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The intimate genetics of Drosophila
fertilization

Benjamin Loppin, Raphaëlle Dubruille and Béatrice Horard

Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1,
Villeurbanne, France

The union of haploid gametes at fertilization initiates the formation of the

diploid zygote in sexually reproducing animals. This founding event of

embryogenesis includes several fascinating cellular and nuclear processes,

such as sperm–egg cellular interactions, sperm chromatin remodelling,

centrosome formation or pronuclear migration. In comparison with other

aspects of development, the exploration of animal fertilization at the func-

tional level has remained so far relatively limited, even in classical model

organisms. Here, we have reviewed our current knowledge of fertilization

in Drosophila melanogaster, with a special emphasis on the genes involved

in the complex transformation of the fertilizing sperm nucleus into a

replicated set of paternal chromosomes.
1. Introduction
The vast majority of animals reproduce sexually through the union of two very

different haploid gametes. Fertilization includes a variety of specific nuclear and

cytoplasmic events, and represents a research field of obvious fundamental

interest. Nevertheless, genetic investigations of animal fertilization are relatively

under-represented in modern biology, especially when compared with its

immediate companion fields, gametogenesis and early embryo development. His-

torically, the biology of fertilization has largely benefited from a small number of

animal models for which eggs are available in relatively large quantities and ferti-

lization can be controlled experimentally. However, these animals, which include

marine invertebrates (essentially echinoderms and molluscs), as well as amphi-

bians, were not amenable for genetic experimentations aimed at identifying

factors specifically required for the formation of a diploid zygote [1,2].

There are three recognized types of fertilization in animals, which differ by

their mechanisms of karyogamy (the mixing of parental chromosomes). Pronuc-

lear fusion—the fusion of nuclear envelopes (NEs) of male and female

pronuclei—is often mentioned in textbooks but is in fact essentially known in

sea urchins and sea stars. In these echinoderms, fertilization occurs when the

female pronucleus has already formed and pronuclear fusion soon follows the

apposition of pronuclei [1]. In the more widespread Ascaris type of fertilization,

first described by van Beneden in 1884 [3], pronuclei do not fuse but remain sep-

arated until the onset of the first zygotic mitosis. Then, paternal and maternal

chromosomes intermingle on the metaphase plate of the first zygotic mitosis.

The Ascaris fertilization type is observed in a wide diversity of animals, including

mammals [1,2]. Fertilization in insects, and more generally in arthropods, belongs

to the third type, called the gonomeric type. In this case, pronuclei appose without

fusing their envelopes, as in Ascaris, but the parental chromosomes remain

separated until the end of the first zygotic mitosis [4].

Gonomery presents a natural advantage for identifying fertilization mutants

in Drosophila. Indeed, the separation of parental chromosomes implies that any

defect specifically affecting one pronucleus does not necessarily prevent the unal-

duterated one to perform the first zygotic division within its own hemispindle.

When this occurs, the embryo is haploid and usually reaches late embryogenesis

before arresting its development. Over the past decade, the characterization of a
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Table 1. Drosophila mutants affecting fertilization or zygote formation. Mutants are either considered for their paternal (blue) or maternal (green) contribution.

gene/mutant phenotype affects molecular function protein localization

casanova (csn) sperm – egg recognition unknown unknown unknown

sneaky (snky) sperm activation sperm membrane breakdown TM, RING domain acrosome

misfire (mfr) sperm activation sperm membrane breakdown TM, FERLIN homologue unknown

wasted (wst) sperm storage and sperm

activation

unknown unknown unknown

ms(3)K81 (K81) segregation of paternal

chromosomes

sperm telomere capping HipHop paralogue sperm telomeres

sarah (sra) egg activation calcineurin regulation calcipressin unknown

Hira/ssm male pronucleus formation paternal chromatin assembly H3.3 histone chaperone male pronucleus

yemanuclein (yem) male pronucleus formation paternal chromatin assembly HIRA complex subunit male pronucleus

chd1 male pronucleus formation paternal chromatin assembly/

organization

CHD1 motor protein unknown

asterless sperm aster formation centriole duplication coiled-coil protein centrioles

polo sperm aster growth centrosome maturation polo kinase centrosomes kinetochores,

spindles

Klp3A pronuclear migration unclear kinesin-like protein sperm aster/spindles

aTub67C pronuclear migration sperm aster and spindle

formation

a tubulin microtubules

fs(1)Ya (Ya) pronuclear division unknown nuclear function Ya nuclear lamina

giant nuclei (gnu) DNA synthesis and nuclear

division coupling

translational regulation of

mitotic cyclins

PNG complex subunit cytoplasm

plutonium ( plu) DNA synthesis and nuclear

division coupling

translational regulation of

mitotic cyclins

PNG complex subunit cytoplasm

pan gu ( png) DNA synthesis and nuclear

division coupling

translational regulation of

mitotic cyclins

PNG kinase cytoplasm

maternal haploid

(mh)

segregation of paternal

chromosomes

paternal DNA repair or

replication

spartan/DVC1

homologue

male pronucleus
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small number of maternal effect or paternal effect mutants

inducing gynohaploid embryo development (i.e. embryos

that only have maternally derived chromosomes) has brought

new insights into the poorly understood process of male pro-

nucleus formation. Additional mutants uniquely affecting

sperm activation or other aspects of zygote formation have

been identified, but they remain very rare (table 1). In this

article, we have reviewed the published literature relevant to

the major steps of fertilization in Drosophila, from sperm

entry to the first zygotic mitosis.
2. Generalities about Drosophila
fertilization

In 1924, Alfred F. Huettner published the first description of

the cytological events following egg activation and fertiliza-

tion in Drosophila melanogaster [5]. This seminal work not

only included astonishing cytology but also proved to be

remarkably accurate and was later used as a foundation for

the excellent reviews by Sonnenblick [6] and, more recently,

by Foe et al. [7].
A major difficulty when observing Drosophila fertilization

and zygote formation lies in the ultrafast timing of events.

The first zygotic division occurs about 15 min after sperm

entry [7]. As a matter of comparison, the first cleavage mitosis

begins about an hour after fertilization in the parasitoid wasp

Nasonia vitripennis [8] and 3–4 h in the cricket Gryllus bimacu-
latus [9]. As for other insects, fertilization in Drosophila is

internal and occurs upon descent of the ovulated oocytes in

the uterus. Thus, the earliest events of fertilization, such as

sperm activation and paternal chromatin remodelling, are dif-

ficult to observe in Drosophila as they take place before egg

deposition. This limitation is however counterbalanced by

the possibility of harvesting freshly laid eggs from many

females at a time. Mated females can indeed lay up to 100

eggs per day or, during the egg laying peak, 8 to 10 eggs

within a 20-min period [6,10].

Drosophila males transfer only a few thousands of gametes

during copulation [11]. Mature spermatozoa are stored in

seminal vesicles and are transferred to the female genital

tract after ejaculation along with a complex mixture of semi-

nal proteins [12]. Mature spermatozoa are released from one

of the two sperm-storage organs, the spermatheca and the

seminal receptacle (for a recent review on sperm storage,
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Figure 1. Sperm and fertilization in D. melanogaster. (a) Isolated D. melanogaster spermatozoa from transgenic flies expressing a Don Juan-GFP fusion protein
(Dj : GFP) [18] that stains the flagellum and a ProtamineB-RFP fusion protein (ProtB : RFP) [19]. Note that only a fraction of the flagella is visible on this picture.
Scale bar, 10 mm. (b) In D. melanogaster, spermatozoa including the whole flagellum penetrate the egg. A confocal image of a freshly laid egg, with its chorion
and dorsal appendages. The flagellum of a Dj : GFP fertilizing spermatozoon is visible in the cytoplasm (arrow). Scale bar, 100 mm. (c) A confocal section of a
dechorionated egg in metaphase of meiosis II stained for DNA. The vitelline envelope has not been removed and the protruding micropyle is visible at the
anterior tip of the egg (arrow). The male pronucleus and female meiotic chromosomes are indicated with symbols. (d ) An egg at pronuclear apposition stained
for DNA (red). The Dj : GFP sperm flagellum (green) is coiled in the anterior region of the egg. PB, polar bodies. (e) A blastoderm embryo stained as in (d ). The
flagellum is still detected in the anterior region.
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see [13]). Females store 650 sperms, on average, which are

used in a highly efficient manner for fertilization [14–16].

In D. melanogaster, the entire 1.8 mm long sperm tail enters

the egg cytoplasm through the single micropyle—a specialized

opening at the egg surface which allows sperm penetration—

and coils within the anterior region of the egg [17] (figure 1).

For species with truly gigantic sperm, like Drosophila hydei or

Drosophila bifurca (about 23 and 58 mm, respectively), only a

fraction (less than 2 mm) of the flagellum actually enters the

egg. For most other species analysed, the entire sperm coils

within the anterior region of the egg with species-unique,

three-dimensional configurations [20].
Notwithstanding early observations [5], monospermy is the

rule in Drosophila [21]. Still, approximately 1% of eggs are ferti-

lized by two gametes, and fertilization with multiple

spermatozoa can exceptionally occur (up to five spermatozoa

observed in a single egg; B.L. 2010, personal observation). Note

that polyspermy is otherwise not uncommon in insects [22].

The chromosomes of mature Drosophila oocytes are

arrested in metaphase of the first meiotic division [23] (for

a visual description of Drosophila fertilization and zygote for-

mation, see figures 2a,b and 3). The resumption of female

meiosis occurs at egg activation, the process that prepares

the egg for the initiation of embryo development. Egg
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Figure 2. (a,b) Pronuclear formation and the first zygotic mitosis. (i – x) Confocal images of eggs or embryos at the indicated stages stained for histones to reveal
nuclei. Left panels views were reconstituted by fusing two confocal images of the anterior and the posterior regions. Right panels are magnifications of the nuclei
(the insets in (i – iii) show the male pronucleus). Male pronuclei are indicated (arrows). PB, polar bodies. Scale bars, 10 mm.
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activation also affects maternal pools of mRNAs and pro-

teins, modulates phosphorylation of egg proteins, and

modifies the organization of the vitelline membrane and

chorion [24,25]. In most animals, fertilization triggers an

intracellular calcium signal in the egg that is required for its

activation and the initiation of embryogenesis [24,26]. In con-

trast to vertebrates or marine invertebrates, egg activation in

insects is not triggered by fertilization. In unfertilized eggs,

meiosis resumes just as it does in fertilized eggs, except

that the female pronucleus does not migrate and remains at

the egg cortex with polar body nuclei [27]. Interestingly how-

ever, two recent studies showed that a calcium wave actually

occurs in Drosophila mature oocytes as they are ovulated

[28,29]. Although the signal that originally triggers this tran-

sient rise of intracellular calcium in fly oocytes is not entirely

understood, it probably involves a mechanical stimulus

associated with ovulation. How the calcium wave regulates

downstream effectors of egg activation remains unknown.

Interestingly, the Calcipressin Sarah (Sra), which is essential

for several aspects of egg activation, including completion

of meiosis [30,31], also seems to play a role in calcium wave

propagation [29]. In any case, these studies suggest that

the existence of a calcium wave at egg activation is a universal

feature of animal fertilization.

3. Sperm entry and sperm activation
In teleost fishes, cephalopods and insects, eggs have one or

several micropyles [32]. In D. melanogaster, the unique
micropyle encompasses both the chorion and vitelline mem-

brane, and appears as a small, pointed protrusion at the

anterior tip of the egg, between the two dorsal appendages

(figure 1). Drosophila spermatozoa have been shown to move

in a tail-leading orientation in the female uterus after insemina-

tion [33,34]. However, they enter the micropyle head first after

their release from the seminal receptacle, the main sperm-

storage organ. In various animal groups, glycosidases and

glycosyltransferases are involved in early sperm–egg inter-

action through their recognition of specific carbohydrates

present at the egg surface [35]. In insects, very little is known

about the mechanisms controlling micropyle recognition by

male gametes. However, two b-N-acetylhexosaminidases

associated with the sperm plasma membrane could potentially

play a role in sperm–egg recognition [36–38]. The Drosophila
male sterile mutant casanova (csn) produces sperm that are

unable to fertilize eggs [35]. In mutant sperm, b-N-acetylhexo-

saminidase activity is reduced and the enzymatic complex is

absent from the plasma membrane overlying the acrosome

[36]. Unfortunately, the molecular identity of csn is unknown,

and the mutant does not map to any of the three known

b-N-acetylhexosaminidase genes, Hexo1, Hexo2 and fdl
(Flybase). Drosophila sperm membrane also contains an

a-L-fucosidase expressed in testes [37–39]. In mammals,

a-L-fucosidases are involved in the binding of sperm heads

to the egg zona pellucida [40,41]. A functional characterization

of the single Drosophila a-L-fucosidase gene Fuca could thus

bring insights into the conservation of these molecules in

sperm–egg recognition in insects.
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Figure 3. Sperm aster formation, pronuclear migration and organization of the gonomeric spindle. (a – h) Schematic of zygote formation in D. melanogaster. (a) At
fertilization, maternal chromosomes are in metaphase of meiosis I. The spermatozoon enters the egg through the micropyle (arrow). The needle-shaped sperm
nucleus is still packaged with SNBPs (green) and two centrioles are visible at the junction with the sperm tail: a GC and a centriole precursor, called the PCL
(represented in blue). (b) Metaphase of meiosis II. The two meiotic spindles are connected by an aster of microtubules, the central spindle pole body (arrow).
SNBPs have been replaced by histones and the male pronucleus has begun to decondense. The paternal centrioles recruit PCM and initiate the formation of
the sperm aster. (c) Pronuclear migration. By the end of female meiosis, the sperm aster has increased considerably in size and captures the innermost
female meiotic product, which becomes the female pronucleus. (d ) Pronuclear apposition. The centrosomes have duplicated and are positioned around the
male pronucleus (arrow). All nuclei are in S phase. The three polar body nuclei remain at the egg periphery. (e) Metaphase of first mitosis. Each set of parental
chromosomes occupies one half of the gonomeric spindle. The polar bodies have condensed into two rosettes of metaphase-like chromosomes (n and 2n).
( f ) Anaphase of first mitosis. (g) Telophase of first mitosis and karyogamy. The centrosomes have duplicated. (h) Interphase of second mitosis. (i – k) Confocal
images of eggs stained for a-Tubulin (green) and DNA (red). (i) Metaphase of meiosis II. ( j ) Pronuclear apposition. (k) Metaphase of first mitosis. Scale
bars, 10 mm.
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3.1. Sperm plasma membrane breakdown
In sperm from marine invertebrates and mammals, the acro-

some is a Golgi-derived membranous structure at the apical

end of the gamete. At fertilization, exocytosis releases a cocktail
of acrosomal enzymes that facilitate penetration of the male

gametes through the egg coats and vitelline layer. The exocytic

reaction also exposes the inner acrosomal membrane, which

eventually fuses with the egg plasma membrane to release

the sperm nucleus into the egg cytoplasm [42,43]. In Drosophila,
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the sperm cell penetrates the egg with its plasma membrane,

which covers the nucleus and the whole flagellum, indicating

that sperm–egg membrane fusion does not occur [44]. Thus,

the passage of the male gamete through the micropyle does

not involve a typical acrosomal reaction and the associated

mechanism remains largely unknown. Drosophila spermatozoa

nevertheless possess an acrosome at the tip of the nucleus

[45], but this membrane-bound structure penetrates the egg

at fertilization where it remains detectable throughout zygote

formation [46]. Although the Drosophila acrosome was

described several decades ago [47], its role at fertilization was

confirmed only recently through the functional characteriz-

ation of a conserved, sperm-specific transmembrane protein

called Sneaky (Snky) [46]. snky was originally identified as

one of the very rare paternal effect mutations affecting

embryo development (table 1) [48]. In eggs fertilized by snky
sperm, the sperm nucleus does not decondense, and remains

in the egg anterior cortex while maternal chromosomes all

gather at the egg periphery and form a tetraploid polar body,

as in unfertilized eggs [48]. Fitch and Wakimoto proposed that

the snky phenotype resulted from a defect in sperm plasma

membrane breakdown around the sperm head. Remarkably,

and in support of this hypothesis, Wakimoto and co-workers

[46] identified Sneaky as a protein that specifically localizes

within the membrane overlying the acrosome. Snky belongs to

a family of transmembrane proteins with representative mem-

bers in vertebrates. Although the way Snky could affect sperm

plasma membrane integrity remains to be elucidated, its charac-

terization nevertheless implicates the enigmatic fly acrosome in

sperm plasma membrane breakdown and sperm activation

[46]. In addition, two other male sterile mutants affecting

sperm activation have been reported [16,49,50]. The misfire
(mfr) mutants affect the Drosophila gene encoding Ferlin [50]. Fer-

lins are C2 domain-containing transmembrane proteins

involved in Ca2þ mediated membrane–membrane interactions

in various animals and cell types [51]. However, the subcellular

distribution of Mfr/Ferlin in Drosophila sperm is not yet known

and, in contrast to snky, mfr is also expressed in ovaries where it

plays a role in egg patterning [50]. Finally, wasted (wst) is another

mutant that was recently shown to prevent sperm activation

[16]. Interestingly, wst uniquely affects the control of sperm

release from storage organs at ovulation, resulting in rapid loss

of sperm stored in the seminal receptacle. Furthermore, wst
mutant sperm progressively lose their ability to efficiently

enter the eggs [16]. The molecular identification of the wst
gene should help understanding the link between its pre- and

post-fertilization phenotypes.
3.2. The fate of the sperm flagellum and mitochondrial
derivatives

The large sperm tail, which comprises a canonical (9þ 2) micro-

tubule axoneme and mitochondrial derivatives (reviewed in

[52]), can be observed long after the initiation of embryo devel-

opment (figure 1), although it is at least partially degraded.

A sperm-derived structure is eventually sequestered in the

developing midgut and defecated after larval hatching [53].

Interestingly, Karr & Pitnick [20] observed that the sperm tail

is not uniformly degraded in eggs of Drosophila pachea, a species

with gigantic, helical sperm. Ultrastructural analysis revealed

the presence of sperm mitochondrial derivatives in the

midgut of hatched D. pachea larvae, opening the possibility
that this sequestration could participate in the specific elimin-

ation of paternal mitochondria [53]. By contrast, recent work

in D. melanogaster established that paternal mitochondria are

actively destroyed after fertilization [54]. Arama and colleagues

[54] indeed provided evidence that a network of vesicles

common to the endocytic and autophagic pathways disinte-

grates the sperm plasma membrane over the tail, followed

by the mitochondrial derivatives. During this process, which

lasts for about an hour, the sperm axoneme is separated from

the degraded mitochondrial derivative and persists within

the anterior part of the embryo. It thus seems that various

strategies are employed in different Drosophila species to elimin-

ate paternal mitochondria after fertilization. The role of such a

complex elimination process in D. melanogaster is however

not entirely clear as paternal mitochondrial DNA is destro-

yed during spermiogenesis, thus ensuring strict maternal

inheritance of the mitochondrial genome [55].
4. Formation of the male pronucleus
The transformation of a highly compacted and practically inert

fertilizing sperm nucleus into a DNA replication-competent

male pronucleus is a major event of zygote formation. This

unique process of de novo chromatin assembly is obviously cru-

cial for paternal chromosome integration in the developing

embryo but has rarely been studied in vivo at the functio-

nal level. Drosophila has proved useful in the past decade in

providing molecular insights into the conserved chromatin

remodelling events, which uniquely occur at fertilization.

4.1. Organization of the mature sperm nucleus
The sperm nucleus has the shape of a 9 mm needle and contains

highly compacted DNA (figure 1). Sperm DNA compaction is

achieved in late stages of spermiogenesis, after the histone-to-

protamine transition, which consists in the global replacement

of histones with sperm-specific nuclear basic proteins (SNBPs)

[45,56]. The histone-to-protamine transition begins with the

incorporation of the HMG-box transition proteins Tpl94D

(transition protein-like 94D) [57], tHMG-1 and tHMG-2,

which are transiently present in canoe spermatid nuclei [58].

These SNBPs are then subsequently and definitively replaced

with at least three protamine-like proteins. These include two

almost identical paralogous protamine-like proteins (Mst35Ba

and Mst35Bb, also known as protamine-A and protamine-B,

respectively), which are encoded by two duplicated genes

organized in tandem, and Mst77F encoded by a single autoso-

mal gene copy. Mst35Ba/b and Mst77F (146/144 and 215 aa,

respectively) are enriched in lysine and arginine residues, but

also contain many cysteines that could be involved in the for-

mation of intermolecular disulfide bridges, as in mammalian

protamines [56,59]. Interestingly, the Y chromosome contains

at least eight additional copies of Mst77F (named Mst77Y)

that potentially encode proteins highly similar to Mst77F

[60]. In addition, truncated Mst35B copies are present on the

Y chromosome but appear non-functional [61]. Unexpectedly,

the Mst35Ba/b genes are not essential for Drosophila male ferti-

lity [62,63], suggesting that they could function redundantly

with other SNBPs, such as Mst77F or Mst77Y, for the compac-

tion of sperm DNA. In favour of this possibility, Mst77F has

been recently shown to efficiently aggregate DNA in vitro,

suggesting a similar role during spermatid DNA compaction
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[64]. By the late canoe stage of spermiogenesis, histones are no

longer detected, indicating that nucleosomes do not signifi-

cantly contribute to the organization of sperm chromatin in

Drosophila. Instead, sperm DNA is uniformly packaged with

Mst35Ba/b and Mst77F until fertilization. Notable exceptions

are centromeric regions that retain the histone H3 variant Cid

in sperm [65]. Cid is actually required to maintain the epige-

netic identity of sperm centromeres until fertilization [66],

and its transgenerational role is probably conserved in ver-

tebrates that similarly retain the centromeric histone H3

Cenp-A in their gametes [67,68].

4.2. Removal of sperm-specific nuclear basic proteins
The removal of SNBPs is the earliest process that probably

occurs following sperm entry and activation. In mammals,

the formation of intermolecular disulfide bonds between prota-

mines is supposed to contribute to the stability and the

compaction of sperm chromatin. At fertilization, these bonds

must be reduced to facilitate protamine removal and male

nucleus decondensation [69,70]. However, the role of disufide

bonds in sperm chromatin compaction remains to be estab-

lished in Drosophila. Additionally, it would also imply the

need for a maternal disulfide reductase activity at fertilization,

which is yet to be identified. In any case, the eviction of SNBPs

from the fertilizing sperm nucleus probably requires dedicated

egg proteins. In Xenopus eggs, such a role was originally pro-

posed for the conserved and highly abundant protein

nucleoplasmin [71]. Nucleosplasmin is a histone chaperone

that was identified through its ability to decondense demem-

branated sperm nuclei in vitro [72]. Xenopus sperm chromatin

is rather unusual, however, as it retains a full load of H3 and

H4, while only H2A and H2B are replaced with SNBPs [73].

During early embryo development, nucleoplasmin plays a

role in histone storage and release, through the formation of

a pentameric structure that could potentially bind five H2A :

H2B dimers [74]. In Drosophila, the homologous nucleoplas-

min-like protein NLP plays a role in the clustering of

centromeres [75]. However, a role for NLP in sperm chromatin

remodelling at fertilization has not been investigated at the

functional level. A recent study reported that NLP, together

with its paralogue nucleophosmin, the histone chaperone

NAP-1 and a new factor called P32 are capable of removing

Mst35Ba/b proteins that were complexed with plasmid DNA

in vitro [76]. However, clear evidence that these proteins

actually mediate SNBP eviction in vivo is still missing.

4.3. De novo assembly of paternal chromatin
and nuclear decondensation

Genome-wide assembly of nucleosomes on paternal DNA

immediately follows the rapid loss of SNBPs from the decon-

densing male nucleus. This chromatin assembly activity is

entirely dependent on maternally provided histones and

nucleosome assembly factors, and it occurs well before the

onset of the first round of paternal DNA replication. Paternal

chromatin assembly at fertilization thus represents a unique

case of a genome-wide, replication-independent (RI) nucleo-

some assembly process [77,78]. Assembly of paternal

nucleosomes occurs very rapidly following sperm entry. In

eggs observed in metaphase of the second meiotic division,

the male nucleus stains for anti-histone antibodies, indicating
that its chromatin is already organized into a nucleosome-

based configuration (figure 4). The functional characterization

of this key event begun with the identification of sésame (ssm), a

maternal effect mutation inducing gynohaploid embryo devel-

opment [79]. The male nucleus in ssm mutant eggs is largely

devoid of histones and fails to decondense normally [65]. As

a consequence, paternal chromosomes do not replicate and

the embryo develops with the sole set of maternally derived

chromosomes. ssm is a point mutant allele of Hira, which

encodes a highly conserved histone chaperone characterized

by a N-terminal WD40 protein interaction domain [80]. In con-

trast to the CAF-1 (chromatin assembly factor 1) complex,

which allows the assembly of nucleosomes at DNA replication

forks, HIRA possesses the remarkable ability to deposit his-

tones in a RI manner [81]. Furthermore, while the CAF-1

complex assembles nucleosomes with canonical histones

expressed in S phase, including H3 (also called H3.2), the

HIRA-dependent nucleosome assembly pathway specifically

uses the highly conserved histone H3 variant H3.3, which is

expressed throughout the cell cycle [82]. In Drosophila, H3.2

and H3.3 only differ at a small number of critical residues

that drive their respective nucleosome assembly pathways

[83]. At fertilization in Drosophila, HIRA also specifically

assembles H3.3 nucleosomes in the male pronucleus, despite

the presence of large quantities of both types of H3 in the

egg [77,78,80,84]. Consequently, the newly assembled paternal

chromatin is almost entirely composed of H3.3-containing

nucleosomes, whereas maternal chromosomes are essentially

packaged with H3.2-containing nucleosomes [80].

The implication of the HIRA/H3.3 nucleosome assembly

pathway in male pronucleus formation is not restricted to

Drosophila. In mouse and human eggs, where the majority

of nucleosomes are replaced with protamines in sperm,

H3.3 is also massively incorporated in the male nucleus at

fertilization [85–87], and the requirement of HIRA/H3.3

in male pronucleus formation was recently demonstrated in

mice [88–90].

In mammals, HIRA functions as a complex that comprises

at least two additional subunits, Ubinuclein1 and Cabin1

[82]. Drosophila does not seem to possess a Cabin1-related

protein [91]. However, Ubinuclein1 is represented by the

Yemanuclein (YEM) protein, a DNA-binding protein with a

strong expression in the female germline [92]. Like HIRA,

YEM is absolutely required for paternal chromatin assembly,

and yem and Hira maternal effect mutant phenotypes are

indistinguishable [93] (figure 4). A remarkable property of

the HIRA complex lies in its very efficient targeting of the

male nucleus within the comparatively gigantic volume of

the egg cell. Both HIRA and YEM are present in the male

nucleus at the onset of decondensation, concomitantly or

immediately following SNBP eviction. The removal of these

sperm chromosomal proteins is expected to transiently

expose paternal DNA. It is thus tempting to propose that

the HIRA complex as a whole, or through the DNA-binding

capacity of YEM, could specifically recognize and bind

paternal DNA at the protamine-to-histone transition. Interest-

ingly, YEM is actually required for HIRA localization in the

male pronucleus [93]. In addition, human HIRA, UBN1 and

CABIN1 can all bind DNA in vitro, suggesting that the complex

uses this property to restore chromatin at nucleosome-depleted

regions [94].

Male pronucleus decondensation is also dependent on

maternal chromo-helicase-DNA-binding protein 1 (CHD1),
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a SWI2/SNF2 family of ATP-dependent chromatin remodel-

lers involved in the sliding of nucleosomes along DNA [95].

In chd1 mutant eggs, paternal chromatin assembly seems to

occur, at least partially, but the shape of the improperly

decondensed male nucleus appears highly variable [77,95].

The actual function of CHD1 in sperm chromatin remodelling

is not clear, and it is currently not known whether this factor

localizes to the fertilizing sperm nucleus. The mutant pheno-

type and its known remodeller activity nevertheless suggest

that CHD1 is involved in the regular distribution of newly

assembled nucleosomes along paternal chromosomes.

4.4. Histone variants and histone marks in the zygote
Although newly assembled paternal chromatin consists almost

exclusively of H3.3-containing nucleosomes, this unique

enrichment of H3.3 on paternal chromosomes does not seem

to play any role per se in Drosophila. In fact, during the
early cleavage divisions, the initial stock of paternal H3.3

nucleosomes is rapidly diluted by the successive waves of

replication-coupled assembly of H3.2 nucleosomes [84].

Remarkably, viable, diploid embryos can develop in the

absence of H3.3, when the replicative H3.2 histone is mater-

nally provided under the control of the His3.3B promoter

[96]. This suggests that the HIRA complex can deposit H3.2

onto chromatin in this particular context. It also illustrates the

fact that the egg ability to assemble paternal chromatin in a

RI manner is crucial, but not the type of histone H3 used

during this process. In mouse, however, H3.3 plays additional

roles in the zygote, such as establishing paternal pericentric het-

erochromatin [97]. In contrast to the strict use of the RI histone

H3.3 variant, the machinery responsible for Drosophila paternal

chromatin assembly is less stringent regarding the incorpor-

ation of H2A.Z (also known as H2Av), the only other non-H3

core histone variant in flies. Indeed, both H2A-H2B and

H2A.Z-H2B dimers are incorporated in the decondensing
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male nucleus in Drosophila [78]. Thus, the assembly of

paternal chromatin at fertilization specifically requires the

HIRA-dependent deposition of H3.3–H4 tetramers.

In addition to the asymmetric distribution of histone H3.3,

several histone post-translational modifications, essentially

lysine acetylation and methylation, are differentially distribu-

ted on paternal and maternal chromosomes in the zygote.

The specific enrichment of histone H4 acetylated on lysines 5

and 12 in the male nucleus [80] simply reflects the massive RI

incorporation of newly synthesized histones [98]. For the

same reason, acetylated H4 is first detected in the female pro-

nucleus only at the onset of the first S phase. A less expected

observation is the complete absence of histone H3 methyla-

tion marks in the male pronucleus. This contrasts with the

abundance of these marks on post-meiotic maternal chromo-

somes, including di- and trimethylation of lysines 4, 9, 27

and 36 of histone H3 [80] (B.L. 2009, unpublished data). It

is interesting to note, for instance, that the abundance of

H3K4me2/3 on maternal chromosomes, which is considered

as a mark of active chromatin, is obviously not correlated with

gene activity in transcriptionally silent Drosophila eggs. Simi-

larly, the presence of the heterochromatin mark H3K9me2/3

on maternal pericentromeric regions is rapidly lost during

the early cleavage divisions, questioning the functional signifi-

cation of this meiotic heritage of H3 methylation marks, which

is largely conserved in mammals [85,99,100].

4.5. Male pronuclear envelope formation
The rudimentary sperm NE lacks nuclear pores and is rapidly

eliminated at fertilization in most species [2]. In Drosophila,

the sperm nucleus is also devoid of the major lamina protein

Lamin Dm0. After fertilization, Lamin Dm0 is first detected

around the male nucleus at the onset of pronuclear migration,

indicating that an NE has already formed at this stage [101]

(figure 5). The formation of the male pronuclear envelope

involves the fusion of egg membrane vesicles at the surface

of the male pronucleus, followed by the incorporation of

lamins and nuclear pore complexes (NPCs) (reviewed in

[102]). However, this process has not been investigated in

Drosophila. In mouse zygotes, a recent study has established

that paternal chromatin assembly is a prerequisite for the

incorporation of NPCs at the NE, in a mechanism that

depends on the conserved nucleoporin ELYS [88]. Defective

NPC incorporation at the envelope would prevent normal

swelling of the male pronucleus, as observed in Hira-deficient

Drosophila or mouse eggs [80,88,89].
5. Pronuclear migration and apposition
5.1. Sperm centrioles and formation of the sperm aster
In D. melanogaster, an obligate bisexual species, eggs are acen-

triolar and sperm centrioles thus represent an essential

contribution to the zygote [103]. At fertilization, the recruitment

of egg pericentriolar material (PCM) to the sperm-derived

centrioles completes the formation of the zygotic centrosomes

[104]. The biparental origin of the zygotic centrosome probably

explains why unfertilized D. melanogaster eggs never develop

[105]. Although true parthenogenesis does not exist in D. mela-
nogaster, gynogenesis—the development of impaternate

diploid progeny from fertilized eggs—occurs at low frequency
in the mutant strain gyn-f9 [106,107]. This strain is homozygous

for two uncharacterized autosomal recessive mutations that

favour the fusion of the central female meiotic products,

allowing the restoration of diploidy. Impaternate progeny are

produced when gyn-f9 eggs are fertilized with sperm from the

paternal effect mutant ms(3)K81 (K81), which indeed con-

tributes the required centrioles, but no functional paternal

chromosomes (see below). Gynogenesis has also been reported

in yem mutant females, where the combination of rare non-

disjunction of prophase I meiotic chromosomes combined

with defective male pronucleus formation led to the exceptional

production of viable, impaternate progeny [92,108]. In some

Drosophila species, however, parthenogenesis (i.e. the develop-

ment of embryos from unfertilized eggs) is either obligatory,

as in D. mangabeirai [109], or represents a facultative mode of

reproduction, as in Drosophila parthenogenetica or Drosophila
mercatorum, for instance [105,110]. In D. mercatorum, where

parthenogenesis has been investigated in detail, the absence

of paternally contributed centrioles in unfertilized eggs is

occasionally compensated by de novo formation of centrosomes

in the egg cytoplasm [111,112], in a way similar to unfertilized

eggs from haplodiploid Hymenoptera, which develop into

males [113,114]. Interestingly, de novo centriole formation can

be induced in unfertilized D. melanogaster eggs by overexpres-

sing proteins that play a central role in centriole biogenesis,

such as Polo-like kinase 4 (Plk4/SAK), Asterless (Asl), DSas-4

or DSas-6 [115–117]. However, de novo centriole formation is

not sufficient for successful parthenogenesis, which addition-

ally requires the restoration of diploidy and the maturation of

centrosomes during embryo development [112].

Although Drosophila sperm were originally thought to

carry a single, giant centriole (GC) or basal body [118,119],

recent work from Avidor-Reiss and co-workers [120,121]

demonstrated that spermatozoa also contain a centriole precur-

sor called the proximal centriole-like (PCL), closely associated

with the GC. The duplication of the GC and PCL, and the

recruitment of maternal PCM to sperm centrioles, allow the

formation of the zygotic centrosomes, which remain closely

associated with the male nucleus [122]. PCM proteins provided

by the egg cytoplasm notably include centrosomin (Cnn),

g-tubulin and CP190 [103]. The centrosome derived from

the GC remains attached to the sperm flagellum during the

embryonic cleavage divisions [123] (figure 3).

The zygotic centrosomes are first required to form the sperm

aster, a giant aster of microtubules involved in the migration of

the female pronucleus towards its male counterpart (figure 3).

The sperm aster enlarges by the end of meiosis II and makes

contact with the anterior egg cortex [119,124]. In asl mutant

eggs, paternal centriole duplication is abolished and pronuclear

migration fails [122], as a likely consequence of defective sperm

aster formation or function. Sperm aster formation is also com-

promised in mutants affecting abnormal spindle (asp) and Ran,

whose associated proteins are both involved in microtubule

assembly [125,126], as well as in some mutant alleles of the

maternal a-Tubulin at 67C (aTub67C) gene [127,128]. In asp
and aTub67C mutants, a mitotic spindle is formed around the

sole set of paternal chromosomes, which can occasionally

divide, giving rise to androhaploid embryos.

5.2. Migration of the female pronucleus
Female meiosis rapidly resumes at egg activation and, in our

experience, eggs have usually reached meiosis II by the time



Lamin

H4Ac
Hist Lamin

H4Ac Hist Lamin

Lamin

metaphase of meiosis II anaphase of meiosis II migration of female pronucleus

apposition prophase 1 anaphase 1 prophase 2 

(a)

(b) (c) (d) (e)

Figure 5. NE dynamics during zygote formation. Confocal images of embryos stained for Lamin Dm0 (green), acetylated histone H4 (red) and histones (blue).
(a) Top panels show fertilized eggs at the indicated stages. Below are magnifications of the male pronucleus for each egg (insets). At fertilization, Lamin
Dm0 is detected for the first time on the male pronucleus at the onset of pronuclear migration. (b – d) First zygotic cycle at the indicated stage. Paternal chromo-
somes are enriched in acetylated histone H4. Male and female pronuclei appose without fusing their NE and divide separately in mitosis 1. In anaphase, Lamin Dm0
is weakly detected on chromosomes. (e) Prophase of cycle 2. Scale bars, 10 mm.

rsob.royalsocietypublishing.org
Open

Biol.5:150076

10
they are collected and fixed for cytological observations. The

anastral spindles of the second meiotic division are organized

in tandem on an axis that is approximately orthogonal to the

egg surface. The spindles are connected with a central microtu-

bule organizing centre, which is positive for g-tubulin but lacks
centrioles. At the end of meiosis, the four meiotic products are

aligned in a highly stereotypical manner (figures 2a and 3). In

unfertilized eggs, the four haploid nuclei decondense, replicate

their DNA and eventually gather below the egg surface [27].

They then enter an abortive M phase where the 16
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metaphase-like chromosomes usually organize into a tetraploid

rosette, with all the centromeres oriented towards the centre of

this structure. In fertilized eggs, the innermost meiotic product

systematically becomes the female pronucleus and starts its

migration towards the more centrally located male pronucleus.

In this case, the central meiotic products are generally the first to

combine, forming a diploid rosette while the most external one

condenses into a haploid rosette. Usually, a single triploid

rosette containing the three unused products is eventually

formed at the egg periphery and remains arrested in this

configuration throughout syncytial embryo development.

Although the spatial position of the female pronucleus

obviously favours its capture by the sperm aster, this strict selec-

tion probably requires yet unknown additional clues. In

addition, the mechanism ensuring the specific interaction of

the female pronuclear envelope with the microtubules of the

sperm aster is not well understood. Interactions of nuclei with

cytoskeletal features are generally mediated by LINC (linker

of nucleoskeleton and cytoskeleton) protein complexes [129].

These complexes combine proteins with SUN and KASH

domains that localize in the inner and outer nuclear membranes,

respectively. Interestingly, LINC complexes have been impli-

cated in the association of the centrosomes with the male

pronucleus in C. elegans and zebrafish eggs [130,131]. In Droso-
phila, the conserved SUN domain protein Spag4 is a testis-

specific protein involved in the attachment of the basal body

to the spermatid nucleus during spermiogenesis [132]. Droso-
phila possesses one additional SUN protein (Klaroid) and two

KASH domain proteins (Klarsicht and Msp300), but they do

not seem to play any role in pronuclear migration [133,134].

The migration of the female pronucleus along the microtu-

bules of the sperm aster must involve a minus-end-oriented,

microtubule-associated motor protein. In bovine and primate

oocytes, cytoplasmic dynein is indeed required for pronuclear

migration, and this motor protein remarkably accumulates at

the surface of the female pronucleus but not the male pronucleus

[135]. In Drosophila, whether cytoplasmic dynein plays any role

in this process is not known. Interestingly, female pronuclear

migration is actually prevented by mutations in kinesin-like
protein 3A (klp3A) [136]. In klp3A mutant eggs, the zygotic spin-

dle, which nevertheless forms around paternal chromosomes,

frequently arrests in metaphase, suggesting that KLP3A plays

additional roles during mitosis in early embryos [136]. However,

although one cannot exclude that KLP3A is a minus-end-

oriented motor, it is more likely to function in the opposite

direction, like its homologue KIF-4 [137]. In this case, its role

in female pronuclear migration would be indirect, perhaps by

allowing the normal function of the sperm aster. During mitosis,

KLP3A and its partner Feo are involved in the recruitment of the

kinase Polo to the spindle midzone [138]. Polo is a conserved

regulator of various aspects of cell division, including centro-

some maturation, spindle formation and cytokinesis [139].

Interestingly, in polo1 hypomorphic mutant eggs, the sperm

aster fails to grow, thus preventing pronuclear migration

[124]. It would thus be interesting to clarify the functional

relationship between KLP3A and Polo during sperm aster for-

mation and pronuclear migration. Finally, two additional

proteins annotated as kinesin-like proteins have been proposed

to participate in pronuclear migration: non-claret disjunctional

(Ncd) and Subito [127,140]. Although their actual implication

in this process remains to be established, the fact that Ncd

(and probably Sub) is a minus-end-oriented motor [141] is

compatible with such a function.
The swelling of both male and female pronuclei occurs

progressively during the migration phase and the female

pronucleus usually appears slightly larger than its male

counterpart at the time of apposition [119]. The mechanism

by which pronuclear envelopes remain in contact is unknown.
6. The first zygotic division and karyogamy
6.1. Pronuclear DNA replication
Following apposition, both pronuclei (as well as the three

polar body nuclei) continue to swell until they reach approxi-

mately 10 mm in diameter. The first zygotic round of DNA

synthesis probably initiates shortly before apposition, based

on the nuclear detection of the replication factors proliferat-

ing cell nuclear antigen and DNA polymerase a [65,142].

DNA replication then occurs synchronously in apposed pro-

nuclei and polar body nuclei. The onset of the first zygotic

cycle marks the transition between the oocyte/egg meiotic

divisions and the rapid embryonic nuclear cycles. A few

maternal genes appear to be specifically involved in this

transition. Young arrest (Ya or fs(1)Ya) encodes a maternal

nuclear lamina protein that is detected at the NE of apposed

pronuclei and interphasic polar bodies [143,144]. The

majority of eggs laid by Ya mutant females are arrested at

the pronuclear apposition stage, probably at the S to M tran-

sition of the first zygotic cycle [143,145]. Although Ya
mutations affect pronuclei in a unique manner, the presence

of Ya at the NE throughout early embryo development

suggests that it is required not only for the first zygotic

division but for all syncytial mitoses [143]. Furthermore, the

pronuclear arrest observed in Ya mutant eggs does not

simply result from a global disorganization of the lamina,

as it does not affect the localization of Lamin Dm0 [146].

This instead suggests that Ya establishes, in a more subtle

manner, a nuclear architecture compatible with the unique

streamlined nuclear cycles of early Drosophila embryos [145].

giant nuclei (gnu) is the founding member of another class

of three maternal effect mutants affecting the egg-to-embryo

transition. gnu, plutonium ( plu) and pan gu ( png) all affect

the coupling of DNA replication with nuclear divisions in

eggs and early embryos, resulting in the formation of a

small number of extremely large nuclei [147,148]. In the

most extreme cases, mutant embryos contain five giant

nuclei that correspond to the endoreplicated pronuclei and

polar bodies. These mutations all affect a trimeric complex,

comprising the PNG kinase and its two regulatory subunits,

which is required to promote the translation of cyclin B

mRNAs in eggs and early embryos [149]. The uncontrolled

succession of S phases in these mutants indistinctly affects

the male and female pronuclei as well as the polar bodies.

In addition, weaker png alleles allow for a limited number

of cleavage divisions before the formation of giant nuclei

[150]. The control of DNA replication by the activity of the

PNG kinase complex is thus not restricted to the first zygotic

cycle but is likely to be operating throughout early embryo

development (reviewed in [151]).

6.2. Completion of the first zygotic mitosis
Chromosome condensation in prophase of the first zygotic

mitosis immediately follows the completion of the first S
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phase. In the gonomeric spindle, both hemispindles are con-

nected at their poles with an aster of microtubules [5–7,119]

(figure 2). Maternal chromosomes usually start to condense

slightly ahead of paternal chromosomes and are the first to

congress on the metaphase plate [119]. The gonomeric

nature of the zygotic spindle keeps the parental chromosomes

physically separated until telophase, when NEs reform [119].

This is clearly illustrated by immunodetection of Lamin

Dm0, which persists around each set of chromosomes until

anaphase of the first zygotic mitosis (figure 5). Although

paternal and maternal chromosomes normally enter anaphase

synchronously, the perturbation of one set of chromosomes

does not prevent the segregation of the other one (see below).

It is indeed generally admitted that a DNA replication check-

point is lacking or is not efficient in early Drosophila embryos,

as suggested by the unperturbed amplification of centro-

somes in embryos injected with the DNA replication

inhibitor aphidicolin [152]. In addition, the gonomeric spindle

seems to lack a checkpoint ensuring the faithful segregation of

all chromosomes.

The selective elimination of paternal chromosomes was

observed for the first time in cytoplasmic incompatible eggs

of the sibling species Drosophila simulans [153,154]. Cytoplasmic

incompatibility (CI) occurs in a wide diversity of insects when

males infected with the endosymbiotic bacteria Wolbachia are

crossed with uninfected females [155,156]. In D. simulans-
incompatible eggs, paternal chromosomes appear improperly

condensed and lag on the metaphase plate during anaphase

of the first zygotic division [153]. Their incapacity to segregate

correctly at the first mitosis results in non-viable aneuploid or

haploid embryos. CI thus favours the spreading of Wolbachia
in fly populations through the elimination of uninfected eggs.

Although the molecular mechanism of CI remains a

mystery, it probably involves a reversible modification or per-

turbation of sperm chromatin by Wolbachia factors expressed

in the male germline. Such a modification, which can be

removed or ‘rescued’ at fertilization if the egg is also infected,

could impede or delay sperm chromatin remodelling and

paternal DNA replication, resulting in abnormal condensation

of paternal chromosomes in metaphase [157–159].

maternal haploid (mh, originally named fs(1)1182) is a

maternal effect mutation that induces a phenotype very similar

to Wolbachia-mediated CI [160]. mh and a few other mutants

(isolated in the same genetic screen and subsequently lost)

were the first isolated female sterile mutations producing

haploid embryos [7,161]. In mh mutant eggs, paternal chromo-

somes fail to condense properly in metaphase of the first

mitosis and form a chromatin bridge during division. Conse-

quently, the majority of mh embryos arrest development after

a few rounds of aberrant divisions producing aneuploid

nuclei, but about 20% of mh embryos develop as gynohaploids

[160]. Interestingly, mh encodes the fly orthologue of Spartan/

DVC1, a conserved metalloprotease involved in the regulation

of translesion synthesis (TLS) in human cells [142]. TLS is a

general DNA damage tolerance mechanism that allows the

replication fork to progress across certain types of DNA lesions,

such as UV-induced DNA interstrand cross-links, for instance.

In mouse, the Spartan knockout is zygotically lethal early

in embryogenesis, and is associated with incomplete DNA

replication and chromatin bridges in cultured cells [162].

This function is apparently conserved in Drosophila, as mh
mutant larvae are hypersensitive to UV irradiation [142]. How-

ever, the specific role of MH in the male pronucleus remains
elusive. Nevertheless, its unique and transient accumulation

in the male nucleus before the first S phase suggests a role

for MH in preparing the uniquely constrained sperm DNA

for replication.

Although mh is phenotypically unique among gynoha-

ploid maternal effect mutants, a similar phenotype is

observed in eggs fertilized by sperm from ms(3)K81 (K81)

mutant males [163]. K81 is one of the rare paternal effect

mutants affecting embryo development [48,106,164] (table 1).

The defective segregation of paternal sister chromatids

derived from K81-mutant sperm actually results from a

defective telomere capping [165,166]. K81 indeed encodes a

male-germline-specific paralogue of the more general telo-

mere capping protein HipHop [165]. Although defective

telomere capping is detrimental in early male germ cells and

during meiotic divisions [167], the loss of capping proteins

in spermatids of K81 mutant males does not prevent nor-

mal sperm maturation. At fertilization, however, unprotected

sperm chromosome ends are recognized as DNA double-

strand breaks and ligated by the DNA repair machinery. The

formation of dicentric paternal chromosomes presumably

occurs during pronuclear formation and invariably results in

chromatin bridging at the first mitosis [165,166]. Although

apparently similar at the cytological level, mh and K81 pheno-

types in fact result from very different defects affecting paternal

chromosomes. It is thus likely that more genes specifically

required for the integration of paternal chromosome in the

zygote remain to be discovered.
7. Conclusion
The formation of a diploid zygote concentrates many cellular

and molecular events not to be found again in the rest of

development or adult life. We present in this article only a

partial view of Drosophila fertilization, which is largely

guided by the still limited number of functional studies that

specifically focus on this funding event of embryo develop-

ment. The genetics of fertilization in Drosophila has largely

benefited from the characterization of rare mutants inducing

haploid embryo development. However, the probability of

identifying new mutants of this class from existing collections

is slim. Although the design of new forward genetic screens

aimed at isolating new mutations is certainly possible, the

rarity of these mutants, as well as the considerable effort gener-

ally required to identify the corresponding genes, can be

discouraging. Fortunately, highly efficient reverse genetic tech-

niques have recently become available and they open new

perspectives for the development of this field. The design of

an efficient gene knock-down system in the female germline,

based on inducible small-hairpin RNAs [168], greatly facilita-

tes the rapid screening of maternal-effect phenotypes for

selected genes. It also provides an advantageous alternative

to the analysis of germline mutant clones traditionally used

to investigate the maternal contribution of genes essential

for adult viability. In addition, the rapid development of

powerful gene editing technologies based on the CRISPR/

Cas9 system [169] allows for an even deeper exploration of

the D. melanogaster genome in search for genes involved in

the formation of the diploid zygote.

Competing interests. We declare we have no competing interests.

Funding. We received no funding for this study.



rso

13
Acknowledgements. We thank Samantha Tirmarche and Laure
Sapey-Triomphe for their help in the acquisition of confocal
images. We also thank the imaging facility of the Centre
Technologique des Microstructures. We are grateful to Scott Pitnick,
John Belote and Renate Renkawitz-Pohl for providing fly stocks
used in this work.
b.royalsociety
References
publishing.org
Open

Biol.5:150076
1. Longo FJ. 1973 Fertilization: a comparative
ultrastructural review. Biol. Reprod. 9, 149 – 215.

2. Poccia D, Collas P. 1996 Transforming sperm nuclei
into male pronuclei in vivo and in vitro. Curr. Top.
Dev. Biol. 34, 25 – 88. (doi:10.1016/S0070-2153
(08)60708-5)
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