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ABSTRACT: Pesticides are widely used to improve crop productivity by eliminating weeds and pests. Conventional pesticide
development involves synthesizing compounds, testing their activities, and studying their effects on the ecosystem. However, as
pesticide discovery has an extremely low success rate, many compounds must be synthesized and tested. To overcome the high
human, financial, and time costs of this process, machine learning is attracting increasing attention. In this study, we used machine
learning for the molecular design of novel seed compounds for herbicides and insecticides. Classification models were constructed by
using compounds that had been tested as herbicides and insecticides, and an inverse analysis of the constructed models was
conducted. In the molecular design of herbicides, we proposed 186 new samples as herbicides using ensemble learning and a method
for expressing explanatory variables that consider the relationships among eight weed species. For the molecular design of
insecticides, we used undersampling and ensemble learning for the analysis of unbalanced data. Based on approximately 340,000
compounds, 12 potential insecticides were proposed, of which 2 exhibited actual activity when tested. These results demonstrate the
potential of the developed machine-learning method for rapidly identifying novel herbicides and insecticides.

1. INTRODUCTION
Pesticides are widely used to eliminate weeds and pests,
thereby enhancing crop productivity. Traditionally, pesticides
have been developed using an experimental approach in which
various compounds are synthesized and tested, with a focus on
their activity and effects on the ecosystem. Owing to its
extremely low success rate, this process necessitates the
synthesis and evaluation of numerous compounds. Computa-
tional science offers promising tools for accelerating the
pesticide discovery process. For example, classification models
can predict the presence or absence of activity based on
chemical structures. Classification models are constructed
using molecular descriptors or explanatory variables x, which
are derived from chemical structures, and objective variables y,
which represent the presence or absence of activity. Thus,
activity can be predicted by inputting the x values of new
chemical structures into the constructed model.1−4 Machine-
learning classification models based on multitasking models for
quantitative structure−biological effect relationships (mtk-
QSBERs) have made cutting-edge contributions to the field
of molecular design.5−10 In addition, the molecular design of
potential pesticides has been performed using machine-
learning classification models.11−14

Effective molecular design requires a model with high
predictive ability, for which x is of particular importance. For
example, if no information related to y is contained in x, a
model with high predictive ability cannot be constructed

regardless of the regression analysis or classification method
used. In addition, any information contained in x that is
unrelated to y will become noise in the constructed model,
thereby decreasing the prediction performance for new data.
Thus, constructing a model with high predictive ability
necessitates the addition of information relating y to x or the
extraction of information from the original x as well as the
exclusion of information unrelated to y from x.

Furthermore, because the success rate of identifying active
compounds during the development of new pesticides is
extremely low, inactive compounds are much more common
than active compounds. This imbalance in the data, where the
negative class is much larger than the positive class, leads to
prediction results that are biased toward the majority class.
Consequently, almost all minority samples are predicted to be
in the majority class.15,16

In this study, we used classification in machine learning for
the molecular design of new seed compounds for herbicides
and insecticides, which are the most frequently used pesticides.
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The molecular design of new herbicides focused on four
species (pre-emergence and early postemergence) and the use
of various classification methods to develop an x for each y. For
the molecular design of new insecticides, we proposed new
seed compounds by constructing a classification model using
undersampling and classification methods for approximately
20,000−30,000 unbalanced insecticidal activity test data points
from four pest species.

2. METHODS
2.1. Data. A classification model of herbicidal activity was

constructed by using bioassay results provided by Hokko
Chemical Industry Co., Ltd. The assays targeted four weeds in
rice paddy fields: Echinochloa crus-galli (E,c), Lindernia
procumbens (L,p), Monochoria vaginalis (M,v), and Schoeno-
plectus juncoides (S,j). For each weed, the test compounds were
applied pre-emergence (−) or early postemergence (+) at a
dosage of 1200 g a.i./hectare. The herbicidal efficacy was
determined by visual observation of the treated plants in
comparison with the untreated plants 2 weeks after application.
The herbicidal rating scores ranged from 0 to 100. A score of 0
indicates that the compound had no efficacy, whereas a score
of 100 indicates that the weed was completely killed.
Compounds scoring 90 points or more were considered
positive, and those scoring less than 90 points were considered
negative. The number of compounds analyzed for each weed is
shown in Table S1.

To construct a classification model of insecticidal activity, we
used bioassay results provided by Hokko Chemical Industry
Co., Ltd. These assays targeted four pest species: cowpea
aphid, Aphis craccivora; brown plant hopper, Nilaparvata
lugens; common cutworm, Spodoptera litura; and two-spotted
spider mite, Tetranychus urticae. The test compounds were
diluted to 500 ppm and sprayed onto the test plants or leaf
discs. Adult female A. craccivora and T. urticae were released on
the plants or leaf discs 1 day before application. In contrast,
second-instar larvae of S. litura and third-instar nymphs of N.
lugens were released from the plants after spraying. The
mortality count was performed 4−7 days after treatment.
Compounds scoring mortality rates of 60% or more were
considered positive, whereas those scoring mortality rates of
less than 60% were considered negative. The number of

compounds analyzed for each pest species is shown in Table
S2.
2.2. Classification Models. For the molecular design of

new herbicides, three classification methods were used: linear
support vector machines using the linear kernel (LSVM),17

nonlinear support vector machines using the Gaussian kernel
(NLSVM),17 and random forests (RF).18 Owing to the small
sample size, the predictive abilities of the classification models
were evaluated using double cross-validation (DCV).19 First,
the samples were divided according to the number of outer
folds. Then, one fold was used as the test data, and the
remaining folds were used as training data, which were again
divided by the number of inner folds for cross-validation to
optimize the hyperparameters. This operation was repeated
until all of the folds were used as test data. The predictive
ability of each classification model was determined by
comparing the actual and predicted classes in the outer
cross-validation.

For the molecular design of new insecticides, we used two
classification methods: extreme gradient boosting (XGB)20

and light gradient boosting machine (LGBM).21 The samples
were divided into training and test data. The training data were
used to construct the classification models, whereas the test
data were used to validate the models. The predictive ability of
each model was evaluated by comparing the actual and
predicted classes of test data.

Several indices, including accuracy, recall, precision, and F-
score, were used to evaluate the predictive ability of the
classification models quantitatively. For each of these indices, a
value closer to 1 indicates a better performance of the
classification model.
2.3. Explanatory Variables in the Molecular Design of

Herbicides. For the molecular design of new herbicides, the
classification focused on the representation of the x variables in
an herbicide data set. In this study, models were constructed
and evaluated using four methods for x: methods 1, 2, 3, and 4.

Method 1 calculated molecular descriptors from the
chemical structures of the compounds as x to construct a
classification model for each weed species. As eight weed
species were investigated in this study, eight classification
models were constructed.

Figure 1. Workflow for CUS. After the data set is divided into majority and minority classes, the majority samples are used for clustering with k-
means++. Samples are randomly selected from each cluster divided using k-means++ and then integrated. The use of CUS to select the majority of
samples results in an imbalance ratio approaching 1. Finally, the classification model is constructed.
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In method 2, a single classification model was constructed by
using compounds for all eight weed species to determine the
relationships among them. Because descriptors calculated from
the chemical structures of the compounds alone cannot
represent differences among weed species, dummy variables
that convert categorical data into numerical data of 0 and 1
were introduced to represent these relationships. In this study,
eight dummy variables for the eight weed species were added
to x.

Method 3 considered the differences between the weed
species in terms of transfer learning. A matrix of descriptors for
each weed species was connected vertically to a matrix of zero
matrices for each weed species, except for the target weed
species, which was connected horizontally to form a data set of
x. In this representation, x is 9× (the number of descriptors).

Method 4 used ensemble learning, in which the majority
vote of the three estimation results obtained from methods 1,
2, and 3 was used as the final estimated class. For ensemble
learning, the results of the model with the highest predictive
ability among the combinations of descriptor sets and
classification methods were used. The predictive abilities of
the models were evaluated based on the accuracy rate and
recall of new data.
2.4. Molecular Design of Insecticides. For the molecular

design of new insecticide seed compounds, we used
unbalanced data, in which the number of compounds that
were classified as ineffective (negative) was very high
compared to the number of compounds that were classified
as effective (positive). In this study, we focused on under-
sampling. In addition to random undersampling (RUS), which
randomly selects as many samples from the majority data as
from the minority data, we applied clustering undersampling
(CUS), which utilizes k-means++ clustering.22

The basic concept of CUS is illustrated in Figure 1. First, the
samples are divided into majority and minority classes, and
only the former are used for clustering using k-means++. Next,
samples are randomly selected from each cluster and divided
using k-means++. The number of samples to be selected (n) is
given as

=n
N
k (1)

where N is the number of minority samples and k is the
number of clusters. When a cluster does not have n samples, all
of the samples in the cluster are selected. The number of
samples selected from the ith cluster mi is expressed as

< m n1 i (2)

Finally, the selected samples from all of the clusters are
integrated. The number of samples after CUS (Mnew) is given
by

=
=

M m
i

k

inew
1 (3)

By selecting the majority of samples through CUS, the
imbalance ratio approaches 1, and the classification model is
then constructed.

Furthermore, we combined undersampling and ensemble
learning to improve the predictive ability of the classification
model. Owing to the randomness of CUS, undersampling was
repeated to obtain subdata sets, and a submodel was
constructed for each subdata set. The prediction results of all
of the submodels were combined to produce the final
prediction result. In this study, 100 subdata sets were used.
To reduce the number of samples that gave false positives, only
samples that were predicted to be positive by all of the
submodels were classified as positive.

To exclude samples with low confidence for positive
predictions, we proposed a method that combines the
applicability domain (AD) and classification. Before classifying
a sample, the AD was set via the k-nearest neighbor (k-NN)
algorithm23 using only samples whose actual class was positive.
Compounds that were newly estimated and outside the AD
were considered unreliable, even when they were estimated as
positive using the classification model; therefore, their results
were negative. In contrast, compounds within the AD were
classified, and the estimated class was used as the result. This
method allows the reliability of the samples estimated as
positive to be considered during classification.
2.5. Inverse Analysis of the Classification Model.

Inputting the values of the descriptors calculated from the
chemical structures of compounds that had not been tested
into the constructed classification model allowed estimation of
the presence or absence of activity without conducting tests.
By using these estimation results to determine which
compounds should be tested, promising compounds were
identified using a small number of tests.

The new herbicide candidates consisted of 165 compounds
from the Hokko Chemical Industry. The number of samples
used to estimate the presence or absence of activity for each
weed species was 1320 (165 × 8). The classification model
with the highest recall among methods 1, 2, 3, and 4 in Section
2.2 was used as the model for the inverse analysis. For the
inverse analysis of the model from method 4, the AD set with
k-NN was used for each method, and samples that were within
the AD for all methods were considered to be within the AD
for ensemble learning.

As new insecticide candidates, 499,724 compounds were
obtained from the Namiki Shoji Co., Ltd. database.24

Compounds containing salts or metal elements and those
that had already been tested for activity were excluded, and an
inverse analysis was performed using the remaining com-

Table 1. Evaluation Indexes in DCV for Method 1

weed species descriptor method accuracy rate recall precision F-score

E,c(−) alvaDesc + MACCS RF 0.837 0.929 0.813 0.867
E,c(+) alvaDesc NLSVM 0.776 0.926 0.735 0.820
L,p(−) MACCS LSVM 0.755 0.143 1.000 0.250
L,p(+) MACCS LSVM 0.918 0.000 0.000 0.000
M,v(−) RDKit RF 0.548 0.250 0.364 0.296
M,v(+) MACCS RF 0.643 0.385 0.417 0.400
S,j(−) alvaDesc RF 0.633 0.526 0.526 0.526
S,j(+) RDKit RF 0.878 0.500 0.667 0.571
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pounds. This inverse analysis used the classification model with
the largest F-value and the AD set with a k-NN.

3. RESULTS AND DISCUSSION
3.1. Molecular Design of Herbicides. For the molecular

design of herbicides, five descriptor sets were used: RDKit,
alvaDesc, and MACCS keys; RDKit + MACCS keys; and
alvaDesc + MACCS keys. Three methods (RF, LSVM, and
NLSVM) were used for classification, and DCV was conducted
to validate the models using 5-fold cross-validation for outer
cross-validation and leave-one-out for inner cross-validation.

In method 1, a classification model was constructed for each
weed species to estimate the presence or absence of herbicidal
activity. Table 1 shows the evaluation indices of the most
predictive classification method for each weed species, and
Table S3 shows the representative confusion matrix. Although
the models for E,c(−) and E,c(+) could estimate classes with
high accuracy, a recall greater than zero could not be obtained
for L,p(+), likely because the number of positive compounds
was much lower than the number of negative compounds.

Dummy variables were introduced into x in method 2, and
variables combining zero matrices and descriptors were used as
x in method 3 to construct a classification model that
considered the relationship among the weed species. The
presence or absence of herbicidal activity for the eight weed
species was estimated by using each model. The evaluation
indices of the most predictive classifiers in DCV are listed in
Table 2, and the representative confusion matrices are shown
in Table S4. Both introducing dummy variables and
considering the relationships between weed species reduced
the number of false negatives. In addition, some samples that
gave false positives using method 1 were correctly classified
using method 2. However, samples that were correctly
classified using method 1 were misclassified using method 2.
Although the number of false negatives with method 3 was
similar to that with method 1, the number of false positives was
higher. However, some samples that were false positives with
method 1 were true positives with method 3, suggesting that
method 3 is a valid representation method that can consider
the relationships among weed species. Thus, samples that were
misclassified by method 1 but correctly estimated using
methods 2 and 3 can be identified. Similarly, the samples
misclassified by method 2 were correctly estimated using
methods 1 and 3. These results suggest that accuracy could be
improved by employing ensemble learning.

Method 4 used the class obtained by determining the best
model in methods 1, 2, and 3 based on the majority rule. Both
an accuracy-rate-based approach and a recall-based approach

were considered to select the best classification model for
methods 1, 2, and 3. Table 3 shows the evaluation indices for
each best model, and Figure 2 shows a histogram of the

percentages predicted as positive using method 4. Ensemble
learning with the best model selected based on the accuracy
rate did not exceed the positive percentage obtained using
method 1, whereas ensemble learning with the best model
selected based on recall achieved improved recall. Further-
more, focusing on the samples in Figure 2 whose actual class
was positive, the proportion of samples estimated to be
positive at 0.67 was greater than that at 0.33. Similarly, for
samples whose actual class was negative, classification by
ensemble learning was also effective, with the proportion of
samples estimated as negative at 0.33 exceeding that at 0.67.

An inverse analysis of the model was performed using a
compound data set from the Hokko Chemical Industry. In the
inverse analysis, the presence or absence of herbicidal activity
was estimated, and herbicidal activity tests were prioritized on
the basis of these results. A total of 165 compounds were
subjected to inverse analysis, and 1320 (165 × 8) samples were
used to estimate the presence or absence of activity for each
weed species. Method 4, which had the highest recall among
methods 1−4, was selected as the best model, and the inverse
analysis was performed. The AD was set using k-NN with k = 5
and α = 0.80. Any compounds that were located outside the
AD, even in one model, were considered to be outside the AD.
Table 4 summarizes the prediction results of the inverse
analysis. At least one compound was predicted to be positive
for all of the weed species. A histogram of the number of
compounds predicted to be positive for each weed species is
shown in Figure 3. Although the number of compounds
predicted to be positive decreases as the number of weed
species increases, some compounds are predicted to be positive
for all eight weed species.

Table 2. Evaluation Indexes in DCV for Methods 2 and 3

descriptor method accuracy rate recall precision F-score

method 2 RDKit + MACCS RF 0.749 0.605 0.639 0.622
method 3 MACCS RF 0.709 0.581 0.573 0.577

Table 3. Best Classification Models and Evaluation Indexes in Ensemble Learning

based on accuracy rate based on recall

accuracy rate recall precision F-score accuracy rate recall precision F-score

method 1 0.765 0.550 0.696 0.615 0.720 0.612 0.585 0.598
method 2 0.749 0.605 0.639 0.622 0.749 0.605 0.639 0.622
method 3 0.709 0.581 0.573 0.577 0.688 0.612 0.537 0.572
method 4 0.746 0.581 0.641 0.610 0.743 0.620 0.625 0.623

Figure 2. Histogram of the percentage of positive predictions using
method 4.
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Subsequently, activity tests were performed for the 177
samples that were predicted to be positive. In addition, 339
samples that were predicted to be negative were tested to
validate the model. Table 5 presents the confusion matrix for

the results of the inverse analysis; the accuracy rate, recall,
precision, and F-score were 0.680, 0.559, 0.532, and 0.545,
respectively. Positive test results were obtained for 99 of the
177 samples predicted to be positive and 78 of the 252 samples
predicted to be negative, and 186 active compounds were
proposed as herbicide seed compounds. Compared with the
predictive performance of the model with DCV on the existing
data set, that of the inverse analysis was not significantly
decreased. Thus, the model constructed in this study could
predict the presence or absence of herbicidal activity with high
accuracy on an external data set. Among the proposed
compounds, a few were predicted to be positive for all of the
weed species. However, the activity test results were positive
for only five of the eight weed species. Although three of the
weed species were incorrectly proposed, these compounds
showed activity for various targets.
3.2. Molecular Design of Insecticides. For this analysis,

the data set of insecticide compounds was unbalanced, with
imbalance ratios in the range of 5.34−11.75 (Table S5). In
addition, the number of samples was greater than 20,000 for all
pest species (Table S2). Therefore, undersampling by RUS and
CUS was used, and the imbalance rate after undersampling for
each pest was approximately 1.

For the molecular design of new insecticide seed
compounds, eight combinations of descriptor sets and
processing methods were used, as shown in Table 6. In

addition, two classification methods were used: XGB and
LGBM. The number of submodels used for ensemble training
was 100, and α was set to 0.8 and k to 10 for k-NN. The
samples were divided in a 7:3 ratio between the training and
test data.

The evaluation indices for each pest species and treatment
are shown in Table 7, and the confusion matrices are shown in
Tables S6−S9. The RUS and CUS resulted in fewer false
negatives than the other treatments. Without treatment, the
number of false negatives increased, likely due to the
unbalanced training data used in the analysis. In contrast,
with RUS + ensemble learning, the number of false positives
was lower than that when only RUS was used.

Figure 4 shows a histogram of the percentage of samples
estimated as positive when the actual class was negative using
the A. craccivora results as an example. In the RUS + ensemble
learning method used in this study, only samples for which all
100 submodels were estimated to be positive were considered
positive. For example, in the samples at approximately 0.20 in
Figure 4, approximately 20% of the submodels were estimated
to be positive, but the results were negative. In particular, a
large number of the submodels were estimated to be positive
for up to approximately 30% of the samples, likely because
many samples were randomly estimated to be positive in
certain submodels. The ability to correctly estimate such
samples as negative is an advantage of incorporating ensemble
learning. However, because the result was not considered
positive unless all submodels were estimated to be positive, the
number of false negatives was higher for the model using RUS
+ ensemble learning than for that using only RUS. However,
the F-score was higher for RUS + ensemble learning than for
RUS for all of the pests, confirming that ensemble learning
effectively reduced the number of false positives rather than the
number of false negatives.

For all of the pests, the AD was set for the positive samples,
which reduced the number of false-positive samples and
improved the predictive ability of the classification model.
However, the number of false negatives increased, and the
recall decreased because samples whose actual class was
positive were present outside the AD.

Inverse analysis was performed using approximately 340,000
compounds from the Namiki Shoji Co., Ltd. database.24 The
model with the largest F-score was used for inverse analysis.
The AD was set using k-NN with α = 0.8 and k = 10. Table 8
presents the estimated results of the inverse analysis. Among
the compounds that were estimated to be positive, 12 were

Table 4. Prediction Results for the Inverse Analysis of
Herbicides

positive negative outside AD

E,c(−) 73 70 22
E,c(+) 84 59 22
L,p(−) 23 120 22
L,p(+) 1 157 7
M,v(−) 42 88 35
M,v(+) 49 108 8
S,j(−) 28 115 22
S,j(+) 3 155 7

Figure 3. Histogram of the number of compounds estimated to be
positive for 8 weed species.

Table 5. Confusion Matrix for the Inverse Analysis of
Herbicides

positive (prediction) negative (prediction)

positive (activity test) 99 87
negative (activity test) 78 252

Table 6. Descriptor and Processing Methods for the
Molecular Design of Insecticides

descriptor processing method

alvaDesc no processing
RDKit k-NN
MACCS keys fingerprint RUS
ECFP4 RUS + k-NN
alva + MACCS RUS + ensemble learning
RDKit + MACCS RUS + ensemble learning + k-NN
alva + ECFP4 CUS + ensemble learning
RDKit + ECFP4 CUS + ensemble learning + k-NN
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tested for insecticidal activity. Notably, one of these
compounds was active against N. lugens and another was
active against S. litura. Thus, we successfully developed new
insecticide seed compounds using a classification model with
undersampling and ensemble learning.

4. CONCLUSIONS

In this study, machine learning was employed for the molecular
design of novel pesticides. For the molecular design of new
herbicides, we targeted eight weed species and estimated the
presence or absence of activity for each weed species. Two
methods (incorporating dummy variables and combining
molecular descriptors and zero matrices) were used to
correctly classify samples that had been misclassified by the
classifiers estimated for each weed species. Ensemble learning
of these estimation results further improved the predictive
ability of the model, and inverse analysis using the model with
ensemble learning revealed 186 potential new herbicides.

For the molecular design of new insecticides, the predictive
ability of the model was improved by applying an under-
sampling method to unbalanced data sets. Inverse analysis of
the model allowed us to predict the active compounds.
Subsequent experimental validation of the proposed com-
pounds revealed two new insecticide seed compounds.

Physicochemical or structural interpretation of the machine-
learning classification model can be performed based on
feature importance, such as that revealed by cross-validated
permutations, and local interpretation, including the local
slopes of model predictions. Thus, the proposed method is
expected to accelerate the molecular design of novel pesticides.

Table 7. Evaluation Indices of the Best Class Classification Results for Each Process

insect name processing method method descriptor accuracy rate recall rate precision rate F-score

Aphis craccivora no processing XGB alva + ECFP4 0.875 0.403 0.685 0.508
k-NN XGB alva + ECFP4 0.876 0.375 0.711 0.491
RUS LGBM RDKit + ECFP4 0.749 0.704 0.356 0.473
RUS + k-NN LGBM ECFP4 0.787 0.591 0.391 0.470
RUS + ensemble LGBM ECFP4 0.871 0.439 0.643 0.522
RUS + ensemble + k-NN LGBM ECFP4 0.871 0.413 0.652 0.505
CUS + ensemble LGBM alva + ECFP4 0.864 0.457 0.599 0.519
CUS + ensemble + k-NN LGBM alva + ECFP4 0.864 0.431 0.607 0.504

Nilaparvata lugens no processing XGB alva + ECFP4 0.899 0.472 0.734 0.575
k-NN XGB alva + ECFP4 0.896 0.436 0.736 0.548
RUS LGBM alva + ECFP4 0.802 0.784 0.406 0.535
RUS + k-NN LGBM alva + ECFP4 0.835 0.673 0.453 0.541
RUS + ensemble LGBM alvaDesc 0.896 0.504 0.694 0.584
RUS + ensemble + k-NN LGBM RDKit + MACCS 0.891 0.475 0.678 0.559
CUS + ensemble LGBM alvaDesc 0.889 0.544 0.636 0.586
CUS + ensemble + k-NN LGBM alvaDesc 0.887 0.506 0.641 0.566

Spodoptera litura no processing XGB alva + MACCS 0.940 0.384 0.747 0.507
k-NN XGB alva + MACCS 0.939 0.357 0.770 0.488
RUS LGBM alva + MACCS 0.816 0.751 0.270 0.397
RUS + k-NN LGBM alva + ECFP4 0.867 0.638 0.332 0.436
RUS + ensemble LGBM alvaDesc 0.939 0.474 0.671 0.555
RUS + ensemble + k-NN LGBM alva + ECFP4 0.938 0.447 0.681 0.540
CUS + ensemble LGBM alvaDesc 0.930 0.532 0.569 0.550
CUS + ensemble + k-NN LGBM alvaDesc 0.930 0.490 0.575 0.529

Tetranychus urticae no processing XGB alva + MACCS 0.920 0.591 0.825 0.689
k-NN XGB RDKit + ECFP4 0.918 0.547 0.847 0.664
RUS LGBM alvaDesc 0.866 0.774 0.535 0.633
RUS + k-NN LGBM RDKit + ECFP4 0.886 0.685 0.603 0.641
RUS + ensemble LGBM RDKit + ECFP4 0.919 0.603 0.804 0.689
RUS + ensemble + k-NN LGBM RDKit + ECFP4 0.916 0.572 0.810 0.670
CUS + ensemble LGBM RDKit + ECFP4 0.913 0.638 0.743 0.686
CUS + ensemble + k-NN LGBM RDKit + ECFP4 0.913 0.594 0.770 0.670

Figure 4. Histogram of the percentage of samples estimated as
positive when the actual class is negative.

Table 8. Estimated Results for the Inverse Analysis of the
Molecular Design of Insecticides

positive negative outside AD

Aphis craccivora 448 91,417 246,872
Nilaparvata lugens 4374 75,210 259,182
Spodoptera litura 51 81,850 256,830
Tetranychus urticae 47 82,361 256,931
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