their numerical value (Freq). (B) A correlation plot of
the eight CRC cohorts. Red represents positive correlation and blue negative correlations. This correlogram indicates that the area and color of the dots
are proportional to their correlation coefficients. (C) The PCA-based on Bray-Curtis dissimilarity was used to estimate the beta diversity of the cohorts.
(D) This panel is a correlation heatmap. Panels (B and E) share the same color legend. (E) A correlation heatmap of the 114 species with stroma, immune,
and TME scores derived from the same tissue. The rows are specific microbe species found in our colorectal cancer consensus microbiome. The columns
are labeled with the cell type summaries derived from the RNA-seq data.

multocida can cause a range of diseases in animals and hu-
mans, particularly for skin infections.

Other species are commensal elements of normal gut mi-
crobiota. Some of them possess probiotic properties, like
Bacteroides xylanisolvens and Bacteroides ovatus. Others
play important roles in other mammalian species and ex-
trinsic metabolic processes. For example, Lachnospiraceae
bacterium can ferment polysaccharides into short-chain
fatty acids and alcohols (44). Bacteroides cellulosilyticus,
a strictly anaerobic cellulolytic bacterium, metabolizes cel-
lulose to smaller molecules and ferment various carbohy-
drates (45). Ruthenibacterium lactatiformans is character-
ized by fermentative metabolism (46). Bacillus megaterium
has probiotic potential (47).

Consensus microbiome from matched normal colon tissue

From the 298 matched normal colon tissue and their RNA-
Seq data, we applied the same bioinformatic process, qual-
ity control filtering and prevalence analysis with a union
matrix. The range of species identified prior to consensus
filtering was from 635 (IMS3) to 3763 (TCGA) (Table 1).
From this analysis, there were 153 species consistently found
among all matched normal tissues (Supplementary Table
S6). More than half of the species were identical to the tu-
mors’ 114 species list (Supplementary Figure S5). Interest-
ingly, the remaining consensus mucosa-associated micro-
biome from normal colon tissue was quite different from
tumors, with a large proportion of them came from the Pro-

teobacteria and Firmicutes phyla. Proteobacteria spp occurs
as a free-living species which can be identified within the
colon microbiota. Firmicutes phyla, especially in the class of
Clostridia were enriched in normal tissues, suggesting that
Clostridia spp. were potentially beneficial microbes. When
compared to the matched normal tissue set, 29 species were
only present in tumor tissues, this included two Fusobacteria
species and several other known pathogens (Streptococcus
spp. and Prevotella spp.).

We investigated the geographic associations of the eight
datasets using the abundances of the selected 114 micro-
bial species specific to CRC tumors. We conducted a cor-
relation studies across the different data sets (Figure 3B–
D). Our analysis included a correlation plots and a PCA-
based on Bray-Curtis dissimilarity anlaysis that estimateed
the beta diversity of the cohorts. The GSE137327 microbial
profile was negatively associated with other cohorts, sug-
gesting that the choice of sequencing platform may have
affected the microbiome profile (Figure 3B,E). This data
set was generated from a different sequencing platform, the
BGI-Seq system versus the remainder of the studies which
were Illumina-based. Several Asian cohorts from different
geographic locations were represented in this study. This in-
cluded GSE107422 and GSE50760 where the tumor sam-
ples originated from South Korea. For the GSE104836 co-
hort, the samples originated from mainland China. The
CRCs from all three of these studies were part of a dis-
tinct cluster with Asian origins (Figure 3B,E). The TCGA
samples originated from a variety of different countries in-
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cluding Brazil, Germany, Israel, Poland, Russia, Ukraine,
United States, Vietnam (Table 1). Thus, there was an in-
ternational geographic representation of CRCs from the
TCGA data set (Supplementary Table S7).

TME and immune cell correlations with the CRC consensus
microbiome

Using the same RNA-Seq data per sample, we determined
the immune cell estimations of each CRC across the cohort.
Currently, one can use bulk RNA-Seq data to infer the pro-
portions of individual cell types from tumor samples. This
process is generally referred to as cell deconvolution. To
conduct this study we used the program xCell to make es-
timates about the relative cell populations among the CRC
RNA-Seq data sets (26). This program deconvolutes gene
expression data to identify the relative representation of 64
immune and stromal cell types.

After deconvoluting the gene expression data from our
cohort, we determined the association of TME components
that are referred to as the immune, stroma and TME scores.
For this analysis, we used the 114 tumor-specific microbial
species from the CRC consensus microbiome. As an ag-
gregate indicator of different types of cellular composition,
Xcell provided each CRC with an immune score (the sum of
all immune cell types), stroma score (the sum of all stroma
cell types) and TME score (the sum of all immune and stro-
mal cell types) (26). Stroma scores were mostly negatively
correlated with the 114 CRC species compared to immune
and TME scores (Figure 3E).

Thirty-eight microbial species were selected which have
significant associations with specific types of the immune
cells (Spearman correlations, FDR < 0.05) (Figure 4A).
Natural killer (NK) cells had a positive correlation with the
majority of the selected microbial species. CD4 T, CD8 T,
naı̈ve/pro B and T regulatory cells play opposite correla-
tion patterns with NK cells (Figure 4A). In other words,
these cells were negatively correlated with more than half
of the CRC consensus microbes. Victivallales bacterium
(CCUG447300) was one of the species that had a signifi-
cant positive correlation with NK cell’s enrichment in the
CRC TME (Spearman’s rho = 0.57; P < 1e-4). This species
was significantly negative correlated with the CD4 naive T
cell’s abundance in the TME (Spearman’s rho = -0.45; P <
1e-4).

Immune cells and microbe’s correlations were also inves-
tigated in the adjacent normal samples (Figure 4B). NK
cells were positively correlated with the selected thirty-eight
microbial species. More negative correlations than positive
correlations between immune cells and microbes can be seen
from the heatmap (Figure 4B). Distinct correlation patterns
have been found between tumor and normal tissues. For ex-
ample, macrophages and CD4 memory T cells were gener-
ally positively correlated with the selected species in tumor
samples; however, the correlations changed to negative in
adjacent normal tissues. Similarly, we found that T regula-
tory, CD4 T, T helper2, dendritic cells and monocytes had
different correlation patterns in tumor (positive) and nor-
mal (negative) samples. A group of microbial species such
as B. helcogenes, L. bacterium, P. cangingivalis, S. sputigena
and E. harbinense have shown similar trends of correlations

with a subset of immune cells (DC, NK and other innate
immune cells), indicating that there were some microbe-
microbe interactions between them.

Comparison of CRC versus matched normal microbiomes

To determine the differences between matched normal
and colon tissue microbiomes, we used the IMS3 and
TCGA tumors. These two sample sets had sufficiently
large numbers of matched normal tumor pairs to per-
form statistically meaningful differential analysis. We com-
pared and identified microbial compositions between tumor
and adjacent normal tissues at different taxonomic levels
(phylum/genus/species).

Variations in the microbial phyla, genera and species rel-
ative abundances were observed between tumor and nor-
mal groups, respectively (Figure 5). More specifically, at the
level of the phylum, increased proportion of Fusobacteria
and virus (adjusted P < 0.01) as well as depletion of Bac-
teroidetes (adjusted P < 0.01) were detected in tumors. For
example, the average percentage of the viral constituents
among the total tumor microbiota was 30.70% compared
to 11.43% in the adjacent normal tissues. The relative abun-
dances of Bacteroidetes (38.29% versus 22.56%) in normal
tissue was detected at a higher percentage than in the tumor
tissues. Significant differences in the abundances of three
genera were observed between tumor and adjacent normal
tissues. These genera were all under the above-mentioned
phyla such as Fusobacteria and Bacteroidetes, which fol-
lowed the same trend with the fold changes we observed at
the phylum level.

A total of 13 microbial species were significantly differ-
entiated between the tumor and normal groups with an ad-
justed P < 0.05 (Figure 5C and Supplementary Table S8)
in IMS3 cohort. For example, high abundance of F. nu-
cleatum and Pasteurella multocida were identified among
the tumors compared to matched normal tissue as noted
by fold changes >1. The remaining 11 species were all de-
creased in tumor. For instance, six members within the or-
der Chlostridales, namely, three Lachnospiraceae and three
Ruminococcaceae were depleted in tumors. Lachnospiraceae
are generally beneficial microorganisms that work to fight
off colon cancer by producing butyric acid (48). Faecal-
ibacterium prausnitzii from the family of Ruminococcaceae
was notable as one of the most prominent commensal bac-
teria in the human gut. The remaining five species that
were differentially lower in their tumor presence included
Collinsella aerofaciens, and four members within the order
Bacteroidales (three Bacteroides and one Parabacteroides
genera). The overall diversity of the microbial community
significantly decreased in tumors compared to the matched
normal tissue at the species level (Figure 5F). However, the
microbial diversity in the tumors relative to their matched
normal tissue was not significantly different at the phylum
and genus levels.

From the TCGA dataset, we obtained 129 differential
enriched/depleted microbial species with adjusted-P <0.05
in CRC (Supplementary Table S9). Among them, seven
species (F. nucleatum, F. prausnitzii, Fusobacterium plau-
tii, Ruthenibacterium lactatiformans, Lachnospiraceae bac-
terium, Lachnospiraceae bacterium Choco86 and Bacteroids
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Figure 4. Selected microbial species correlate with immune cells. Heatmaps show the correlation patterns between microbes and immune cells in the tumor
microenvironment that include (A) tumor and normal samples (B). In the heatmaps, columns correspond to cell types, and rows to microbes. Spearman
correlation values were represented by different colors, red means higher correlations, and green, lower ones.

Figure 5. Tumor microbial composition is different from that of adjacent normal. The top 12 most abundant phyla (A) and genera (B) distribution plots
for tumor and adjacent normal. Differentially enriched/depleted microbial species between tumor and adjacent normal (C), x-axis: log 2 fold changes,
y-axis: microbial species names, and colors labeled their phylum levels. Comparison of Alpha diversity (Shannon index) between tumor and normal at the
phylum (D), genus (E) and species (F) levels.
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vulgatus) overlapped with the 13 species we identified from
the IMS3 cohort. Fusobacterium nucleatum was found to be
enriched in the tumor tissues in both the TCGA and IMS3
datasets, whereas the remaining six species were all depleted
in tumors.

A web-based CRC Microbiome Explorer Interface

To enable access to the study’s results, we created an in-
teractive database entitled the CRC Microbiome Explorer
(https://crc-microbiome.stanford.edu/). The CRC Micro-
biome Explorer enables the user to query the database by
‘Study’ or ‘Patient’. The ‘Study’ query displays an overview
bar plot of the top 12 microbial phyla across all normal
when available and tumor samples in the queried study. Ad-
ditionally, users can view a bar plot that displays the micro-
biome composition of each individual patient in the study.
Alternatively, the user can select a specific patient to submit
for a ‘Patient’ query that generates a Sankey plot display-
ing the top 10 microbial genii in each patient sample. The
patient-level microbial abundance data is also available as
a searchable and sortable table. Kraken2 output files from
each study are available for download as tar archived files
from the ‘Data Download’ tab.

DISCUSSION

The human microbiome is associated with human health,
and dysbiosis can lead to a variety of disease such as colon
cancer (49). The colon is the site of one of the most diverse
human microbiomes (3,50). CRC is a heterogeneous ma-
lignancy with distinct molecular features and clinical out-
comes among patients. Besides genetic alterations, the gut
microbiome may play a role in CRC initiation and progres-
sion (11,13,51,52). Most studies on CRC microbiota so far
are conducted on fecal samples, which are obtained through
non-invasive methods and are widely available compared
to tissue samples. When considering the examination of
the fecal versus mucosa-associated microbiomes, the anal-
ysis of tissues is more directly related to the microbiota
contributions to the cellular physiopathology of CRC (15).
Thus, studying the microbiome in direct contact with the
CRC’s microenvironment is important for revealing poten-
tial interactions and relationships. Moreover, microorgan-
isms in the gut microbiota interact which changes the rep-
resentation of any given species. In addition, it is estimated
that >60–80% of the microbes are nearly impossible to
culture using conventional microbiology techniques (15).
Thus, culture-independent analysis using high-throughput
sequencing provides an opportunity to identify species that
otherwise would be missed. Overall, we conducted this
NGS-based microbial study including a series of different
CRC tissue cohorts to identify tumor specific microbial pro-
files for future clinical use. We also investigated infiltrated
immune and stroma components in the TME as the phe-
notype of interest to link them with the marker microbial
species we identified. Our results are available at a genomic
web resource for the CRC consensus microbiome (https:
//crc-microbiome.stanford.edu).

Tumor-promoting effects of the microbiome in CRC oc-
curs through a dysbiosis mechanism, rather than by infec-
tions with specific pathogens (8). This is different from the

role of Helicobacter pylori in the pathogenesis of gastric car-
cinoma (53), where bacteria is widely recognized as a micro-
bial carcinogen and the most important known risk factor
for GC. Through our analysis, we found that CRC patients
are characterized by the enrichment of a set of microbes
which can have pathogenic effects in some circumstances
as well as depletion of health-related microorganisms. For
example, we identified 13 differentially enriched/depleted
microbes using 162 paired tumor and normal tissues sam-
ples. Among them, F. nucleatum has been detected as a pre-
dominant species in tumors, which match well with previous
studies. Several members of Clostridia possess the proper-
ties of fermenting diverse plant polysaccharides, which are
beneficial to human health, were found to be depleted in
CRC tissues.

We defined a consensus CRC microbiota by searching the
most prevalent microbial species across several different co-
horts, which can be a valuable resource for future studies.
Importantly, this set of microbes are present regardless of
the patients’ origins over a diverse range of geographic loca-
tions and ethnicities. This consensus represents species that
may interact with the cellular tumor microenvironment of
CRC. As an additional evaluation of the quality of this con-
sensus microbiome, we determined if these species had been
previously reported in in the literature as component species
of the normal colon microbiome.

The connection between microbiome and CRC is likely
to be bidirectional: microbiome changes may happen be-
cause of CRC development but may also contribute to CRC
progression (54). Integration information across datasets
provided key insights into the gut microbiota of CRC pa-
tients. In conclusion, we identified tumor-specific bacteria
patterns and signatures, which might serve as biomarkers
for the prognosis of CRC. Our future works include iden-
tified prognostic microbial signatures across various can-
cer types, and translating the microbiome biomarkers to the
clinic.
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