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Abstract: The health scourge imposed on humanity by the COVID-19 pandemic seems not to recede.
This fact warrants refined and novel ideas analyzing different aspects of the illness. One such aspect
is related to the observation that most COVID-19 casualties were older males, a tendency also noticed
in the epidemics of SARS-CoV in 2003 and the Middle East respiratory syndrome in 2012. This
gender-related difference in the COVID-19 death toll might be directly involved with testosterone
(TEST) and its plasmatic concentration in men. TEST has been demonstrated to provide men with
anti-inflammatory and immunological advantages. As the plasmatic concentration of this androgen
decreases with age, the health benefit it confers also diminishes. Low plasmatic levels of TEST
can be determinant in the infection’s outcome and might be related to a dysfunctional cell Ca2+

homeostasis. Not only does TEST modulate the activity of diverse proteins that regulate cellular
calcium concentrations, but these proteins have also been proven to be necessary for the replication
of many viruses. Therefore, we discuss herein how TEST regulates different Ca2+-handling proteins
in healthy tissues and propose how low TEST concentrations might facilitate the replication of the
SARS-CoV-2 virus through the lack of modulation of the mechanisms that regulate intracellular Ca2+

concentrations.

Keywords: testosterone; COVID-19; SARS-CoV-2; viral replication; calcium regulation; aging; inflammaging

1. Introduction

Despite the restrictive measures (i.e., isolation, social distancing) and massive vac-
cination campaigns, the number of people affected by the current COVID-19 pandemic
is growing daily. As of 5 January 2022, there have been 295,577,202 confirmed cases of
COVID-19, including 5,460,818 deaths, and these numbers are continuously evolving [1].
It is essential to evaluate the current guidelines and strategies in providing safe health
services to ensure efficacy in the management of the current pandemic [2]. Global Health
50/50 points out that most data available indicate infection degree is equal for men (49.89%)
and women (50.1%) and that no consistent pattern in terms of who is most likely to be
diagnosed with COVID-19 exists [3]. This tendency was also reported by the World Health
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Organization, which shows that there is little difference in the number of confirmed cases
in men (49%) and those in women (51%) [4]; not surprisingly, the Mexican population
follows the trend: from the total number of confirmed cases (4,008,648), 50.14% corresponds
to females and 49.86% to males. The total number of deaths is 299,711 [1,5]. According
to the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University,
in January 2022, confirmed cases in America were 105,416, 916 and USA had the highest
incidence [1]. Global Health 50/50 reports that in this country male patients between 50
and 64 years of age presented a death toll almost two times higher than in women of the
same age (293.26 vs. 170.66 per 100,000, respectively) [3]. Indeed, it has been observed that
most COVID-19 fatalities were older males, even in those countries with a higher number
of confirmed cases in women. Seemingly, once infected, men are at a higher risk of dying
from COVID-19 than women, and this risk directly correlates with age (Figure 1) [3,6,7].
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Figure 1. Association of TEST plasmatic concentrations and COVID-19 mortality in Mexican men by
age group. Diminished TEST plasmatic concentrations have been associated with higher mortality by
age group. In younger men TEST production could be affected during COVID-19 infection and lead
to higher mortality. On the figure, the red line represents TEST plasmatic concentrations, and the
blue line illustrates COVID-19 mortality in males.

The former fact has been noticed frequently since men with coronavirus infections
have shown a lower survival rate than women. In the SARS-CoV epidemics of 2003 and the
Middle East respiratory syndrome epidemics of 2012, men had substantially higher fatality
rates than women, as in the current COVID-19 pandemic [8]. This gender-related differ-
ence in COVID-19 infection susceptibility, severity, and mortality has not been thoroughly
explained, although it has been proposed, it might be attributed to genetic, immunolog-
ical, and hormonal differences. Among these possibilities, the latter seems adequate to
explain at least partially the gender-related observations. Furthermore, since the hormone
steroid, testosterone (TEST) plasmatic concentrations decrease with aging and the pres-
ence of comorbidities (obesity, diabetes mellitus, and cardiovascular diseases) increases
during the same period, both circumstances might worsen SARS-CoV-2 patients’ prognosis
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(Figure 1) [9–12]. Understandably, multiple studies have been carried out trying to predict
the outcome of the disease in patients. In SARS-CoV-2 infected men, TEST has been re-
ported to exert immunosuppressive effects [13] and modulate inflammation [14], which
may contribute to attenuated antibody response and worsen the prognosis in comparison
to women [14]. SARS-CoV-2 viral entry to host cells has been reported to be through the
interaction of the viral spike protein (S) and the Angiotensin-Converting Enzyme 2 (ACE2)
receptor, facilitated by the Type II Transmembrane Serine Protease (TMPRSS2) priming the
S protein [15,16]. Male sex hormones are also believed to increase the expression of the
ACE2 receptor, favoring the SARS-CoV-2 viral infectivity [15]. Furthermore, androgens,
including TEST, are the only known promoters of the expression of TPMRSS2 through
the activation of the androgen receptor (AR) [17,18]. Not only might TEST participate in
the physiopathology of SARS-CoV-2, but the virus can interfere in the hormone’s produc-
tion [19–22]. However, when comparing young adult men with elderly patients, when TEST
concentrations are progressively decreasing, we observe a greater severity and mortality;
therefore, the above mentioned TEST immunosuppressive effects in COVID-19 patients
might not be justified.

In this context, we propose that low plasmatic levels of TEST can be determinant in the
infection’s outcome and the replication of the SARS-CoV-2 virus through the modulation
of the mechanisms that regulate intracellular Ca2+ concentrations ([Ca2+]i) in host cells.
In this regard, it has been reported that dysfunctional [Ca2+]i homeostasis mechanisms
are necessary for the replication of certain viruses, such as influenza A virus (LVA) [23],
Japanese encephalitis virus (JEV), Zika virus (ZIKV), dengue virus (DENV), and West Nile
virus (WNV) [23–25]. Meanwhile, it was recently published that the over-activation of the
ryanodine receptor (RyR) channel [26] and the voltage-dependent Ca2+ channel (VDCC)
deregulate [Ca2+]i homeostasis playing an essential role in SARS-CoV-2 infection and cell
replication [27]. It is not yet determined whether other cellular mechanisms are affected by
SARS-CoV-2 infection and viral spread (Figure 2).

On the other hand, TEST modulates the activity of diverse proteins that regulate
calcium homeostasis and its signaling. For instance, it has been reported that, in different
systems, it blocks L-type voltage-dependent Ca2+ channels (L-VDCC), store-operated Ca2+

channels (SOCCs), transient receptor potential (TRP) channels, inositol 1,4,5-triphosphate
receptors (IP3R) and promotes prostaglandin E2 (PGE2) [28–31], contributing to main-
taining the basal intracellular Ca2+ concentration (b[Ca2+]i) and favoring the tissues basal
functions (Figure 2) [28–32]. It is important to emphasize that these mechanisms are found
in almost all tissues and cells of the body.

In summary, a wide range of evidence from different cell types points out that TEST
interacts with various essential regulatory proteins that maintain [Ca2+]i homeostasis. Even
though this androgen’s physiological role has not been fully elucidated, some evidence hints
at its detrimental role in COVID-19 patients warranting further research to understand
better the possible effects that TEST could have on the infection and replication of the
SARS-CoV-2 virus.

Nevertheless, age is the principal risk factor associated with an increase in severity
and mortality in COVID-19 patients [9]. One contributing factor that could explain this
matter is “inflammaging”, a chronic inflammatory state observed in the elderly [9]. The
decline in TEST levels is associated with age and can participate in the regulation of
inflammaging in men [9]. Seemingly, TEST declining plasmatic concentrations in the older
men could provide essential hints on the role of this androgen in the pathophysiology of
COVID-19 patients.

Because of the above-described issues, we propose herein the following points:
(1) SARS-CoV-2 replication depends on [Ca2+]i handling proteins; (2) TEST promotes
calcium homeostasis at normal plasmatic concentrations; (3) Diminished plasmatic TEST
concentrations dysregulate calcium homeostasis; finally, (4) TEST deficiency enhances
inflammaging that exacerbates SARS-CoV-2 pathophysiology.
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Figure 2. Viral hijacking of Ca2+ handling proteins and testosterone modulation. Schematic represen-
tation of various stages of the viral cycle targeting the Ca2+ apparatus in a host cell. Testosterone (T)
can mitigate the dysfunction of Ca2+ homeostasis induced by the viral infection through the modula-
tion of the activity and expression of various Ca2+ handling proteins. In the plasma membrane, T
can acutely inhibit receptor operated calcium channels (ROCCs) in vascular smooth muscle (VSM),
T also inhibits store operated calcium channels (SOCCs) acutely in airway smooth muscle (ASM)
and VSM. T administered acutely inhibits L-Type voltage operated Ca2+ channels (L-VDCCs) in
VSM and ASM, and, if chronically given, can downregulate L-VDCCs expression in cardiomyocytes.
In these cells, T can upregulate the expression of the Na+/Ca2+ exchanger (NCX). In the sarcoplas-
mic reticulum (SR), T can block the IP3 receptor (IP3R). In cardiomyocytes, chronic exposure to T
increases the phosphorylation of phospholamban (PLB) sites s16 and s17, increasing sarcoplasmic
reticulum Ca2+ ATPase (SERCA) activity, and can also increase the amplitude of Ca2+ sparks from
the ryanodine receptor (RyR), probably due to an increase in Ca2+ content in the SR by the increased
SERCA activity. Abbreviations on the figure: LVA, influenza A virus; JEV, Japanese encephalitis virus;
ZIKV, Zika virus; DENV, dengue virus; WNV, West Nile virus; SFTSV, thrombocytopenia syndrome
virus; HCMV, human cytomegalovirus; HIV, human immunodeficiency virus; HTLV-1, human T-cell
lymphotropic virus type 1; RSV, respiratory syncytial virus; RTV, rotavirus; T, testosterone; GPCR,
G-protein-coupled receptor; PLC-β, phospholipase C-β; IP3, inositol1,4,5-trisphosphate; PIP, phos-
phatidyl inositol phosphate; DAG, diacylglycerol; b[Ca2+]i, basal intracellular Ca2+ concentration;
[Ca2+]SR, sarcoplasmic reticulum Ca2+ concentration; [Ca2+]e, extracellular Ca2+ concentration.

2. Calcium Signaling

The calcium ion (Ca2+) is a versatile second messenger in all cell types and regulates
multiple signaling processes responsible for essential cell functions. The processes it can
regulate are time-dependent: in microseconds, exocytosis is generated, in milliseconds,
it initiates contraction, and in minutes or hours, it originates events, such as fertilization,
proliferation, transcription, gene regulation, and apoptosis [33,34]. Under resting condi-
tions, cells maintain cytosolic Ca2+ concentrations ranging from 100 nM to 150 nM [35];
exquisitely regulated mechanisms maintain the equilibrium between the extracellular
milieu (Ca2+ concentrations ~2 mM) and intracellular Ca2+ stores (Ca2+ concentrations
~5–10 mM) [36,37]. The homeostasis in Ca2+ signaling is determined by a balance between
the proteins that increase Ca2+ within the cytoplasm: L-VDCC, SOCCs, receptor-operated
Ca2+ channels (ROCCs), Na+/Ca2+ exchanger in its reverse form (NCXREV), IP3 receptor
(IP3R), and ryanodine receptor (RyR) and proteins that decrease concentrations to basal
levels: plasma membrane Ca2+ ATPase (PMCA), sarcoplasmic reticulum Ca2+ ATPase
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(SERCA), Na+/Ca2+ exchanger (NCX) and the mitochondrial uniporter [36,38–40] Impor-
tantly, alterations in this Ca2+-dependent homeostatic mechanism might participate in
various pathophysiological conditions, including viral infections [33].

3. Viral Modifications of Host Cell Calcium Homeostasis

Viruses are intracellular invasive particles that exploit the host cell’s machinery to
propagate the viral lifecycle; particularly the intracellular Ca2+ signaling system is hijacked
during viral entry, viral gene replication, virion maturation, and release of various viral
species [23,41]. Dysfunctions in the host cell’s Ca2+ apparatus have been reported during a
viral infection, leading to abnormal [Ca2+]i [23].

One of the primary viral targets of the Ca2+ apparatus are the VDCCs. Some studies
have shown that the Cav1.2 channel serves as a receptor of the influenza A virus (IAV) and
is necessary for its entry into the host cell [23]. This is further supported by the inhibition
of IAV infection when VDCC blockers are used, such as verapamil [23,42]. VDCC blockers
have also been shown to effectively inhibit the infection of the West Nile virus (NWV) and
severe fever with thrombocytopenia syndrome virus (SFTSV) by inhibiting the virus-cell
fusion step [23,43,44]. The increase in [Ca2+]i produced by certain viruses through VDCCs
has also been demonstrated to be necessary for viral replication, and VDCC blockers have
proven to be effective antiviral agents against Japanese encephalitis virus (JEV), ZIKV,
DENV, and WNV [23,24,45]. It has been shown that Ca2+ binds to the fusion protein
(FP) of MERS-CoV and the 2 FP domains on the S protein of SARS-CoV during the entry
stage of both virus types [27,46,47], nevertheless, this phenomenon still requires further
investigation. The use of VDCC blockers has also been associated with lower mortality and
decreased risk for intubation in COVID-19 patients; therefore, Ca2+ could also potentially
be involved in the viral entry stage (Figure 2) [48].

It was recently published that over-activation of the RyR channel and the associated
alteration of [Ca2+]i homeostasis play an essential role in SARS-CoV-2 infection and in-
tracellular replication. The TGF-β signaling pathway over-activation by this virus and
reactive oxygen species (ROS) production leads to Ca2+ leak from RyR channels in the
sarcoplasmic reticulum (SR). This effect is produced through oxidation and protein kinase
A (PKA) phosphorylation, uncoupling the regulating protein calstabin (FKBP12.6) from
the RyR channel, destabilizing the closed state and favoring an open state [49]. Another
mechanism proposed for RyR channel dysfunction during SARS-CoV-2 infection is through
cathepsin L13 (a protease expressed in the host cell’s plasma membrane); this enzyme has
also been shown to participate in the over-activation of RyR channels, promoting a leaky
state. The increase in [Ca2+]i also favors cathepsin L13 activity that allows the viral entry
through the cleavage and activation of the S protein. The increase in intracellular Ca2+ also
promotes the release of the virus from the endosome into the host cell [26,50].

Ca2+ release from the SR can also be triggered through activation of the IP3R, and it
is a known target for some viruses during the early stages of viral infection to promote
replication. The human cytomegalovirus (HCMV) interacts with P2Y2 purinergic receptors
to increase the production of IP3 [51,52], while the human immunodeficiency virus (HIV)
upregulates intracellular IP3 [53] and the human T-cell lymphotropic virus type 1 (HTLV-1)
directly activates the IP3R (Figure 2) [54].

The final stage of the viral lifecycle consists of the extracellular release via exocytosis
from the host cell, also called budding; in four hemorrhagic fever viruses, the STIM1/Orai1-
mediated Ca2+ release is essential for this step [23,47,55]. This was also demonstrated
when DENV yield was significantly reduced by SOCCs antagonists [56]. The influx of Ca2+

through SOCCs is a particular hallmark of rotavirus infection, and the mechanism for this
action has been established to be through the activity of a nonstructural protein 4 (NSP4), a
viroporin acting as an ion channel in the SR (Figure 2) [57,58].

In order to maintain proper intracellular Ca2+ homeostasis, calcium pumps and ex-
changers are required to decrease [Ca2+]i, namely PMCA, SERCA, and NCX [33]. The
disruption of any of these proteins would increase [Ca2+]i, a phenomenon that has been
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implicated in different stages of the viral cycle [25,59]. The participation of SERCA in the
viral genome replication stage was demonstrated through a SERCA inhibitor that showed
antiviral activity against respiratory syncytial virus (RSV) strains [60]. In AIDS transgenic
mice that express replication-incompetent HIV-1, cardiac dysfunction has been linked to
increased SERCA2 expression [61]. On the other hand, rotavirus infection activates NCX
in its reverse mode (where one Ca2+ enters the cytosol and three Na+ ions are expelled)
mediated by NSP4 (Figure 2) [62].

Interestingly, studies in structural homology, bioinformatics and metanalyses suggest
that Ca2+ might participate in SARS-CoV-2 entry into host cells [25]. Furthermore, this is
supported by studies showing that VDCC blockers inhibit viral cell entry [26,27]. Although
further research is required to understand the extend of Ca2+ participation in SARS-CoV-2
pathogenesis, Ca2+ handling proteins could be a potential target in treating COVID-19 patients.

As the COVID-19 infection progresses, why men present disproportionately higher
infection and mortality rates remain unclear. As of yet, no evidence links directly TEST
and this higher susceptibility in men. Because it is well known that TEST physiologically
participates in regulating Ca2+ handling proteins activity, these effects might help elucidate
the paradigm concerning the relationship between TEST and COVID-19 severity and
mortality in males. Conceivably, this androgen’s plasmatic concentrations might correlate
with COVID-19 severity, i.e., lower concentrations worsen the prognosis, particularly in
older men.

4. Role of COVID-19 in Testosterone Production

As stated before, SARS-CoV-2 enters the cell through the ACE2-S protein complex;
therefore, the targeted cells are those that express ACE2. This protein has been impli-
cated in regulating two testicular functions: steroidogenesis and spermatogenesis and is
expressed in four testicular cells: seminiferous duct cells, spermatogonia, Leydig cells,
and Sertoli cells [63–66]. The expression of ACE2 seems to be linked with age, having a
higher expression in younger men and indicating a high risk for potential infections of the
testis in this population [63,65,67]. SARS-CoV-2 in semen samples and testicular biopsies
of patients with COVID-19 were investigated. Interestingly, only two studies found the
virus in semen [19,68,69], contradicting other reports that did not [20–22,70–74]. Indeed,
more studies are needed to further clarify this issue.

Urogenital infections are known risk factors for male infertility, mainly due to the
impact of inflammation on reproductive function [63,75,76]. Cytokines are known regu-
lators of male reproduction system health [63,75], and local production in testis has been
described [75,77]. Then again, the cytokine storm is a characteristic trait of COVID-19
infection, and, as one of its consequences, increased levels of seminal IL-6, TNF-α, and
MCP-1 have been described [78]. COVID-19 can affect the proper testicular function and
alter TEST production and male fertility, whether transiently or with more permanent
implications. Additionally, fever, a prominent symptom in various infectious diseases
including COVID-19, is linked with variations in semen and transient decline in male fertil-
ity [79,80]. Either by direct harm to the testicular cells, the SARS-CoV-2 virus entering the
testicular cells, or the indirect consequence of the inflammatory response, evidence exists
that COVID-19 might compromise male fertility. This illness´ effects on testicular function
are observed in spermatogenesis alteration and testosterone production. Sperm quality in
COVID-19 patients is altered, with a lower percentage of normal sperm morphology and
count, and orchitis has been observed in some COVID-19 patients [20–22,78].

Various studies in COVID-19 male patients report low levels of circulating TEST, with
most cases showing a normalization of TEST levels post-infection, although in approxi-
mately 50% of them not reaching standard levels during a 7-month follow-up, and up to
10% decreasing even further [20,81,82]. Long-term health implications of COVID-19 infec-
tion are still unknown, and male infertility as a possible sequel is investigated, especially
with the rising interest in the chronic consequences that COVID-19 might pose. Such is the
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case of the emerging “long-haul”, a term used to describe the clinical duration of symptoms
extending past the acute and post-acute infection, generally lasting around 28 days [83–85].

Severe COVID-19 cases are associated with impaired viral control and higher viral RNA
load [86,87]. Interestingly, lower TEST levels have been found to correlate with COVID-19
severity [88], probably related to the fact that TEST could be implicated in viral replication
regulation. COVID-19 adverse effects on TEST production will induce a worse infection.

5. Testosterone’s Modes of Action at the Cellular Level

TEST binds to membrane-bound or nuclear receptors and triggers genomic (classical)
effects that occur after a long period (hours to days). Meanwhile, nongenomic (non-classical)
effects occur in a short period (seconds to minutes) and are independent of the androgen
receptor (AR) occupancy by the male sex steroids [28,89]. The AR is present in almost all
tissues and cell types, including the brain, heart, lung, and immune system cells [28,89,90].

TEST plays essential roles in Ca2+ homeostasis in several muscles, i.e., airway, cardiac
and vascular. For instance, in airway smooth muscle (ASM), this androgen has benefic
effects and seems to participate in the sexual dimorphism observed in many respiratory
diseases, such as asthma that shows lower incidence in adult males than in females, as does
symptom severity [91,92]. Some studies also point out that a single high dose of exogenous
TEST induces significant bronchodilation [93], the therapeutic potential of this androgen
that deserves further investigation.

In ASM, TEST tissular effects are related to the regulation of intracellular Ca2+ levels.
We recently found that in this tissue, TEST inhibits L-VDCC and SOCCs [28–30]. Addi-
tionally, at physiological concentrations (nM, nmol/L), TEST induced a decrease in [Ca2+]i
through the phospholipase C-β/inositol 1,4,5-trisphosphate (PLCβ/IP3) signaling pathway,
by blocking the IP3R [31]. Also, in guinea pig ASM, TEST diminishes tone and [Ca2+]i.
These effects seem to occur by blocking L-VDCC and a constitutively active TRPC3 channel,
and probably by PGE2 biosynthesis [28–31]. These mechanisms also favor ASM basal tone
by keeping basal intracellular Ca2+ concentration (b[Ca2+]i) in unstimulated tissues and by
inducing relaxation in tissues pre-contracted with carbachol (CCh) or antigenic challenge
(Figure 2) [93].

Additionally, we found that ASM chronic exposure to nanomolar concentrations of
TEST induces β2 adrenergic receptor expression, hence improving the salbutamol-induced
relaxation [94]. This finding was further characterized by patch clamp studies that showed
increases in the salbutamol-induced K+ currents (IK+); this rise was abolished when protein
synthesis or transcription inhibitors were used during the TEST chronic exposure [94]. The
increase in IK+ induces ASM hyperpolarization diminishing the Ca2+ entry through voltage
dependent channels, and therefore, contributing to keeping lower [Ca2+]i.

Many studies have established TEST´s paramount role in immunity and inflammation.
Hence, it has been demonstrated that TEST negatively regulates type 2 inflammation
and the expression of IL-17A [95,96]. Furthermore, in human ASM, androgens diminish
the intracellular Ca2+ increment induced by pro-inflammatory cytokines, such as tumor
necrosis factor alpha (TNF-α) or interleukin-13 (IL-13) by a genomic effect [97]. All these
effects diminish airway hyperresponsiveness and favor a milder asthmatic phenotype.
Even though ACE2 expression in human ASM was just recently defined [98] and the entry
of SARS-CoV-2 through its association has not been demonstrated yet, it is reasonable to
propose that the above-described mechanisms could also be relevant in the SARS-CoV-2
infected males (Figure 3).
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vitamin D. The higher levels of ROS activate NLRP3, activating IL-1β and IL-18 production and 
pyroptosis, a mechanism that the StAR could block by inducing T production. ROS also activate the 
transcription factors hPNPaseold-35, NF-κB, AP-1, Sp1 and PPARs. The senescent adipocytes in-
crease the secretion of adipokines and cytokines, such as IL-6 and TNF-α, that can also be inhibited 
by T. Immunosenescence can present alteration of the ratio of CD4+/CD8+ T cells, decrease imma-
ture T cells, increase memory T cells, alter Th2 response, and modify the production of pro-inflam-
matory cytokines. Abbreviations on the figure: T, testosterone; hPNPaseold-35, human polynucleo-
tide phosphorylase; AP-1, activator protein 1; Sp1, specification protein 1; PPARs, peroxisomal pro-
liferator-activated receptors; NLRP3, NOD-like receptor 3; Vit. D, vitamin D; ROS, reactive oxygen 
species; AEC, airway epithelial cells; StAR, steroidogenic acute regulatory protein. 
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[101–103], and chronic exposure to dihydrotestosterone (DHT) increased the expression 
of Cav1.2 and peak ICa-L (L-type Ca2+ current) in human ventricular myocytes [103,104]. The 
NCX protein has also been explored, though the evidence is contradictory. Some studies 
report that after 2–10 weeks of GDX the expression and activity of NCX were unchanged 
[103,105–107]. In other works, there is evidence that after 2 or 16 weeks of GDX, a decrease 
in levels of mRNA of NCX occurs and that it could be reversed with supplementation of 

Figure 3. Testosterone mitigates the detrimental effects of inflammaging in COVID-19. Schematic
representation of late-onset hypogonadism (LOH) produced by inflammaging markers, reverted
with testosterone (T) supplementation, and increasing the steroidogenic acute regulatory protein
(StAR) expression leading to T production. Inflammaging is characterized by alterations in autophagy
and mitophagy activity, increased reactive oxygen species (ROS) production, cellular senescence,
alteration of the expression of toll-like receptors (TLRs) and decrease in the concentration of vitamin D.
The higher levels of ROS activate NLRP3, activating IL-1β and IL-18 production and pyroptosis, a
mechanism that the StAR could block by inducing T production. ROS also activate the transcription
factors hPNPaseold-35, NF-κB, AP-1, Sp1 and PPARs. The senescent adipocytes increase the secretion
of adipokines and cytokines, such as IL-6 and TNF-α, that can also be inhibited by T. Immunosenes-
cence can present alteration of the ratio of CD4+/CD8+ T cells, decrease immature T cells, increase
memory T cells, alter Th2 response, and modify the production of pro-inflammatory cytokines.
Abbreviations on the figure: T, testosterone; hPNPaseold-35, human polynucleotide phosphorylase;
AP-1, activator protein 1; Sp1, specification protein 1; PPARs, peroxisomal proliferator-activated
receptors; NLRP3, NOD-like receptor 3; Vit. D, vitamin D; ROS, reactive oxygen species; AEC, airway
epithelial cells; StAR, steroidogenic acute regulatory protein.

The role of sex hormones has been extensively studied in physiological and pathologi-
cal settings. Low levels of circulating TEST are associated with an increased cardiovascular
risk by leading to an increase in inflammation, impaired metabolism, and mitochondrial
dysfunction [99,100].

In male rodents, gonadectomy (GDX) reduced the expression of L-VDCC in the
heart [101–103], and chronic exposure to dihydrotestosterone (DHT) increased the expres-
sion of Cav1.2 and peak ICa-L (L-type Ca2+ current) in human ventricular myocytes [103,104].
The NCX protein has also been explored, though the evidence is contradictory. Some
studies report that after 2–10 weeks of GDX the expression and activity of NCX were
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unchanged [103,105–107]. In other works, there is evidence that after 2 or 16 weeks of
GDX, a decrease in levels of mRNA of NCX occurs and that it could be reversed with
supplementation of TEST [101–103]. At the moment, the effects of TEST in the regulation
of NCX in cardiomyocytes are still unclear and require further investigation (Figure 2).

The administration of TEST at supraphysiological levels for two weeks appears to
have a protective effect against myocardial ischemia-reperfusion injury, demonstrating
an improvement in functional recovery compared to GDX and placebo groups [105]. The
effect was partly attributed to the impact of TEST on [Ca2+]i, reducing the end-ischemic
[Ca2+]i and having a decreased [Ca2+]i overload in the postischemic period [105]. Worth
mentioning is the [Ca2+]i homeostasis in contractile failure, the possibility of developing
arrhythmias, and myocyte injury [105,108]. Although the protective effect of TEST in
reperfusion injury is evident and is associated with [Ca2+]i handling, the effect cannot be
attributed to a difference in protein expression of phospholamban (PLB), the NCX, RyR2,
or SERCA2a. Yet, the possibility of changes in phosphorylation in any of these proteins
remains [105–109]. Similarly, in another study, TEST did not alter protein expression of
SERCA, its modulating components sarcolipin and heat shock protein 20 or NCX. However,
in GDX rats, the phosphorylated Thr17 and Ser16 forms of PLB were significantly decreased,
modulating SERCA activity [103,110,111]. Even though GDX does not modify the levels
of expression of RyR, RyR-mediated Ca2+ release is decreased after GDX [103–106], with
chronic testosterone exposure (24–30 h) increasing the amplitude of Ca2+ sparks [103,104].
The increase in SR Ca2+ release from individual Ca2+ sparks could be caused by an increase
in SR Ca2+ content with exposure to TEST [103–106]; this increase in Ca2+ content is
attributed to phosphorylation of PLB (Figure 2) [103,110,111].

COVID-19 patients appear to have cardiac dysfunction, leading to cardiac injury, with
several studies demonstrating it through cardiac marker elevation and electrocardiogram
(ECG) changes [112–115]. The incidence of cardiac injury is reported to be between 7.2%
and 28%, but in severe and critical care patients, the incidence can be between 22% and
44% [112–118]. Arrhythmias can be a common symptom in COVID-19 patients, requiring
close monitoring since they indicate myocardial injury associated with an unfavorable
outcome. The incidence of arrhythmias has been reported to be between 17% and 24%,
linked with intensive care unit (ICU) admission and death, exacerbating previously known
cardiac comorbidities and unfortunately developing in patients without prior history of
heart disease [112,115,119,120].

Cardiac arrhythmias could be caused by various factors present in COVID-19 patients,
such as hypoxia, pro-inflammatory cytokines, direct myocardial injury, fever, electrolyte
imbalances, plaque rupture, hypercoagulability, or many of the medications used to treat
COVID-19 patients [115,121]. Concerning the induction of cardiac injury, SARS-CoV-2
has been shown to directly infect cardiomyocytes through internalization of the virus
when the viral S protein binds to ACE2, aided by the TPMRSS2 [115,122,123]. Fever, a
symptom often present in COVID-19 patients, has also been shown to trigger ventricular
arrhythmias, especially in patients with underlying cardiomyopathies [115,124–126]. Specif-
ically, pro-inflammatory cytokines can promote an arrhythmogenic state. In COVID-19
patients, some cytokine concentrations are elevated, such as IL-6, IL-1β, IL-2, IL-8, IL-17,
G-CSF, GM-CSF, IP10, MCP1, CCL3 and TNF-α; all could lead to the generation of arrhyth-
mias [113,115,127–129]. The acute administration of IL-6 increases L-type Ca2+ currents
(ICaL) in ventricular cardiomyocytes [115,130], and in chronic exposure, IL-6 has signifi-
cantly down-regulated the expression of SERCA2 in ventricular myocytes [115,131]. Addi-
tionally, TNF-α reduces ICaL and the expression of SERCA2a by increasing DNA methyl-
transferase levels, thus enhancing the methylation of its promoter region [115,126,132].
Furthermore, IL-1β has been shown to promote Ca2+ spark frequency [115,133]. Although
the extent to which TEST plays a role in cardiomyocyte injury during SARS-CoV-2 infec-
tions remains uncertain, there exists evidence suggesting it could have a protective role
and warrants further investigation.
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Studies have demonstrated that TEST affects the cardiovascular system in health and
disease. TEST may serve different functions in normal physiological conditions compared
with pathophysiological states [134]. TEST concentrations in men remain relatively constant
through the reproductive lifetime, in the range of 6–50 nM, and can influence the cardio-
vascular system functions, regulating vascular resistance, cardiac electrophysiology, and
cardiac output, and TEST deficiency may contribute to developing hypertension [135–138].
Several epidemiological studies have shown an association of low testosterone with cardio-
vascular disease and conditions, such as metabolic syndrome and type 2 diabetes, which
have increased cardiovascular risk [139,140].

It has been reported that TEST exhibits vasodilatory actions, both through acute
and chronic mechanisms, and this effect can be observed in different species, including
humans, and be reproduced in many vasculature types, i.e., thoracic, coronary, mesenteric,
pulmonary, mammary, radial, and umbilical arteries [141–156].

Many of the mechanisms responsible for producing vasodilation have been deciphered
and will be addressed below. One of the best-described mechanisms is acute TEST inhibition
of the VDCCs. This effect can be obtained in various models, including rat aorta [157–160],
porcine and rat coronary arteries [147,161,162], rat pulmonary artery [148,151], canine
basilary artery [163], human umbilical artery (HUA) [164], and small porcine arteries [165],
and can even potentiate the effect of nifedipine [166]. Moreover, TEST can regulate other
Ca2+ handling proteins that participate in the vasodilatory effect, including the inhibition of
ROCCs, which can be observed in rat aorta [157], porcine arteries [164,165], and HUA [164].
Similarly, SOCCs inhibition is observed in rat coronary, pulmonary and aorta arteries
(Figure 2) [147,162].

In COVID-19, hypertension has been described as a morbidity risk factor and poor out-
come [167]. As an essential vasodilator, TEST can mitigate the risk of hypertension, and its
deficiency is linked to increased cardiovascular risk [140]. Moreover, ACE2 inhibitors and
ARB (Angiotensin II receptor blocker) administration, two of the primary drug groups used
in the treatment of hypertension, have shown to increase the expression of ACE2 [168–170].
This overexpression of ACE2 can increase the risk for potential infection by SARS-CoV-2.
Therefore, TEST can indirectly mitigate the impact of COVID-19 by decreasing the car-
diovascular risk or by lessening the necessity for ACE2 inhibitors or ARBs. The extent of
hypertension’s impact on the pathophysiology of COVID-19 is undoubtedly complex and
possibly related to underlying comorbidities; this interesting fact remains a guideline for
future studies.

In summary, the modulatory effects that physiological concentrations of TEST excerpt
on the Ca2+ handling mechanisms that participate in the viral lifecycle could lessen the
potential infection of SARS-CoV-2. Contrastingly, TEST deficiency has been shown to
worsen comorbidities that pose a risk for COVID-19 severity and outcome, including those
in the respiratory and cardiovascular systems. TEST plasmatic concentrations decrease with
age, and therefore, might constitute a dominant risk factor observed to impact COVID-19
severity and mortality [168,169]. Besides, one of the primary hallmarks of aging is the
so-called inflammaging, which also augments the risk of acquiring COVID-19.

6. Role of Inflammaging in the Pathogenesis of COVID

Young adults with COVID-19 and a favorable natural course of the disease, present a
balance between the ratio of pro-inflammatory and anti-inflammatory cytokines, capable of
modulating immune activity and reducing the response at the indicated time. A dysregula-
tion of the immune response, as the chronic state of inflammation known as “inflammaging”
in elderly patients, may contribute to the pathophysiology of SARS-CoV-2 [171,172]. In-
flammaging has been associated with various pathologies, such as insulin resistance, type
2 diabetes mellitus, cardiovascular disease, Alzheimer’s disease, and cancer [171,172]. Old
age is characterized by this chronic state of inflammaging, in which a systemic increase in
IL-6, IL-8, TNF-α, IL-13, IFN-γ, and acute phase proteins has been detected, and includes a
series of systemic alterations, especially of the immune system. The sum of these factors
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could favor viral infections as a result of alterations in autophagy and mitophagy activity,
increased ROS production, cellular senescence that contributes to the pro-inflammatory
profile related to aging, senescence of immune system cells, alteration of the expression of
TLRs (toll-like receptors) and decrease in the concentration of vitamin D (Figure 3) [171,172].

Aging is associated with an increase in ROS production, which promotes the pro-
inflammatory state through the synthesis of cytokines and the activation of transcription
factors including human polynucleotide phosphorylase (hPNPaseold-35), NF-κB, activa-
tor protein 1 (AP-1), specificity protein 1 (Sp1), and peroxisomal proliferator-activated
receptors (PPARs) [171]. One of the processes responsible for mitigating ROS production
is mitochondrial autophagy, known as mitophagy. Autophagy is a catabolic exchange
pathway in which dysfunctional or damaged cellular material is degraded; an alteration
or decrease in this pathway has been associated with various pathologies characteristic
of aging. When autophagic activity declines, it leads to an increase in ROS production.
The lower autophagic activity and the enhanced ROS production lead to the activation of
NOD-like receptors (NLR), especially NLRP3. As products of the activation of the NLRP3
receptor, the cytokines IL-1β and IL-18 also activate pyroptosis, a form of programmed
cell death in which they release their pro-inflammatory cytosolic content to the extracel-
lular space. There is an increase in the proportion of senescent cells in old age, these are
characterized by having decreased cell viability and being more susceptible to cellular
damage by ROS, and they can also produce cytokines, such as IL-1α, IL-1β, IL-6, IL-8, IL-18,
CCL-2, TNF-α, GM-CSF, growth-regulated oncogene (GRO), MCP-2, MCP-3, MMP-1 and
MMP-3 [171]. Above all, senescent adipocytes play an essential role in inflammaging. In old
age, a redistribution of adipose tissue can be observed, with a decrement in subcutaneous
regions and increases in the visceral areas; this could also be altered in age-related diseases,
such as sarcopenia. This redistribution is associated with a dysfunction of adipose tissue,
an increase in the production of adipokines and cytokines (especially IL-6 and TNF-α),
metabolic dysfunction, and predisposes subjects to increased morbidity and mortality from
several causes (Figure 3) [173].

Furthermore, immunosenescence also contributes to increasing the progressive loss of
all immune effectors in both the innate and cellular immune systems [171,172]. An aug-
mented activation and maturation of dendritic cells (DCs) by cytokines has been reported
in this context. It has been described that the T cell population also undergoes essential
changes that do not include decreases in cellular counts. There is a poor T cell mitogenic
response, an alteration in the CD4+/CD8+ T cells ratio, a reduction of immature T cells, an
increase in memory T cells, and the Th17/Treg cells ratio [171]. Macrophages show lower
production of specific factors, for instance, fibroblast growth factor, vascular endothelial
growth factor, epithelial growth factor, TGFß, toxic free radicals, and nitric oxide synthase
expression, and a decrease in phagocytic and chemotactic activity. Lower production of
antibodies and their protective effectiveness have been observed within the alterations
in the B cell population, corresponding with the mitigated response of specific antigen
antibodies, observed in old mice [171]. The changes observed by immunosenescence in
older adults produce a chronic inflammatory profile, causing higher age-related morbidity
and mortality in COVID -19 (Figure 3) [171,172].

Old age is also accompanied by vitamin D deficiency associated with several chronic
degenerative diseases. The non-classical activities of this vitamin are related to immunoreg-
ulatory effects. In conjunction with its vitamin D receptor (VDR), it increases macrophages´
autophagic activity and the generation of antimicrobial products and favors a decrease in
the expression of pro-inflammatory cytokine genes. These genes are silenced by higher
glutathione levels, lowering ROS and suppressing the expression of NF-κB and p38 MAP
kinase. Conceivably, elderly patients faced with SARS-CoV-2 infection would be unable to
efficiently modulate the inflammatory response, most probably presenting an exacerbated
response and severe tissue damage (Figure 3) [171].

A steady decline in TEST plasmatic concentration is associated with age, typically re-
ferred to as andropause, and is currently considered late-onset hypogonadism (LOH) [174].
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This lowering of TEST plasmatic levels can have clinical repercussions and has been ob-
served to decrease bone mineral density and lean body mass and increase the risk of
metabolic syndrome and cardiovascular diseases [11,174,175]. The higher ROS production
observed in inflammaging could also contribute to TEST deficiency, since high levels of
ROS have been shown to disrupt the male reproductive hormonal profile: directly through
oxidative stress and indirectly by acting on the hypothalamic axes of hormone release,
decreasing luteinizing hormone (LH) secretion [176–179]. The treatment with TEST could
be beneficial in hypogonadism, particularly in LOH, protecting against the effects of ROS
on TEST production. The treatment with low doses of TEST has demonstrated a diminished
ROS production in Leydig cells, preventing oxidative damage and upregulating the expres-
sion of the steroidogenic acute regulatory protein (StAR), which acts as the limiting-step
enzyme in steroidogenesis, resulting in higher TEST synthesis and secretion (Figure 3) [180].

Similarly, TEST replacement therapy attenuated cognitive decline in rats by decreasing
oxidative stress damage [181]. TEST production in Leydig cells depends on autophagy;
another characteristic of inflammaging is altered autophagy, and disruption, especially
in this site with high activity, and could lead to LOH [182]. Additionally, the senescent
adipocytes observed in inflammaging can contribute to male infertility. Adipose tissue-
mediated inflammation and oxidative stress in obese men can negatively impact TEST
production and sperm quality, promoting LOH (Figure 3) [183,184].

Another aspect that has gained interest is the synchronicity between the decline of
TEST plasmatic concentration and the development of a pro-inflammatory state [100].
In male diabetic patients, low levels of TEST are associated with a pro-inflammatory
condition characterized by high TNF-α concentrations, an impaired metabolic profile,
and mitochondrial dysfunction, leading to an increase in cardiovascular risk [99]. TEST
deficiency has also been shown to increase IL-6 production in the bone marrow of young
mice [9,185]. Inversely, TEST supplementation treatment could prove beneficial in reversing
some of the detrimental immunological effects related to age, such as immunosenescence.
TEST treatment can decrease the production of IL-6 and other pro-inflammatory cytokines
in vitro and in vivo [9,186]. TEST treatment in men with hypogonadism significantly
reduced the production of TNF-α and IL-1β and incremented the production of IL-10
(Figure 3) [9,187].

Similarly, in rat autoimmune orchitis, TEST treatment decreased CD4+ T cells, in-
creased Treg cells, and decreased Th1 cytokine production (IFN-γ and IL-2) and other
pro-inflammatory cytokines (MCP-1, TNF-α, IL-6) [9,188]. Moreover, the alterations in Th2
response related to aging could benefit from TEST modulation. TEST, through the AR acti-
vation, has been shown to suppress Th2-mediated inflammation indirectly by suppressing
IL-4 production induced by allergen exposure in mice models [96]. Therefore, LOH could
reasonably exacerbate the repercussions that inflammaging could have in the pathogenesis
of COVID-19, and it would be interesting to investigate if TEST administration could be
beneficial in older men suffering this illness (Figure 3).

At this point, it is important to distinguish between the chronological age (age mea-
sured in years from the date you are born to the present) and the biological age (age
referred to different physiological and molecular processes, usually measured with distinct
biological biomarkers, such as DNA methylation). This distinction may help us to better
understand why the COVID-19 pandemic showed to be more lethal on subjects with sev-
eral comorbidities, such as obesity, diabetes, or hypertension, most of which have shown
an acceleration of age (residuals between chronological age estimation and biological
age) [189–191].

In this sense, several studies have pointed out that biological age is strongly associ-
ated with the severity of the disease rather than with the calendar age. Moreover, in a
recent article by Chiang-Ling et al., phenotypic age (PhenoAge) measured with several
biomarkers and a machine-learning model [192], showed to be associated with severity
of COVID-19 when data from the UK Biobank were combined with COVID-19 diagnoses
of the UK National Health Service [193]. In this sense, a recent article reported that men
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have accelerated biological aging during quarantine. Interestingly, this study found that
biopsychological age might determine the risk to develop severe COVID-19 [194].

7. Conclusions

The higher severity and mortality observed in male COVID-19 patients could be
linked to lower TEST protective effects. Illness severity has been associated with TEST
deficiency, especially in elder patients. TEST might be modulating SARS-CoV-2 pathophys-
iology directly (regulating the viral life cycle) and indirectly (mitigating the exaggerated
immunological response). The viral hijacking of the Ca2+ handling proteins might be a
potential target for pharmacological treatment, and the modulatory actions of TEST over
these mechanisms could prevent their viral-induced dysfunction. Further research on how
low TEST plasmatic concentrations in elderly patients worsen SARS-CoV-2 symptoms is
clearly needed.
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