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To control the SARS-CoV-2 pandemic and future pathogen outbreaks requires
an understanding of which nonpharmaceutical interventions are effective at
reducing transmission. Observational studies, however, are subject to biases that
could erroneously suggest an impact on transmission, even when there is no
true effect. Cluster randomized trials permit valid hypothesis tests of the effect
of interventions on community transmission. While such trials could be com-
pleted in a relatively short period of time, they might require large sample sizes
to achieve adequate power. However, the sample sizes required for such tests in
outbreak settings are largely undeveloped, leaving unanswered the question of
whether these designs are practical. We develop approximate sample size for-
mulae and simulation-based sample size methods for cluster randomized trials
in infectious disease outbreaks. We highlight key relationships between charac-
teristics of transmission and the enrolled communities and the required sample
sizes, describe settings where trials powered to detect a meaningful true effect
size may be feasible, and provide recommendations for investigators in plan-
ning such trials. The approximate formulae and simulation banks may be used
by investigators to quickly assess the feasibility of a trial, followed by more
detailed methods to more precisely size the trial. For example, we show that
community-scale trials requiring 220 clusters with 100 tested individuals per
cluster are powered to identify interventions that reduce transmission by 40%
in one generation interval, using parameters identified for SARS-CoV-2 trans-
mission. For more modest treatment effects, or when transmission is extremely
overdispersed, however, much larger sample sizes are required.
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1 INTRODUCTION

Since its emergence in late 2019, the pandemic SARS-CoV-2 virus has spread globally, resulting in millions of deaths.1
Before vaccines were developed and authorized, policy responses to control the spread of the virus relied on nonpharma-
ceutical interventions (NPIs). NPIs—including, among other measures, mask mandates, school and business closures,
and restrictions on travel—have the potential to reduce transmission of the virus. However, which specific NPIs have an
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effect on transmission remains largely uncertain, while their economic or psychological costs may be substantial. This
presents a challenge for policy design. Retrospective statistical analyses of reported cases or deaths,2-4 in some cases sup-
plemented with mobility data,5,6 have provided one means to estimate these impacts, but the conclusions are far from
clear. In the first waves of the pandemic, school closures, for example, were found to have relatively minor effects in vari-
ous types of studies.2,3,7 However, more recent analyses suggested that school closure might reduce transmission, perhaps
by as much as 15%.4,8-11

Ultimately, while this body of work has helped inform the policy landscape, important gaps remain. Different interven-
tions often overlap in timing, and communities that adopt particular interventions may be similar in other ways, resulting
in confounding that biases estimates, even under the null hypothesis of no intervention effect, and challenges the validity
of hypothesis tests.12 In addition, since these observational studies generally rely on the number of observations available
in existing data sets, their power to detect meaningful effect sizes may be low or uncertain.

Randomized controlled trials (RCTs) are widely used to evaluate the impact of interventions on infectious diseases,
as seen in recent vaccine trials with tens of thousands of participants.13,14 While the first trials for SARS-CoV-2 vac-
cines focused on estimating direct effects on individual-level protection, cluster randomized trials (cRCTs) can also
provide valuable insight into indirect and total effects of a vaccination regimen in a community.15,16 For NPIs, clusters
are the natural scale of analysis, as many interventions are implemented at this scale—for example, by school districts or
municipalities—and as both direct and indirect protection are of interest in policy design.

Random allocation of interventions to different communities in parallel has been proposed as an approach to assess
whether interventions affect transmission.17,18 Indeed, because transmission is rapid, effects can be evaluated in a matter
of weeks. Because the impact of interventions remains uncertain, trials that allow control clusters to adopt the interven-
tion after only a short lag may achieve equipoise and have relatively high community acceptability during an epidemic.
Despite these advantages, these RCTs might still incur substantial costs and require significant coordination, implemen-
tation, and testing. These logistical challenges grow as the number of intervention units increases. Thus, the degree to
which deploying RCTs to evaluate NPIs is a useful policy tool will depend on the sample size required to detect, with
adequate power, a meaningful reduction in transmission.19

Simulation approaches have been previously used to evaluate the statistical power of cRCTs evaluating vaccination at
both individual and cluster scales20-23 This allows investigators to size cRCTs to have a desired power to detect a specified
true effect size of interest (ie, reduction in transmission). Although estimators have different properties and interpreta-
tions depending on the phase of the epidemic—for example, by capturing more indirect effects or having less impact
when there is more preexisting immunity—this allows hypothesis tests to be appropriately powered.22,23 Here, we build
on these results to provide estimates for the number of clusters and number of individuals measured within each clus-
ter needed to test the effectiveness of an NPI in a short period of time, with the aim of bounding the feasibility of such
analyses. Additionally, our simulation approach considers the use of baseline testing, the effects of variable cluster sizes
and overdispersion, and the use of different delays in sampling after intervention and matching techniques in order to
improve power.

We provide investigators with several tools to estimate the required sample size of a cRCT powered to test the effect of
an NPI on epidemic transmission. These include approximate formulae that can be used to size the trial, and simulation
results that inform how power depends on key parameters. For more precise sample size and power calculations, simu-
lations adapted to the context of the trial under consideration will be necessary. The results presented here, however, can
provide a baseline for assessing whether a trial may be feasible with a reasonable sample size and can provide a starting
point for more specific investigations.

2 METHODS

2.1 Trial design

We consider cRCTs where there are N = N1 + N0 total clusters enrolled, with N1 in the intervention arm and N0 in the
control arm. At a specified day t after infections have begun in the clusters, one round of sampling is performed, sam-
pling m0 individuals from each cluster and testing them for the infection. In the simulations, we set the desired average
proportion of infectious individuals, E[It], as a parameter, and identify the time t so that the average of this value across
clusters matches this value. We then use this value t in all clusters, so there will be variability in the proportion infectious
across clusters. At that point, the intervention begins in the intervention arm clusters, a randomly-selected half of the
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study clusters. A set amount of time later (in our main results, this amount of time is equal to one generation interval, the
time from the infection of a primary case to infection of a secondary case infected by that primary case),24 another round
of sampling occurs, this time sampling m1 individuals from each cluster and testing them. We denote this time point by
t + 1. A range of sampling times beyond one generation interval after intervention are explored in Section 3.2.2. In the
approximate formulae derived here, m0 and m1 need not be equal; our simulations, however, assume the same number
of individuals are tested at both time points for simplicity. We assume the number of individuals tested in each cluster is
the same across clusters. We assume that the test accurately identifies infectious individuals. More complex models may
be used to adjust for known imperfect sensitivity and specificity, as has been done in other settings.12,25 In the approxi-
mate formulae, each generation of infections is discrete (discrete-generation), such that no two generations of infections
will overlap in time with one another, while in the simulations the generations may overlap.

In some cases where clusters are relatively small, it may be reasonable to assume that everyone or nearly everyone
in the cluster will have their outcome measured. For example, some schools, universities, long-term care facilities, and
workplaces have proposed or implemented universal testing strategies.26-29 We consider this setting first, followed by
settings where a simple random sample (without replacement) is chosen for testing, independently at each time point.

Each cluster j then has two values associated with it: Yj,t, the number of sampled individuals who test positive in the
first round of sampling (preintervention); and Yj,t+1, the number of sampled individuals who test positive in the second
round of sampling (postintervention). We conduct analysis using test statistics based on the quantity Yj,t+1∕m1

Yj,t∕m0
from each

cluster, for example, by comparing the mean of this statistic in the intervention arm to that in the control arm. This
statistic estimates the growth rate of infections, which is related to the reproduction number—Rt, the number of secondary
infections that arise from a typical primary case at time t—in the cluster,30 so the difference in means estimates the
reduction in the growth rate of new infections.17

This statistic may not always be unbiased, due to adjustments made for zero-case clusters, asymmetric effects of the
progress of the epidemic prior to time t, and the continuous-time nature of transmissions. However, in a randomized trial,
under the null hypothesis of no effect of intervention, the statistic has zero expectation. Thus, hypothesis tests based on
this statistic are valid. In the sample size calculations to follow, we size the trial based on the hypothesized true effect
of intervention on the infection growth rate. For the discrete-generation approximations considered, this is equal to the
effect of intervention on the reproduction number. While the power and sample size calculations presented here are based
on hypothesis tests using this statistic, they may be reasonable approximations for other test statistics using the same
information. While Type I error is preserved through internal validity, other statistics may have greater power, especially
if they avoid any bias in the estimator. In addition, other sampling schemes are possible, including sampling only at time
t + 1 or additionally using serologic sampling to estimate the number of susceptible individuals at either or both time
points. We focus on the setting using only virologic testing at the two time points for power calculations as it may be
broadly feasible to implement.

2.2 Epidemic spread assumptions

Both the development of approximate sample size formulae and the simulations that follow depend on certain assump-
tions about the epidemic process. First of all, we assume that clusters are independent; that is, there is no transmission
between clusters. This may be reasonable if clusters are sufficiently geographically distinct.

Secondly, we assume that once a cluster has its initial infections, the pathogen spreads according to a standard
susceptible-exposed-infectious-recovered (SEIR) model. In the approximations, we consider only a single discrete time
step (equal to one generation interval). We assume that at time t, the proportion of individuals who are infectious is It. The
reproduction number at time t, Rt, is the mean number of individuals who will be infected in the next time step (move
from S to I) for each infectious individual. Rt can be thought of as the result in each community of a common basic repro-
duction number, R0, changed as the number of susceptible individuals changed in that community up to time t, with
overdispersion parameterized by k. This parameter allows for the epidemic spread to encompass settings ranging from
very little variation in transmission across individuals (k ≥ 1) to a small number of infected individuals being responsi-
ble for the vast majority of onward transmission (k ≤ 0.1), sometimes referred to as “superspreading”.31,32 The number
of individuals in the community is assumed to be sufficiently large compared to the number of infectious individuals at
time t such that no individual is infected by two infectious individuals in the same generation. More details can be found
in Appendix 1.A.
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T A B L E 1 Parameters used in simulations

Parameter Values

R0 1.5, 2.0

Overdispersion parameter (k) 0.1, 0.4, 0.7

Effect size (Reduction in transmission) (Δ) 20%, 40%

Cluster population (n) 100 1000 10,000

Number sampled per cluster (m) 10, 50, 100 100, 1000 100, 1000

Mean infection prevalence at t (E[It]) 2% 0.5% 0.5%a

Initial infection prevalence (I0) 1% 0.4% 0.4%

a0.45% for n = 10,000 when k = 0.1. Results when k = 0.1, n = 10,000, R0 = 1.5 not included as E[It] did not rise above 0.45% for this parameter combination.

In the simulations, we use a continuous-time stochastic SEIR model. We assume that each exposed individual’s incu-
bation period is drawn from an exponential distribution with a mean of 5.51 days.33 We match the simulations done
elsewhere, assuming the mean infectious period across individuals is 5 days.22,23 We use an exponential rather than
gamma distribution because its memoryless property allows for interrupted modeling without disturbing in-progress
infectious periods; the difference is minor and the exponential distribution has been used elsewhere as an approxima-
tion.34 We assume an approximate negative binomial degree distribution for the network structure of each cluster that is
overdispersed by parameter k.31 We assume a mean degree of 15 within each cluster as has been found in cRCTs for other
infectious diseases22,35 and suggested for respiratory diseases based on large-scale contact surveys.36 We use a configura-
tion model (CM) algorithm to generate a graph according to this distribution.37 We then remove unnecessary edges, such
as self-loops and multiple edges connecting nodes, as these are irrelevant for this setting, leaving a contact structure that
nearly but does not exactly follow a negative binomial degree distribution. When n = 100, it is possible for a drawn degree
from the negative binomial distribution to be greater than n. For these nodes, their maximum degree by the end of the
algorithm is capped at 99. We also assume a fixed initial number of infections to seed the epidemic according to cluster
size (see Table 1). Note that because the epidemics progress stochastically within each cluster, the Rt and It values vary
between clusters.

In the approximations, the intervention can affect the reproduction number and the overdispersion parameter in the
clusters where it is implemented. In the simulations, the intervention affects the transmission rate, but does not affect
the contact structure in the cluster and thus not the overdispersion of contacts. Different assumptions should be used if
the intervention primarily affects the distribution of the number of contacts each person has.

2.3 Approximate sample size formulae

We consider analysis based on the test statistic comparing the means of Yj,t+1∕m1

Yj,t∕m0
(the ratio of the proportion infected

post-intervention to pre-intervention, which approximates the reproduction number when measured one generation
interval apart) in the intervention vs. control arms. We present two results based on approximate distributions of the test
statistic: (i) an approximate sample size required (in terms of the number of clusters per arm) when there is full testing
within each cluster at times t and t + 1; and (ii) an approximate sample size required when there is sampled testing within
each cluster at those times. The former is useful for small cluster sizes, where full or near-full testing is feasible. The latter
assumes that the number tested is small compared to the total cluster population, although it focuses on the variability
due to post-intervention sampling and ignores the variability due to sampling at time t to simplify the approximations
and formulae. The latter is thus likely to underestimate the required sample size in many settings, except where the pro-
portion sampled is non-negligible (ie, greater than 10%). The approximations do not directly account for changes in the
number susceptible, so both methods are most accurate for short lags between t and t + 1. Details of these assumptions
can be found in Appendix 1.

Both of these results are based on a Welch’s two-sample t-test for the comparison of two means, with unequal vari-
ances. For this test, the required sample size (number of clusters) in each arm, Ni, to detect a difference in means of Δ
with power 1 − 𝛽 at two-sided significance level 𝛼 solves:38
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Ni =
(𝜎2,I + 𝜎2,C)(t2Ni−2,1−𝛼∕2 + t2Ni−2,1−𝛽)2

Δ2 , (1)

where 𝜎2,i is the variance of the observations in intervention arm i, where i = I for the intervention arm and i = C for the
control arm, and tDF,𝜙 is the 𝜙-quantile of the t distribution with DF degrees of freedom. We present variance estimates
that can be used in this calculation, with derivations presented in Appendix 1.

If the full cluster populations are tested at each time point, then an approximate sample size can be calculated for the
difference in the means of Yj,t+1

Yj,t
between the intervention arms, where Yj,t is the number of individuals who test positive

at time t in cluster j. The t-test can then be used, with effect size Δ = RI
t − RC

t estimated by the difference in means, and
variances approximated for each arm i by:

𝜎2,i ≈ Ri
t

(
1 +

Ri
t

ki

)
1

nE[Ij,t]
, (2)

where Ri
t is the time-varying reproduction number at time t in intervention arm i (again, I for the NPI and C for control),

ki is the overdispersion parameter of transmission in intervention arm i, n is the population (number of individuals) in
each cluster, and E[Ij,t] is the mean (across clusters) proportion of individuals who are infectious at time t.

If the variance of the proportion of individuals who are infectious at time t across clusters, Var[Ij,t], can be estimated
as well, then the calculation should use variances approximated by:

𝜎2,i ≈ Ri
t

(
1 +

Ri
t

ki

)(
1

nE[Ij,t]
+

Var[Ij,t]
nE[Ij,t]3

)
. (3)

When a small proportion of the population of each cluster is tested at each time point instead (specifically, m0 indi-
viduals per cluster at time t and m1 individuals per cluster at time t + 1), the effect size Δ = RI

t − RC
t can be approximated

by the difference in the means of Yj,t+1∕m1

Yj,t∕m0
. The variances can be approximated by:

𝜎2,i ≈
Ri

t

m1

{[
1 + m1 − 1

n

(
1 +

Ri
t

ki

)][
1

E[Ij,t]

]
− Ri

t

}
. (4)

Again, if we can estimate the variance of the proportion of individuals who are infectious at time t by Var[Ij,t], then
the variances can be approximated by:

𝜎2,i ≈
Ri

t

m1

{[
1 + m1 − 1

n

(
1 +

Ri
t

ki

)][
1

E[Ij,t]
+

Var[Ij,t]
E[Ij,t]3

]
− Ri

t

}
. (5)

R functions to calculate these values are available at http://www.github.com/jsheen/NPI.

2.4 Simulation setup

For each parameter combination described in Table 1, we first create a simulation bank of cluster simulations with and
without an enacted nonpharmaceutical intervention. The simulated epidemic is described above. Note that while we
report R0 in the table, it is used primarily to progress the epidemic until the point of intervention. For practical purposes,
the relevant parameters for the trial are Rt, the time-varying reproduction number, and It, the proportion of infectious
individuals, at the time of intervention. To get realistic values of these parameters, we use relatively low R0 values in the
context of SARS-CoV-2, which may actually reflect the impact of other interventions and behavior changes. We exam-
ine the sensitivity of results to this parameter throughout. The per-contact daily transmission rate, 𝛽, is set empirically
to give the desired R0 at the beginning of the simulation, or can be set to give the desired Rt and It at the time of inter-
vention. For ease of comparison, we report the reproduction numbers used for each result rather than the transmission
rate itself.

http://www.github.com/jsheen/NPI
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(A) (B) (C)

F I G U R E 1 Simulated trajectories of a randomized control trial of a nonpharmaceutical intervention. Each arm has 100 clusters, with
average basic reproduction number under control R0 = 1.5, overdispersion parameter k = 0.4 (A,B) or k = 0.1 (C, indicating more
overdispersed transmission), and cluster size n = 1000. On day 30, the intervention begins, which reduces the transmission rate, 𝛽, by 40% (A)
or 20% (B,C). The dashed lines represent the day of intervention (t) and the day of sampling, one generation interval after intervention (t + 1)

(A) (B) (C)

F I G U R E 2 The growth rate of infections decreases during the observation period of 33 days after nonpharmaceutical intervention.
Simulations shown have average basic reproduction number under control R0 = 1.5, overdispersion parameter k = 0.4 (A,B) or k = 0.1 (C,
indicating more overdispersed transmission), and cluster size n = 1000. Intervention (treatment) reduces the transmission rate, 𝛽, by 40% (A)
or 20% (B,C). The y-axis shows the growth rate at day t, calculated as the ratio of It+1—the number of infectious individuals one generation
interval (11 days) later—to It, the number of infectious individuals on day t. The dashed line represents the threshold of a growth rate of 1;
that is, each infectious individual at It is able to replace themselves at It+1

To approximately align clusters on epidemic time, time t is defined as the first day when the mean proportion of
infectious people across clusters is approximately equal to the target E[It]. In an epidemic, it would be reasonable to aim to
test interventions at similar epidemic time points, but the remaining variability in the number infected allows us to explore
the impact of this variance on power. After t is identified, the simulation bank is created by interrupting the simulation for
each cluster at time t. At time t, we continue the cluster simulation both with and without an enacted NPI intervention for
one generation interval (11 days) and record the number of infectious individuals at this point (denoted time t + 1). The
generation interval is equal to the ceiling of the sum of the average incubation period and average infectious period.39,40 At
times t and t + 1, m individuals are sampled and tested within each cluster. We create 3000 simulations for the simulation
bank. Only simulated clusters with at least one infectious individual at time t are kept, so we implicitly assume there is
at least one infectious individual in each cluster. Example simulation trajectories of cumulative incidence of cases and of
growth rates of infectious individuals are shown in Figures 1 and 2, respectively.

To find the number of clusters in each arm of the trial needed to achieve approximately 80% power when 𝛼 = 0.05,
we use a binary search algorithm with a minimum and maximum number of clusters of 1 and 1000, respectively. At each
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iteration of the algorithm, 10,000 trial simulations are performed by choosing a given number of clusters from each of
the treatment arm and the control arm in the simulation bank. The empirical power is then calculated after sampling
m individuals from each cluster and a two-sample Welch’s t-test is performed on the quantity log

(
Yj,t+1+1
Yj,t+1

)
. Note that

to avoid undefined test statistic values, we add one infected individual at each time point to each cluster. This binary
search algorithm implicitly assumes that the relationship between power and number of recruited clusters for the trial
monotonically increases. Algorithm pseudocode for the creation of the simulation bank and binary search algorithm for
N can be found in Appendix 2, along with comments on the stability of the algorithm (see Figure S1).

We further extend these simulation results in two ways: (i) we provide N when the postintervention testing time point
is either two or three generation intervals after t instead of one generation interval in Section 3.2.2; and (ii) we provide
simulation results when matching clusters into pairs depending on the number of susceptible individuals at time t, as well
as the number of noninfectious individuals at time t, within each cluster, using a matched-pairs t-test in Section 3.2.3. We
use a greedy matching algorithm to randomly assign one cluster of each pair to either treatment or control.

We use the EoN python package to simulate the epidemic.41 Code used for simulations is provided at http://www.
github.com/jsheen/NPI.

3 RESULTS

We present results from both the approximate sample size calculations and simulations that target an empirical power of
80% to detect a specified effect size with two-sided significance level 𝛼 = 0.05 for the parameter combinations described
in Table 1.

3.1 Approximate sample size requirements

The required sample size depends on features of the transmission of infection, the sizes of the cluster populations and
samples, and the effect size studied. These relationships are illustrated using the approximate variance formulae.

3.1.1 Approximations under full measurement

In cases where the outcome (infection) is measured in everyone in each cluster, we can use Equation (2) to estimate
the variance. The variances (and thus required sample sizes) increase as the reproduction numbers, Ri

t, decrease or as
the overdispersion parameter, ki, decreases. Note that decreasing ki corresponds to more overdispersion and thus more
variability in the change in the number of infections over one generation. In addition, the variance increases as the average
proportion of infected individuals per cluster at time t decreases. These relationships are plotted in Figure 3, which shows
the number of clusters per arm required for 80% power to detect a reduction in transmission of 40% at significance level
𝛼 = 0.05. Figure 3A shows that, for a given cluster size and expected proportion of infections at enrollment, there is a
slight decrease in the required sample size as RC

t increases and a substantial decrease in the required sample size as k
increases (less overdispersion). Figure 3B shows that, for fixed RC

t and k (RC
t = 1.5 and k = 0.4 are shown), the required

number of clusters decreases as the expected proportion of the population infected at enrollment, E[It], increases and as
the cluster size (and thus number sampled) increases. When the expected number of infections per cluster at time t falls
below approximately two, the required sample size increases dramatically.

3.1.2 Approximations accounting for sampling

When sampling within each cluster is accounted for, similar relationships are observed between RC
t , k, and the required

sample size calculated using Equations (1) and (4). Figure 4A shows these relationships for a cluster size of n = 10,000 and
sampling m = 100 individuals, with E[It] = 0.005, and with an effect size (transmission reduction) of 40%. Because of the
larger cluster size, the spread of infections is more deterministic, leading to a smaller effect of overdispersion. Figure 4B
shows how the effect size affects the required sample size for fixed k = 0.4.

http://www.github.com/jsheen/NPI
http://www.github.com/jsheen/NPI
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t = 1.5, and k = 0.4. In all panels, the expected proportion of the population infectious at enrollment is E[It] = 0.005

With this approximation, we can also examine the relationship between the number of individuals sampled per clus-
ter, the cluster size, and the required sample size. Figure 4C illustrates these relationships when RC

t = 1.5, k = 0.4, the
reduction in transmission due to intervention is 40%, and E[It] = 0.005. Note that these approximations ignore any finite
sample corrections. When the number sampled per cluster is a large proportion of the cluster size (ie, 1 − m1

n
is meaning-

fully less than 1), this difference is likely to be meaningful.42 For reference, the approximate sample size if the full cluster
is tested with these parameters ranges from six clusters per arm if n = 10,000 to 45 clusters per arm if n = 1000, which
represent (approximately) the minimum number of clusters for less-than-complete sampling.

There are two key effects of an increase in cluster size, holding all other parameters fixed: (i) stochastic effects in
epidemic spread are less pronounced, leading to more similar epidemic trajectories across clusters; and (ii) the number
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of individuals sampled represents a smaller proportion of the cluster population. The former effect tends to decrease the
variance of the test statistic, while the latter effect tends to increase the variance of the test statistic. Thus, it is difficult to
describe a general rule governing the relationship between cluster size and required sample size. In the approximations
shown in 3C, the latter effect is ignored, so the estimated required number of clusters decreases as cluster size increases.

As the number of individuals sampled per cluster increases, there is a reduction in the required number of clusters per
arm. However, this exhibits diminishing returns as it increases, indicating an eventual tradeoff between the number of
clusters required per arm and the total number of samples required per arm, as is common in cRCTs.21 This figure likely
underestimates the value of increased testing per cluster, especially for relatively large fractions sampled, as it ignores
finite population corrections.

3.2 Sample size requirements from simulations

Estimated required sample sizes to get the desired empirical power are calculated in simulations as well. A full set of
results from these simulations are shown in Supplementary Tables S1 to S17. Here, we focus on the relationships between
the key parameters and the required sample size.

3.2.1 Sample sizes sampling one generation after intervention

Similar to the approximation results, simulation results demonstrate that, in general, the required sample size decreases as
the overdispersion parameter increases, the initial reproduction number under control RC

0 decreases, effect size increases,
and the number of individuals sampled per cluster increases (Figure 5).

Figure 5A shows that as overdispersion decreases (k increases), the required sample size decreases. Moreover, as
shown in Tables S1 to S3, as k increases, RC

0 at time of intervention generally increases as well, even for fixed RC
0 at the start

of the simulated outbreak. Because of this, the relationship between k and RC
0 and the required sample size is even more

pronounced in the simulation results. Figure 5B illustrates that the required number of clusters will generally decrease
as a greater percentage of the cluster is sampled. This indicates that if testing is easy to conduct, the required number
of clusters for a trial can be reduced by increasing the sampling within each cluster. Conversely, if the total number
of individuals to be sampled in the trial is fixed (ie, limited number of tests available), and the number sampled from
each cluster and number of clusters required are allowed to vary, Figure 5C illustrates that it is more efficient to sample
fewer individuals from a greater number of communities than it is to sample more individuals from a smaller number of
communities. This relationship is less clear for small clusters (n = 100) where nearly full sampling can occur.

For clusters of size n = 100 or 1000, the day of NPI intervention for some parameter sets occurred less than four
weeks after the start of the epidemic (when It = 2% and 0.5% respectively)—but interventions may not always be
able to be implemented this quickly. To account for longer delays between the start of the epidemic and day of inter-
vention, we further extend our results by reporting the sample sizes when the day of intervention is one month
after the first day of infection in Tables S4 and S5. We also investigate the effect of a different mean number of
contacts on the simulation results. Figure S3 shows a sensitivity analysis, indicating relatively small differences in
the required sample size as this parameter changes unless cluster size is small compared to the average number of
contacts.

3.2.2 Sample sizes with greater lags after intervention

The formulae and results described above all tested the effect of intervention after one generation interval. Discretiz-
ing on this time scale will provide an estimate that approximates the change in the reproduction number, Rt, although
occurrences of secondary infections prior to the full generation interval will bias estimates of transmission upwards, and
occurrences of primary infections occurring after the full generation interval will bias estimates downwards.43 Further-
more, because the direct effects continue and indirect effects may increase on short time scales, the effect size in cRCTs
in epidemics can increase over time.22,23 Eventually, however, the exhaustion of susceptible individuals will lead to a
reduction in the effect size as incidence rates become more similar between intervention and control clusters. We explore
the effects of the time interval used in our simulations by increasing the lag between intervention and evaluation. The
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F I G U R E 5 The required number of clusters per arm to achieve a desired empirical power in simulations depends on the
overdispersion parameter, reproduction number, effect size, cluster size, and percent of individuals in each cluster who are sampled. Number
of clusters per arm required (A,B) and number of individuals per arm required (C) to achieve 80% empirical power with a significance level of
𝛼 = 0.05 in 10,000 simulated trials vs overdispersion parameter k (A) or percent of individuals sampled per cluster (B,C). Effect size and basic
reproduction number at the start of the outbreak, RC

o , are varied within each panel. In A, each percent of individuals sampled has a unique
line, leading to larger differences even when effect size is held fixed. Points were excluded when the sample size was greater than 1000
clusters per arm. Parameter combinations within each subplot that solely differ in percent of individuals sampled (A) or overdispersion
parameter k (B,C) will have the same color and line type

approximations are not well-suited to assess these sample sizes as their assumptions become less reasonable over longer
time scales.

Figure 6 shows a drastic increase in power—or decrease in the required sample size—if sampling occurs two
generation intervals after intervention compared to sampling one generation interval after intervention.

However, these results change when we increase the lag further, to sampling three generation intervals after interven-
tion. There is generally a more modest decrease in the required sample size for extending from two to three generation
intervals than from one to two generation intervals. Second, for small clusters (n = 100), increasing the lag between
intervention and day of sampling can even increase the required sample size for certain parameter combinations. As the
epidemic progresses, there is eventually a point where the depletion of susceptible individuals leads to a decline in power
from increasing the lag, although this time point will depend on the precise combination of parameters. We also find this
decrease in power occurs more often when there are fewer people sampled from each cluster. Full results are shown in
Tables S6 to S11.

3.2.3 Sample sizes after matching clusters

A common approach to increasing power in cRCTs is to match or stratify clusters on baseline covariates to increase
balance and reduce variability.21,44 In this case, clusters can be matched on the number of susceptible individuals at the
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F I G U R E 6 Required sample size generally decreases as time of sampling after intervention increases, except when the number of true
infections is low three generation intervals after intervention for smaller cluster sizes. Rows correspond to cluster size, n, and columns
correspond to overdispersion parameter, k. Effect size, basic reproduction number at the start of the outbreak, RC

0 , and number of individuals
sampled per cluster, m, are varied within each panel. On average, sampling two or three generation intervals after intervention required a
sample solely 35% and 33% as large, respectively, as after one generation interval. Points were excluded when the sample size was greater
than 1000 clusters per arm. Parameter combinations within each subplot that solely differ in the number of individuals sampled per cluster
will have the same color and line type

time of intervention (assuming the availability of serological tests) or on the number uninfected at the time of intervention
(using the prevalence data collected at time t). This matches clusters on Ij,t, reducing the effect of the variability in that
parameter on the variance of the effect estimate.

We assess the effect of this matching in the simulations, using a matched pairs t-test where clusters are matched on the
number of susceptible individuals at the time of intervention (see Tables S12 to S14). We find evidence of modest benefits
from matching when cluster sizes are large. The required sample size generally decreases depending on the parameter
combination used; however, on average, the change in required number of clusters for n = 1000 and n = 10,000 was
modest: 4% and 2% reductions in required sample size, respectively.

For clusters of size 100, the required sample size improved for all parameter combinations where we were able to solve
for the number of clusters. The average reduction in required number of clusters was 15%. Because of the smaller cluster
size, matching on the number of sampled susceptible individuals may be more reliable and thus more informative than
matching with larger cluster sizes. More specifically, the number of sampled susceptible individuals in a smaller cluster
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compared to a larger cluster may give more information about the number of cases in the following generations because
it has a larger impact on the transmission dynamics.

We also assess the effect of matching when clusters are matched on the number of noninfectious individuals at the
time of intervention (see Tables S15 to S17). We find larger benefits from matching on this parameter: the decreases in the
required number of clusters for n = 100, 1000, and 10,000 were 15%, 12%, and 29% on average, respectively. In general,
for each cluster size, the benefits were greater for smaller sample sizes.

When comparing matching clusters on number of susceptible individuals to the number of noninfectious individuals
at time of intervention, we find that when n = 100 and 1000, when not all individuals were tested, matching on the number
of noninfectious individuals reduced the sample size compared to matching on the number of susceptible individuals (by
24% and 28% for n = 100 and 1000, respectively). When all individuals in each cluster were tested, matching on number
of noninfectious individuals increased the sample size compared to matching on susceptible individuals (by 28% and 7%
for n = 100 and 1000, respectively). When n = 10,000, matching on the number of noninfectious individuals reduced the
sample size compared to matching on susceptible individuals by an average of 27%. Thus, using serology testing to capture
the number of susceptible individuals at time t may be more useful when all participants are tested; when clusters are
not fully sampled, in contrast, the number of sampled noninfectious individuals (equivalently, the number of sampled
infectious individuals) at time t is more useful for matching.

Importantly, we assess the benefits of matching when time of intervention occurs according to a prespecified E[It] in
Table 1. Time of intervention will change the number of individuals of each condition (susceptible, exposed, infectious,
and recovered), thus affecting the benefits of matching. The effect of time of intervention on the benefits of matching is
not explored.

Gains in power may also be achieved using stratification or adjustment by measured covariates related to the trans-
mission of infections within each community. For cluster-level covariates, analysis would then proceed by regression
analysis. The reduction in sample size depends on the correlation between the covariate and the outcome, and we refer
readers elsewhere to determine the expected reduction that could be applied to calculated sample sizes.21,38

3.3 Comparison of approximation and simulation sample sizes

The approximation and simulation approaches generate different ways of considering the issue of required sample sizes,
with the former illustrating the impact of different contextual features (overdispersion, cluster size) and the latter account-
ing for more of the variability in the epidemic spread process. Direct comparison between the sample size requirements
derived from approximation formulae and from simulations are difficult, primarily because of the progression of the epi-
demic up to the time of intervention in the simulations. As previously susceptible edges of the contact network have
already been infected in some clusters, the distribution of infections in the next generation varies from cluster to cluster.
Similar effects may occur with the contact networks, where overdispersion falls over time as the most highly-connected
individuals are most likely to have already been infected.45,46

Despite this, the approximations and simulations shown here generally provide required sample sizes that are com-
parable in magnitude for many settings. When all individuals are tested in each cluster, the approximation performs very
well and closely matches the results of simulations. When the variance of infections at time t across clusters is ignored,
this is likely to result in some underestimation of the variance and thus of the required sample size; the same is true
because variation in the RC

t values across clusters is ignored by the approximation.
When only a sample of individuals is tested in each cluster, the approximations diverge further from the simulations.

This can occur for a variety of reasons in addition to the parameter mismatch described above: the approximation does not
account for sampling prior to the intervention and it does not fully account for the variance in the number of infectious
individuals at the time of intervention, Var[It], and the variance in the actual reproduction number, Rt, across clusters
at the time of intervention. Figure S2 shows the wide spread in the number of infectious individuals per cluster, which
reflects the overdispersion of the contact structure of the simulated networks. When the outbreak parameters can be
well-estimated a priori, then, the simulations account for certain heterogeneities that the approximations do not. Because
of this, approximations can be used to get an estimate of the feasibility of a trial but should not be the only consideration
in powering a trial.

Moreover, due to the stochasticity, some clusters may have zero identified cases at time t + 1. This is accounted for
in the analysis of the simulations by adding one case to each time point, which may introduce some bias. Additionally,
the test statistic inherently is based on a fixed, discrete generation interval, which is not the case in the simulation or in
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reality. This may lead to the test statistic not estimating the reduction in Rt consistently; however, since the null remains
the same in either case, the hypothesis tests remain valid.

4 PROPOSED APPROACH FOR SAMPLE SIZE CALCULATION

Because of their different required assumptions, parameters, and approximations, both the approximation formulae and
the simulations should be considered with a range of plausible estimates for the parameters when designing a trial. We
propose that investigators considering a cRCT for an NPI estimate a required sample size using the following procedure:

1. Calculate approximations to the number of clusters required per arm using the two approximation formulae presented
here for likely parameters in their setting. If these are well beyond the point of feasibility for the study, the desired
power may not be achievable. If any parameters can be manipulated (eg, by only enrolling high-incidence clusters or
changing the cluster size for implementation), consider other combinations that may reduce the required sample size.

2. Consult the simulation results in Tables S1 to S17 to find the parameter combination most similar or combinations
which bound the likely parameters for the setting of interest. Extrapolate an estimated sample size from these results
and again evaluate the feasibility of this sample size.

3. Conduct a simulation study using the best estimates for the transmission dynamics of the setting of interest using the
sample size estimated in steps 1 to 2 and the planned analysis method. Determine if the empirical power from this
simulation study approximately matches the desired power.

To illustrate this process, we consider a recent cRCT investigating the effects of community-level mask promotion in
Bangladesh on masking and symptomatic seroprevalence of COVID-19.47 In this study, 600 villages were randomized into
two arms: an intervention arm that received various mask promotion strategies including free mask provision and role
modeling by community leaders, and a control arm that had no specific promotion. An average of 570 adults live in each
village, and nearly all reported their follow-up symptom status. Of 27,000 reporting COVID-like symptoms, 11,000 con-
sented to serologic testing. While this study used symptomatic seroprevalence over eight weeks as the primary outcome,
we illustrate our proposed method for a primary outcome of virologic test-confirmed infection and a shorter duration, that
is, of less than two weeks. This may result in increased effect sizes, as the authors note that symptomatic seroprevalence
may identify individuals who were infected prior to the trial onset, and had symptoms for non-COVID reasons during the
trial.47

We consider a similar trial with N0 = N1 = 300 clusters per arm and n = 570 individuals per cluster. Due to limited
testing in these villages, case counts and reproduction number estimates prior to the study were not reliable and not used
by the original study authors. However, during this study, reported case counts were high and rising.47 This indicates that
assuming a reproduction number over 1 (eg, 1.2) in the control arm (RC

t ) is reasonable, as is an initial proportion infectious
(E[Ij,t]) of 0.5%, calculated from the final estimated symptomatic seroprevalence (approximately 1.25% accounting for
some omitted individuals), doubled to account for asymptomatic infections, and spread across approximately 5 generation
intervals covered by the trial duration. Lacking specific knowledge of epidemiologic conditions in the area, we choose a
moderate overdispersion parameter of kC = kI = 0.4, perhaps reflecting existing mitigation measures that prohibit large
gatherings. While many assumptions go into these values, they may be reasonable a priori estimates for key parameters.

Using the approximation formulae with these parameters and the variance from Equation (2), if all individuals in
each cluster are tested, 80% power to detect a 40% reduction in Rt would require 83 clusters in each arm. If 100 individuals
in each cluster are tested, the approximate sample size, calculated using Equation (4), rises to 212 clusters per arm. This
results in approximately 40,000 total tests. Testing 50 individuals per cluster instead raises the required clusters per arm
to 342 and reduces the total tests required to approximately 34,000. Note that, unlike the serologic testing used in the
study, the virologic testing considered in these methods would not require a blood sample and thus might be cheaper,
more acceptable, and easier to administer to more individuals per cluster. An investigator considering such a study could
weigh the benefits of the outcome and approach used by Abaluck et al against the benefits of a shorter-duration study
using virologic testing that would require more tests.

We then consider the simulation results in Tables S1 and S2, using the same parameters. For clusters of sizes 100
and 1000 and testing 100 individuals per cluster, the required numbers of clusters per arm are 111 and 345, respectively.
Because the simulations do not guarantee RC

t at time of enrollment, only R0, these sample sizes come from the closest
approximations to RC

t = 1.2 of 1.33 and 1.42 for clusters of size 100 and 1000, respectively, keeping overdispersion and
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effect size the same and testing 100 individuals in each cluster. For our intermediate size of 570, then, 300 clusters per
arm is likely reasonable. The higher cluster size number can be considered a conservative estimate of the sample size
required if cluster sizes vary up to a maximum of 1000. Both the simulations and approximations can be used to assess the
sensitivity of these sample sizes to the assumed parameters: an increase in overdispersion from k = 0.4 to k = 0.1 would
require about 1.5 to 2 times the sample size, while an increase in the reproduction number under control from RC

t = 1.2
to RC

t = 1.5 would reduce the requirement by 10%-20%.
These approximations and estimates suggest that such a trial would be adequately powered to detect a 40% reduction

in Rt using 200 to 400 clusters per arm and testing 100 or fewer individuals per cluster. Since the investigators clearly
had the resources for a trial of that magnitude, planning could proceed. More information on village sizes and contact
patterns could be programmed into the simulation, allowing for a more precise power calculation. While the conducted
study used a primary outcome (symptomatic seropositivity) different from the one proposed here, this calculation also
suggests that it was adequately powered for a meaningful reduction in transmission, although the estimated effect size
on that scale was not reported.47

Moreover, this simulation could be used to assess the power of various estimation methods and primary outcomes; for
example, it could compare results using a virologic outcome to those using a serologic or symptomatic serologic outcome.
And pilot studies and detailed information from the trial setting could be incorporated to further improve the accuracy
of these estimates. Future studies should consider the implications of the sample size methods discussed here, as well as
the results and experiences of completed studies such as Abaluck et al.47

5 DISCUSSION

To determine whether cRCTs are a practical tool to test the impact of NPIs in epidemic settings, we developed two approx-
imate sample size formulae. We compared these results to simulated outbreaks and developed a simulation bank that
can be used to further refine estimates of the required sample size for cRCTs. The simulations can be adapted to specific
settings to provide more precise sample size estimation and improve the design of cRCTs.

As an example, we have shown that for settings with communities of 10,000 people, Rt of 1.5 in the absence of inter-
vention, and k of 0.4, 80% power to detect a reduction in Rt of 40% due to intervention can be achieved with approximately
220 total clusters (22,000 sampled individuals) in the trial. While this is certainly a large sample size, cRCTs of that order
of magnitude have been conducted for large-scale policy interventions,47,48 and individual RCTs with thousands or tens
of thousands of participants have occurred to evaluate NPIs and vaccines during this pandemic.13,14,49,50 In particular, if
large-scale random testing of individuals is occurring that can be incorporated into the study, sampling large numbers of
individuals per cluster may be feasible. As Rt increases, overdispersion decreases, or the effect size increases, this sample
size can be reduced while maintaining power.

For communities of 100 people who are all tested (eg, a workplace), with the same transmission parameters, 80%
power to detect a reduction in Rt of 40% due to intervention can also be achieved with approximately 220 total clus-
ters (22,000 sampled individuals) in the trial. If the overdispersion were more extreme, the required sample size would
increase drastically; for example, for k = 0.1, these trials would require approximately 720 clusters, or 72,000 sampled
individuals. If, in addition, 80% power to detect a reduction in Rt of 20% is desired, the sample sizes increases dramati-
cally, requiring approximately 3500 clusters or 350,000 sampled individuals. These may not be feasible for many settings,
saving researchers from conducting an underpowered study.

These results use a simple estimator based on virologic testing at two time points, one before and one after the inter-
vention.17 More work is needed to determine the properties of this estimator, especially in cases where the epidemic fades
out in certain clusters and as the lag between the two testing times changes, as both may bias estimates away from the true
transmission reduction. Other estimators may have more desirable properties in estimating specific estimands of interest
or in precision. We focus here only on the power of hypothesis tests, the ability to reject the null of no intervention effect
for interventions that reduce the reproduction number by a specific amount.

The approximation formulae are limited by the fact that they ignore the variability in the number of active infections
at time t, and the method that accounts for sampling ignores finite population corrections and sampling variability at
time t. In addition, these methods ignore the variability in previous infections and the effect those have on future spread
on the network, which may serve to overstate the variability in dispersion, especially for small cluster sizes or late time
points in the epidemic.45,46 The simulations require a specific data-generating process and assume that the epidemic
unfolds according to the SEIR model up to the point of intervention. It also assumes that overdispersion in transmission is
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caused by the contact network structure, which may ignore biological mechanisms of overdispersion.45 The simultaneous
implementation of other NPIs that affect transmission may affect the validity of this model, and more precise modeling
should be used to get better sample size estimates for specific settings. In addition, the possibility of imported infections
to the trial communities is ignored here, as well as the effect of the intervention on reducing those.

In addition to changing test statistics, other methods may be used to reduce the sample size required to achieve the
desired power. Increasing the time between intervention and evaluation can increase the power to some extent, although
this may make the trial more logistically challenging and make interpretation of effect estimates more challenging. Match-
ing and stratification on cluster-level variables may reduce the variability of results and improve power, again changing the
interpretation of estimates.21,44,51 If the number of clusters are limited but a large number of tests are available, repeated
cross-sectional testing may also improve power; this design also allows investigation of time-varying effects.21

Further work is required to improve the sizing of large-scale cRCTs in outbreak settings. In particular, analysis of data
on the variability of infections at different time points during outbreaks among relevant clusters would enable validation
of the assumptions made in these approaches. This data validation would improve both the closed-form approximations
used here and the validity of simulations conducted to assess power and sample size. In addition, understanding the
variability in Rt across clusters, and covariates or data that can be used to predict Rt in a given cluster, will enable a better
understanding of the mechanism of effects of NPIs on transmission. This improved understanding of the estimand will
improve sample size and power calculations and potentially point to more efficient estimators.

Randomized trials are key to achieving valid hypothesis tests of the effect of interventions in infectious disease out-
breaks. Cluster randomized trials can be used to test the total effect of nonpharmaceutical interventions by comparing the
infection trajectory in intervention communities to that in control communities. This analysis demonstrates that in some
cases, reasonable power to detect meaningful effect sizes can be achieved for such trials, and it provides investigators with
tools to estimate the sample size required.
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